Летняя математическая школа "Алгебра и геометрия"

25 - 31 июля, 2013

Ярославль, Россия


Научный комитет: Федор Богомолов (Courant Institute, НИУ ВШЭ), Михаил Вербицкий (НИУ ВШЭ), Алексей Зыкин (НИУ ВШЭ, ИППИ РАН, Лаборатория Понселе).


Zeta functions coming from geometry

Marc Hindry (Université Paris VII, Франция; Laboratoire CNRS J.-V. Poncelet, Москва)

Видеозаписи лекций

Резюме

We plan to give an overview of one of the most beautiful and fruitful tool for local-global problems in arithmetic geometry : zeta functions.

  1. Classical zeta functions : Riemann zeta function, Dirichlet L-functions, prime number theorem and arithmetic progression theorem; Dedekind zeta functions and Artin L-functions, Chebotarev theorem.
  2. Zeta functions from algebraic geometry : Weil zeta function (for a variety over a finite field); Hasse-Weil L-functions (for a variety over a number field); L-function associated to a Galois representation or a modular form.
  3. Analytic theory of zeta functionsc: Analytic continuation and functional equations; Analytic estimates; Generalized Riemann hypothesis.
  4. Special values of zeta functions: Class number formula; Birch and Swinnerton Dyer conjecture; Brauer-Siegel type theorems.

If time permits, we will mention other conjectures on special values : Deligne, Beilinson, etc.


The list of references

Страница Лаборатории алгебраической геометрии и ее приложений