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For simplicity, assume that all varieties are Q-factorial.

1. Singularities and blowups

KLT, LC varieties. Given a variety V and a point O ∈ V , let f : Ṽ → V be a
resolution of the singularity of V at 0. Then have

KṼ +
∑

aiEi =Q f
∗ (KV )

Then

• If ai < 1 ∀i, (V 3 O) is said to be Kawamata Log Terminal (KLT)
• If ai ≤ 1 ∀i, (V 3 O) is said to be Log Canonical (LC)

Note 1. This is independent of the choice of resolution.

KLT, LC, plt for pairs. Now, assume (V 3 O) is KLT, and D =
∑
diDi is a

Q-Cartier divisor on V , where 0 < di ∈ Q and Di are distinct prime divisors. Given
a resolution

KṼ + D̃ +
∑

aiEi =Q f
∗ (KV +D)

• (V,D) is KLT if ai < 1, dj < 1 ∀i, j.
• (V,D) is LC if ai ≤ 1, dj ≤ 1 ∀i, j.
• (V,D) is Purely Log Terminal (plt) if ai < 1, dj ≤ 1 ∀i, j.

Note 2. It is worth mentioning other related terms: a pair is called ε-KLT (ε-LC)
if the respective definitions hold with 1 replaced by 1− ε.
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Definitions of singularity types.

Definition 1.1. Let (V 3 O) be a germ of a Kawamata log terminal singularity.
The singularity is said to be exceptional if, given an effective Q-divisor D on V
one of the following hold:

• (V,D) is not log canonical.
• There exists at most one exceptional divisor E over 0, with aE = 1. (Dis-

crepancy −1 w.r.t. (V,D)).

Let (V 3 O) be a germ of a KLT singularity. Then a birational morphism
π : W → V , such that:

• the exceptional locus of π consists of one irreducible divisor E such that
0 ∈ π(E),
• the log pair (W,E) has purely log terminal singularities.
• the divisor −E is a π-ample Q-Cartier divisor.

is called a plt blowup of (V 3 O).

Theorem 1.2 (see [3, Theorem 3.7], [9]). If (V 3 0) is a germ of a KLT singularity,
then it does have a plt blowup.

Definition 1.3. Let (V 3 0) be a germ of a Kawamata log terminal singularity.
The singularity is said to be weakly exceptional if its plt blowup is unique.

Some properties.

Lemma 1.4 (see [14, Theorem 4.9]). If (V 3 O) is exceptional, then (V 3 O) is
weakly exceptional.

Example 1.5. Du Val singularities. The singularity types can be determined di-
rectly from the intersection graphs of the resolution. For details, see Example A.1.

2. Log Fano Varieties

Definitions.

Definition 2.1. A variety V is log Fano if there exists a divisor D on V , such
that (X,D) is KLT and − (KV +D) is ample.

Definition 2.2. Let (V 3 0) be a germ of a KLT singularity, let E be the excep-
tional divisor of a plt blowup of this singularity. Then the different is defined by
the relation

KE + DiffE(0) = (KX + E + 0)|E

Theorem 2.3 ([9], [14], [17]). Let f : Ṽ → V 3 0 be a plt blowup with exceptional
divisor E. Then (E,DiffE(0)) is log Fano. The variety is exceptional (weakly
exceptional) if and only if for any effective Q-divisor D on E with

D ∼Q − (KE + DiffE(0)) ,

the pair (E,DiffE(0) +D) is KLT (Log Canonical).
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Log Canonical Threshold (Tian’s α-invariant). Assume that (V 3 O) is KLT,
and D is an effective Q-Cartier divisor on V . Now take λ ∈ R and consider the pair
(V, λD). Intuitively, one can see that as the value of λ grows, the singularities of
this pair become worse. This idea can be transformed into the following definition:

Definition 2.4. Given a KLT variety V and an effective Q-Cartier divisor D on
V , the number

lct (V,D) = sup {λ ∈ R | the pair (V, λD) is log canonical}

is the Log Canonical Threshold of the pair (V,D).

Note 3. The log canonical threshold of a pair is often referred to as Tian’s α-
invariant, written as α (V,D).

It should be clear that (at least, in case of log Fanos) the (weak) exceptionality of
a variety can be considered in terms of the corresponding log canonical thresholds:

Proposition 2.5. Let f : Ṽ → V 3 0 be a plt blowup with exceptional divisor E.
Let

α = inf {lct (E,DiffE0 +D) |D ∼Q − (KE + DiffE(0))}
Then

• V is weakly exceptional if and only if α ≥ 1.
• V is exceptional whenever α > 1. Note: not “if and only if”.

3. Quotient Singularities

Take a finite group G ⊂ GLn (C) and consider the variety V = Cn/G. Let 0 ∈ V
be the image of the origin in Cn under the natural projection. Then it is clear
that (under certain conditions on G) V has a singularity at 0. Call singularities
of this form quotient singularities. From now on, assume that all the singularities
mentioned here are quotient singularities, and fix the group G. Furthermore, take
the natural projection GLn (C) → PGLn (C), and let Ḡ be the image of G under
this projection.

Note 4. The inclusion G ⊂ GLn (C) fixes not only the isomorphism class of G,
but also its conjugacy class in GLn (C), i.e. its action on Cn. So from now on
G can be considered to be generated by explicit n × n matrices (up to a change of
basis). As a consequence, it will be assumed throughout that the action of G on Cn
is faithfull. Note that this also fixes the action of Ḡ on Pn−1.

Definition 3.1. Take M to be an n×n diagonal matrix matrix with (n−1) diagonal
entries being equal to 1, and the remaining one being equal to a primitive k-th root
of unity (for k > 1). Such a matrix M is called a pseudoreflection.

This type of element is important due to the following theorem:

Theorem 3.2 (Chevalley–Shephard–Todd theorem, see [19, Theorem 4.2.5]). The
following properties of a finite group G are equivalent:

• G is a finite reflection group.
• S is a free graded module over SG with a finite basis.
• SG is generated by n algebraically independent homogeneous elements.
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In other words, if the group G is generated by pseudoreflections, then the va-
riety V is smooth. This means that when considering the singularities of V , one
can disregard the pseudoreflections in G. Therefore, from now on assume that G
contains no pseudoreflections.

Looking at the previous sections, it should be clear that the types of singularities
are actually dependent on the group Ḡ ⊂ PGLn (C), rather than G ⊂ GLn (C).
Therefore, it is often advantageous to use the following:

Proposition 3.3. Let G ⊂ GLn (C) be a finite subgroup, and let π : GLn (C) →
PGLn (C) be the natural projection. Then there exists a group G′ ⊂ SLn (C) ⊂
GLn (C), such that π (G) = π (G′).

Proof. Easy exercise. �

Using this proposition, assume from now on that G ⊂ SLn (C).
Of course, it is possible to use all the definitions above in the special case of

these quotient varieties. The following turns out to be particularly useful:

Definition 3.4. The global Ḡ-invariant log canonical threshold is

lctḠ
(
Pn−1

)
= sup

{
λ ∈ R

∣∣∣∣ the pair (V, λD) is log canonical for every
Ḡ-invariant D ∼Q −KPn−1

}
This is also called the global Ḡ-invariant α-invariant.

With this definition, have:

Proposition 3.5. The following hold:

• 0 ∈ Cn/G is weakly exceptional if and only if lctḠ
(
Pn−1

)
≥ 1.

• 0 ∈ Cn/G is exceptional whenever lctḠ
(
Pn−1

)
> 1.

Definition 3.6. A polynomial F (x1, . . . , xn) is a semiinvariant of a group G ⊂
GLn (C) if for every g ∈ G, g (F ) = λgF , for some λg ∈ C.

Proposition 3.7. If G has a semiinvariant of degree d < n (d ≤ n) then the
singularity 0 ∈ Cn/G is not weakly exceptional (resp. not exceptional).

Proof. Let F be this semiinvariant, and take the divisor D = {F = 0} ⊂ Pn−1. If
H ⊂ Pn−1 is a hyperplane, then D ∼ dH and −KPn−1 ∼ nH. D is Ḡ-invariant, so

lctḠ
(
Pn−1

)
≤ lct

(
Pn−1,

n

d
D
)
≤ d

n
If d < n, then the result follows by Proposition 3.5. If d = n, then the result is an
easy consequence of Theorem 2.3. �

The converse of this result is, unfortunately, false. However, a somewhat modified
version of it does hold:

Theorem 3.8 ([3, Theorem 1.12]). Let G be a finite group in GLn+1 (C) that does
not contain reflections. If Cn+1/G is not weakly exceptional, then there is a Ḡ-
invariant, irreducible, normal, Fano type projectively normal subvariety V ⊂ Pn
such that

deg V ≤
(

n
dimV

)
and for every i ≥ 1 and for every m ≥ 0 one has

hi
(
Pn,OPn (dimV + 1)⊗ IV

)
= hi (V,OV (m)) = 0,
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h0
(
Pn,OPn (dimV + 1)⊗ IV

)
≥
(

n
dimV + 1

)
,

where IV is the ideal sheaf of the subvariety V ⊂ Pn. Let Π be a general linear sub-
space of Pn of codimension k ≤ dimV . Put X = V ∩Π. Then hi (Π,OΠ (m)⊗ IX) =
0 for every i ≥ 0 and m ≥ k, where IX is the ideal sheaf of the subvariety X ⊂ Π.
Moreover, if k = 1 and dimV ≥ 2, then X is irreducible, projectively normal, and
hi (X,OX (m)) = 0 for every i ≥ 1 and m ≥ 1.

Before proceeding, it is necessary to recall some things from basic representation
theory:

Definition 3.9. Let G ⊂ GLn (C) be a finite group. Then G acts on Cn. A
partition of imprimitivity for (this action of) G is a set {V1, . . . , Vk}, where Vi ⊆ Cn
are subspaces, such that Vi ∩ Vj = {0} whenever i 6= j,

Cn = V1 ⊕ · · · ⊕ Vk
and for every g ∈ G and every i ∈ {1, . . . , k}, g (Vi) = Vj for some j ∈ {1, . . . , k}.

Fact 3.10. Every action of a group G on Cn has at least one partition of imprim-
itivity, namely, {Cn}.

Definition 3.11. If the action of G has exactly one partition of imprimitivity, then
this action is called primitive.

Lemma 3.12 (Jordan’s theorem — see, for example, [7]). For any given N , there
are only finitely many finite primitive subgroups of SLN (C).

Definition 3.13. If for every partition of imprimitivity {V1, . . . , Vk}, the action of
G permutes the subspaces Vi transitively, then the action is called irreducible.

Note 5. This permutation action defines a map G 7→ Sk. This map will be very
useful later on.

Proposition 3.14. If the action of G is irreducible, then for any given partition
of imprimitivity of G, all the subspaces have the same dimension.

Definition 3.15. If G has a partition of imprimitivity with all the subspaces having
dimension 1, then G is called monomial.

Proposition 3.16. If the singularity 0 ∈ Cn/G is weakly exceptional, then the
action of G is irreducible.

The proof is an easy (although messy) generalisation of the following:

Example 3.17. Say that n = 4, and a partition of imprimitivity consists of two
2-dimensional G-invariant subspaces. So, G ⊂ SL4 (C), and

L1 = {u = v = 0} , L2 = {x = y = 0} ⊂ P3 = (x : y : u : v)

with Ḡ (Li) = Li. Consider

M1 = {λu+ µv} ∼ O(1)

Take some divisor M ∈M1. Then

N = Orb (M) =

k∑
i=1

Mi ⊂M1

for some distinct divisors M1, . . . ,Mk ∈M1. Note that N ∈ O(k).
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Now consider the pair
(
P3, 4M1

)
and a blowup f : V → P3.

KV = f∗
(
KP3

)
+ E

MV = f∗ (KM1
)− E

KV + 4MV = f∗
(
KP3 + 4KM1

)
− 3E

Thus, taking D = 4
kN , get a Ḡ-invariant divisor with the pair

(
P3, D

)
not log canon-

ical.

Proposition 3.18. If the singularity 0 ∈ Cn/G is exceptional, then the action of
G is primitive.

The proof is almost identical to the previous one:

Example 3.19. Say that n = 4, and a partition of imprimitivity consists of two
2-dimensional G-invariant subspaces. So, G ⊂ SL4 (C), and

L1 = {u = v = 0} , L2 = {x = y = 0} ⊂ P3 = (x : y : u : v)

with Ḡ (Li) = Lj. Consider

M1 = {λu+ µv} ∼ O(1)

M2 = {λx+ µy} ∼ O(1)

Take some divisor M ∈M1. Then

N = Orb (M) =

k∑
i=1

Mi ⊂M1 +M2

for some distinct divisors M1, . . . ,Ml ∈ M1, Ml+1, . . . ,Mk ∈ M2. Note that
N ∈ O(k).

Now consider the pair
(
P3, 2 (M1 +M2)

)
and a blowup f : V → P3.

KV = f∗
(
KP3

)
+ E

MV = f∗ (KM1 +KM2)− E
KV + 2MV = f∗

(
KP3 + 2 (KM1 +KM2)

)
− E

Thus, taking D = 2
kN , get a Ḡ-invariant divisor with the pair

(
P3, D

)
not KLT.

Example 3.20. Now go back to the example of ADE singularities. It is well-known
that these are in fact quotient singularities, An corresponding to the case Ḡ = Zn−1,
Dn corresponding to Ḡ = D2(n−2), and E6, E7, E8 corresponding to Ḡ being A4,
S4 and A5 resp. (in order to get G, these need to be lifted with a central extension
of order 2). For more details, see Example A.1.

It is worth noting that here the weakly exceptional singularities are exactly those
coming from irreducible group actions (of the dihedral, alternating and symmetric
groups), and the exceptional singularities are those coming from primitive actions
(of A4, S4 and A5).

Question 3.21. Does the irreducibility and primitivity of a group action determine
the (weak) exceptionality of the corresponding singularity?
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4. Dimension 3 (C3, P2)

Throughout this section, G ⊂ SL3 (C) is a finite group. Such groups in low
dimensions have been classified, so it makes sense to look at what G might be. In the
case of G being primitive, the classical source for the classification is H. Blichfeldt’s
book [1]. However, the result in that book is known to have a mistake (it is missing
one of the central extension groups). This has long been known, and a modern
result corrects this omition (and also clasifies the imprimitive subgroups):

Theorem 4.1 (Consequence of [20]). Let G ⊂ SL3 (C) be a finite irreducible group.
Then G is one of the following:

• If G is monomial, then it is either DoZ3 or DoS3, where, in some basis,
D is the subgroup of diagonal matrices and Z3 (or S3) permutes the basis
elements.
• G is one of the primitive groups E108 � F216 � H648, where H648 is the

Hessian group of order 648 and the other two are the normal subgroups of
order 108 and 216 respectively.
• G is isomorphic to Klein’s simple group K168 of order 168.
• G is isomorphic to A5 or the non-trivial central extension 3A6.
• G is isomorphic to one of Z3 × A5 or Z3 × K168, where Z3 is gnerated by

scalar matrices (i.e. is the center of SL3 (C)).

Proof. See Section B.2 �

First of all, consider the exceptional quotient singularities in this dimension.

Theorem 4.2 (see [11, Section 3.12]). Given a finite group G ⊂ SL3 (C), the
singularity C3/G is exceptional if and only if G has no semiinvariants of degree at
most 3.

This easily implies:

Theorem 4.3 (see [11, Theorem 3.13]). The group G induces an exceptional sin-
gularity if and only if Ḡ is isomorphic to A6, Klein’s simple group K168 of size 168,
Hessian group H648 of size 648 or its normal subgroup F216 of size 216.

Remark 4.4. This means that if G is primitive, but the singularity is not excep-
tional, then G is isomorphic to either E108 or A5.

Now, a similar result for the weakly exceptional singularities can be stated as:

Theorem 4.5 ([3, Theorem 3.18]). Let GSL3 (C) be a finite irreducible group.
Then the quotient singularity C3/G is weakly exceptional if and only if there is no
Ḡ-invariant conic curve on P2.

Assume the singularity is not weakly exceptional. Then there is a Ḡ-invariant
conic C.

Note 6. It is easy to prove that the group must act faithfully on C. The same
statement is true more generally (for Ḡ-invariant varieties in arbitrary dimensions)
under mild conditions on the variety.

Remark 4.6. The conic C must be smooth: otherwise either it is a double line
(defining a G-invariant plane in C3) or has exactly one singular point (defining a
G-invariant line in C3). In either case, this contradicts the irreducibility of G.
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Proposition 4.7. The group Ḡ is isomorphic to A4, S4 or A5.

Proof. A smooth conic in P3 is rational. Therefore, Aut (C) = Aut
(
P1
)
. So Ḡ is

is either cyclic or dihedral or is isomorphic to one of the three given groups. But
cyclic and dihedral group don’t have irreducible lifts from PGL3 (C) to SL3 (C). �

Locating the relevant isomorphism classes in the classification of finite subgroups
of SL3 (C), get the following result:

Theorem 4.8. Let G ⊂ SL3 (C) be a finite subgroup. Then G induces a weakly-
exceptional but not an exceptional singularity if and only if one of the following
holds:

• G is a monomial group, and Ḡ is not isomorphic to (Z2)
2oZ3 or (Z2)

2oS3.
• G is isomorphic to the normal subgroup E108 � F216 of size 108.

Note 7. This section proves that G being irreducible (primitive) is not a sufficient
condition for the sigularity being weakly exceptional (resp. exceptional).

5. Dimension 4 (C4, P3)

In this dimension, one first meets several types of groups that will be important
in the later study. Thus, it is worth it to consider them in detail.

Example 5.1. Take two integers a, b > 1, such that n = ab. Write the coordinates
of Cn in a a× b grid. In this form, any point of Cn can be viewed as a a× b matrix
M . Let Ga ⊂ SLa (C) and Gb ⊂ SLb (C). Now, for any ga ∈ Ga, gb ∈ Gb define:

α (ga, gb) (M) = gaMgTb

It is clear that this defines an action of G ⊂ SLab (C) (where G ⊆ Ga × Gb as
abstract groups).

Example 5.2. In the above example, let a = b and let G be the group defined
by α. Let the element t be defined by transposing the matrix form M . Then let
G1 = 〈G, t〉.

Lemma 5.3. In the two examples above, if a = b then G and G1 have a semiin-
variant of degree a < n.

Proof. Take the determinant of the matrix form. �

Example 5.4. Let TSL4 (C) be the group generated by the following matrices:

σ1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 σ2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


τ1 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 τ2 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


and the scalar matrix with all diagonal entries equal to

√
−1. This is the Extra

Special Group of order 25. It belongs to the family of Heisenberg groups, which
appear as subgroups of primitive groups in many dimensions.
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Note 8. The group T constructed above has a 5 linearly independent T -invariant
degree 4 polynomials.

Example 5.5 (see [13]). Take the group T in the above example and consider two
matrices

ν = 1√
2


i −1 0 0
0 0 i −1
0 0 −1 −1
i 1 0 0

 ρ = e2πi/8


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


Then the group N generated by T , ν and ρ. Then N the normaliser of T is SL4 (C)
Take the degree 4 polynomials left invariant by T . It is possible to rearrange them
to get 6 (linearly dependent) T -invariant degree 4 polynomials t1, . . . , t6, such that
N acts by permuting the ti. This defines a map α : N 7→ S6, and whenever
T ⊂ G ⊆ N , G can be determined by its image α(G).

Proposition 5.6. If the group G defined in Example 5.5 has no semiinvariants of
degree d ≤ 4, then α(G) is one of A5, S5, A6, S6.

Proof. By direct computation, T (and thus any groups containing T ) has no semiin-
variants of degree d < 4. The degree 4 semiinvariants are excluded by direct compu-
tation on the permutation representations of the relevant subgroups α(G) ⊆ S6. �

Coming back to computing the singularity types, a good starting point is the
following theorem:

Theorem 5.7 ([1], [6]). Let G ⊂ SL4 (C) be a finite primitive subgroup. Then G
is one of the following

• A group of the type constructed in Example 5.1 or 5.2 (for a = b = 2)
• A primitive group T ⊂ G ⊂ N constructed in Example 5.5
• A5 or S5

• SL2 (F5) or SL2 (F7)
• Central extensions 2A6, 2S6, 2A7.
• Õ′ (5,F3), a central extension of the commutator of O′ (5,F3)

By Proposition 3.18, if the singularity C4/G is exceptional, then G is one of these
groups. Moreover, by Proposition 3.7, such a group G cannot have semiinvariants
of degree d ≤ 4. As it turns out, these two conditions are almost sufficient:

Theorem 5.8 ([3, Theorem 4.3]). The singularity C4/G is exceptional whenever
the following are satisfied:

• The group G is primitive,
• The group G has no semiinvariants of degree d ≤ 4,
•
∣∣Ḡ∣∣ > 168.

The next step is to check the semiinvariant condition for these groups. Looking
back at Theorem 5.7, thefirst two group types can be checked using Lemma 5.3 and
Proposition 5.6. As for the other groups, this can be done in different ways, but
the simplest (although most tedious) way is to just construct the character table
of the relevant groups ant look at the characters of the first n symmetric powers of
relevant representations. I would strongly recommend to do this by hand once, and
then to find a computer algebra program that can do that for you. In any case, the
results should be as follows:
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Proposition 5.9. For a given G, let d be the smallest degree of a G-semiinvariant
polynomial. Then the following hold:

• If G = A5 then d ≤ 3
• If G = S5 then d ≤ 3
• If G = SL2 (F5) then d = 4
• If G = SL2 (F7) then d = 4
• If G = 2A6 then d ≥ 5
• If G = 2S6 then d ≥ 5
• If G = 2A7 then d ≥ 5
• If G = Õ′ (5,F3) then d = 12

Proof. By direct computation or otherwise. �

Looking at the sizes of the remaining groups, it is clear that they all satisfy the
required lower bound on the group size. Thus the result is:

Theorem 5.10. The singularity C4/G is exceptional whenever G is one of 2A6,

2S6, 2A7 Õ′ (5,F3) and the four groups described in Proposition 5.6.

Now look for the weakly exceptional singularities. Unfortunately, although all
the possible finite irreducible subgroups of SL4 (C) have been classified, the classi-
fication is too complicated for the same method as above to be practical. On the
other hand, a similar sufficient condition still exists:

Theorem 5.11 ([3, Theorem 4.1]). The singularity C4/G is weakly exceptional if
and only if the following are satisfied:

• The group G is irreducible,
• The group G has no semiinvariants of degree d ≤ 3,
• There is no Ḡ-invariant smooth rational cubic curve in P3.

The last condition is implied by the condition “
∣∣Ḡ∣∣ > 60”, so, looking at the ex-

ceptional case, one can hope that this condition may be unnecessary. Unfortunately,
this turns out to be false:

Proposition 5.12. Let G ⊂ SL4 (C) be a finite irreducible subgroup, such that Ḡ
preserves a smooth rational cubic curve C ⊂ P3. Assume that G has no semiin-
variants of degree d ≤ 3. Then Ḡ = A5.

Proof. Since C is smooth, Aut (C) = Aut
(
P1
)
. Therefore, Ḡ is isomorphic to one

of Zn, D2n, A4, S4, A5.
Central extensions of cyclic and dihedral groups do not have any irreducible 4-

dimensional representations. If Ḡ is equal to A4 or S4, then it is easy to check that
G has a semiinvariant of degree 2 (Ḡ preserves a smooth quadric surface). Ḡ has
to be isomorphic to A5.

It needs to be noted, that there are two irreducible groups G with Ḡ = A5. One
of them has a semiinvariant of degree 2, but the other one has no semiinvariants of
degree d < 4 (it fact, in this case G = SL2 (F5) = 2A5) and does indeed preserve
such C. �

Remark 5.13. This shows that in general, the condition of a group not having
any low-degree semiinvariants is not sufficient to deduce that the corresponding
singularity is (weakly) exceptional, and that one should not expect such a condition
to work in a higher dimension.
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Since it does not seem feasible to classify the weakly exceptional quotient sin-
gularities by starting with the list of finite subgroups of SL4 (C), one has to find a
different approach. The theorem above implies the following:

Proposition 5.14. Let G ⊂ SL4 (C) be a finite subgroup, such that the singularity
C4/G is not weakly exceptional. Then at least one of the following holds:

• G is not irreducible.
• Ḡ = A5, preserving a smooth rational cubic curve C ⊂ P3.
• G has a semiinvariant of degree 2 or 3.

Thus, it is sufficient to classify the cases where G has a semiinvariant of degree
2 or 3. Let S ⊂ P3 be the subvariety defined by this semiinvariant. Then it must
be smooth:

Proposition 5.15. If G is irreducible, then the Ḡ-orbit of any point p ∈ P3 has at
least 4 points.

Proof. Say a point p has an orbit of k < 4 points. Then C4 contains a G-invariant
union of k lines, which define a proper G-invariant subspace of C4, contradicting
irreducibility of G. �

Lemma 5.16. Let G ⊂ SL4 (C) be a finite irreducible group, Ḡ ⊂ PGL4 (C) its
projection, and let S ⊂ P3 be a Ḡ-invariant surface of degree minimal among the
degrees of all Ḡ-invariant surfaces. Then either degS ≥ 4 or S is smooth.

Proof. Since G is irreducible, degS ≥ 2. If degS = 2 and S is singular, then either
S has exactly one isolated singularity (which has to be a Ḡ-fixed point, i.e. an orbit
consisting of 1 point), or S is a union of two planes and thus has a singular line
(defining a plane in C4), which must then be Ḡ-invariant. Both of these contradict
the irreducibility of G. Therefore, if degS = 2 then S must be smooth.

If degS = 3, and S is not irreducible, then either it is the union of a plane and
an irreducible quadric surface (each of which must thus be a Ḡ-invariant surface of
smaller degree, contradicting the minimality of the degree of S) or S is the union
of 3 distinct planes, whose intersection gives either a point or a line fixed by all of
Ḡ (stopping G from being irreducible). Hence S is irreducible.

Assume that degS = 3 and S has non-isolated singularities, with C being the
union of all singular curves on S. Then, one can see that C is a line. Since Ḡ(S) =
S, must have Ḡ(C) = C, and so there exists a Ḡ-invariant line, contradicting
irreducibility of G. Therefore if degS = 3 then S must have at worst isolated
singularities.

If degS = 3 and S is singular with only isolated singularities, then by [2],
the singularity types form one of the following collections: (A1), (2A1), (A1, A2),
(3A1), (A1, A3), (2A1, A2), (4A1), (A1, A4), (2A1, A3), (A1, 2A2), (A1, A5). Given
any type of singularity, the set of such singularities on S must be preserved by
the action of Ḡ (as it will be a union of a number of orbits). Therefore, it must
either be empty or have size at least 4. Therefore, S has to have exactly four A1

singularities. Since there is only one such surface (see, for example, [2, proof of
Lemma 3]), S must be the Cayley cubic, defined (in some basis) by

S =
{

(x : y : u : v) ∈ P3 |xyu+ xyv + xuv + yuv = 0
}
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This surface, contains exactly 9 lines, six of which pass through pairs of singular
points and the other three are defined by

x+ y = 0 = u+ v
x+ u = 0 = y + v
x+ v = 0 = y + u

These last three lines must therefore be mapped to each other by all of Ḡ. But since
they are coplanar, Ḡ preserves the plane they lie in, contradicting the irreducibility
assumption for G. Thus if S is a cubic surface, then it must be smooth. �

Now consider the two different degrees separately:

Lemma 5.17. If G ⊂ SL4 (C) is a finite irreducible subgroup, and Ḡ its projection
to PGL4 (C). Also assume that there is no Ḡ-invariant quadric surface, and S ⊂ P3

is a smooth Ḡ-invariant cubic surface. Then G must be isomorphic to a central
extension of one of:

•
(

(Z3)
3 o Z2

)
o Z2.

• (Z3)
3 o S4.

by scalar elements, acting as described below. Both these cases produce monomial
actions.

Proof. Since Ḡ ⊂ Aut (S) is a finite subgroup, by [8] Ḡ must be isomorphic to one
of:

(1) Cyclic groups {IdḠ}, Z2, Z4, Z8.

(2) Dihedral groups (Z2)
2 ∼= D4, S3

∼= D6, S3 × Z2
∼= D12.

(3) S4.

(4) (Z3)
2 o Z2 or

(
(Z3)

3 o Z2

)
o Z2.

(5) S5.

(6) (Z3)
3 o S4.

These cases will be considered separately:

(1) The group Ḡ cannot be cyclic, since central extensions of cyclic groups do
not have any irreducible 4-dimensional representations.

(2) Dihedral groups and their extensions by scalar elements do not have any
irreducible 4-dimensional representations, so these groups cannot act irre-
ducibly.

(3) The group S4 by itself has no 4-dimensional irreducible representations, but
its central extension has (up to a choice of a root of unity) only one such.
This representation preserves a quadric surface.

(4) For convenience, write Ḡ′ = (Z3)
2 oZ2 and Ḡ′′ =

(
(Z3)

3 o Z2

)
oZ2, with

all the notation following in the obvious manner (i.e. write G′ for the lift
of Ḡ′ to SL4 (C), etc.).

Using the notation from [8], define the group G9
54 generated by elements

ᾱ, β̄, γ̄, δ̄ with ᾱ3 = β̄3 = γ̄3 = δ̄2 = id, ᾱ generating the centre of G9
54 and

G9
54/C

(
G9

54

) ∼= (Z3)
2 o Z2.

Then one can see that Ḡ′ = G9
54/C

(
G9

54

)
and Ḡ′′ = G9

54 o Z2 (with

additional generator ε̄, such that ε̄2 = id). Let α, β, γ, δ, ε be lifts of ᾱ, β̄, γ̄, δ̄
(respectively) to SL4 (C).
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Let h1 := α3, h2 := β3. ᾱ, β̄ commute, so say βα = αβh3. By the
structure of the lift, hi are scalar matrices of order 1, 2 or 4. Then

h3
1h2 =

(
α2βα

)3
= (βh1h3)

3
= h2h

3
1h

3
3

and so h3 = id. Similarly, get α, β, γ all commuting. Hence the corre-
sponding matrices can all be taken to be diagonal (by choosing a suitable
basis). It is then easy to see that δ and ε must act as elements of a central
extension of S4 permuting the basis.

Since Ḡ′′ has only one normal subgroup of index 2, and Ḡ′′ has no
centre (otherwise Ḡ′′/C

(
Ḡ′′
)

would be on the list of groups acting on a

cubic surface), δ̄ε̄ 6= ε̄δ̄. Therefore, up to conjugation, δ interchanges the
first and the second basis vectors, and ε interchanges the first basis vector
with the third one and the second basis vector with the fourth one.

This means that G′ is not irreducible, while G′′ is irreducible, monomial
and (up to conjugation) is generated by
ζ3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ζ−1

3

 ,


1 0 0 0
0 ζ3 0 0
0 0 1 0
0 0 0 ζ−1

3

 ,


1 0 0 0
0 1 0 0
0 0 ζ3 0
0 0 0 ζ−1

3

 ,

ζ8


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


This group leaves (for example) the cubic polynomial x3+y3+z3+w3 (in

coordinates (x, y, z, w) for C4) semi-invariant, and by direct computation,
one sees that the group does not have a semi-invariant quadric surface.

(5) The group S5 is, according to [15, §100], the automorphism group of the
irreducible diagonal cubic surface

S =

{
(x0 : x1 : x2 : x3 : x4) ∈ P4

∣∣∣∣ x3
0 + x3

1 + x3
2 + x3

3 + x3
4 = 0,

x0 + x1 + x2 + x3 + x4 = 0

}
which immediately implies that there exists a Ḡ-invariant quadric surface.

(6) As stated in [15, §100], the monomial group (Z3)
3 o S4 acts by permuting

the basis vectors of C4 arbitrarily and multiplying them by arbitrary cube
roots of unity. Hence (up to conjugation) G is a central extension of such
a group by scalar elements.

This group clearly leaves the cubic polynomial x3 + y3 + z3 + w3 (in
coordinates (x, y, z, w)) semi-invariant, and by direct computation, one sees
that the group does not have a semi-invariant quadric surface.

�

All that is left to consider is the case where Ḡ preserves a smooth quadric surface
S ⊂ P3. By Lemma 5.16, one can assume that S is smooth. This means that S
can be taken to be the image of P1 × P1 under the Segre embedding. Therefore, in
the notation of Examples 5.1 and 5.2 (for a = b = 2), S is defined by det (M) = 0.

Thus, G can be any irreducible group constructed as in Examples 5.1 and 5.2, or
any subgroup of such a group. All such G have been classified in [5]. However, that
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paper was not concerned with the irreducibility or primitivity of the group action,
so this needs to be determined for the different groups on the list.

The bad news is that these groups form several infinite families, so there is no
hope that the concept of weak exceptionality in a general dimension is particularly
close to the irreducibility of the group action.
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6. Higher dimensions

Having classified the exceptionality of quotient singularities in low dimensions,
it is interesting to see how the singularities Cn/G behave for higher values of n. In
this case, the exceptional quotient singularities are somewhat less interesting: the
group giving rise to such a singularity has to be primitive (by Proposition 3.18), and
by Jordan’s Theorem (Lemma 3.12), for any fixed dimension there are only finitely
many such groups. Furthermore, as the dimension grows, the exceptional quotient
singularities occur less and less often, so there is hope that there is a bound on the
dimension, beyond which no such singularities exist.

Therefore, one can concentrate on studying weakly exceptional quotient singular-
ities. Obviously, there is no meaningful classification for finite subgroups of SLn (C)
for a general value of n, so one can only hope to classify the irreducible groups G,
such that the corresponding singularities are not weakly exceptional. Judging by
the previous results, one can suspect that the situation will depend on wheter or
not the dimension n is a prime number.

6.1. WE in prime dimensions. For now, assume that n = q ≥ 3, a prime
number, and Γ ⊂ SLq (C) is a finite irreducible subgroup, such that the singularity
Cq/Γ is not weaky exceptional.

Recalling the definitions, it becomes clear that Γ is either primitive or monomial.
Since there are only finitely many finite primitive subgroups of SLq (C), can assume
that G is monomial, i.e. there are q 1-dimensional subspaces {V1, . . . , Vq}, such that
Vi span Cq, and for any g ∈ Γ and any i, g(Vi) = Vj . This defines a map π : Γ 7→ Sq,
and, taking T ⊂ Sq to be the image of Γ and D the kernel, have the exact sequence

1→ D → Γ→ T → 1

Furthermore, T ⊆ Sq must be transitive — otherwise the the orbit of V1 would
span a proper invariant subspace of Cq.

Lemma 6.1. Assume G ⊂ SLq (C) is a finite irreducible monomial subgroup. Set-
ting G ∼= DoT as above, there exists τ ∈ G \D and a basis e1, . . . , eq for Cq, such
that τ q = IdG, and τ acts by

τ (ei) = ei+1 ∀i < q; τ (eq) = e1

Proof. Since G is irreducible, T must be a transitive subgroup of Sq, and must thus
contain a cycle of length q (since q is prime). Take τ ∈ Γ, such that π (τ) is a
generator of this cycle. Let e1 ∈ V1 be a non-zero vector. Then, renaming the Vi-s
if necessary, τ i (e1) ∈ Vi+1 (for 1 ≤ i < q). Set ei = τ i−1 (e1) (2 ≤ i ≤ q). Clearly,
τ (eq) = αe1 for some α ∈ C.

Since all the subspaces Vi are disjoint and one-dimensional, ei must generate
Vi, and so e1, . . . , eq must form a basis for Cq. Also, since g ∈ D = kerπ, and τ
permutes the subspaces Vi non-trivially, τ 6∈ D. Since τ ∈ G ⊆ SLq (C) and q odd,
one also observes that α = 1, and so τ acts as stated above. �

Corollary 6.2. There exists a subgroup G = D o Zq ⊆ Γ generated by D and τ .
The singularity of Cq/G is not weakly exceptional, and |Γ| ≤ (q − 1)! |G|.

Proof. Take G generated by D and the element τ ∈ Γ obtained in Lemma 6.1.
Clearly, G ⊆ Γ and, looking at the action of τ , G ∼= D o Zq. Let Γ̄ and Ḡ
be projections of Γ and G (respectively) to PGLq (C). Then Ḡ ⊆ Γ̄, and any
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Γ̄-invariant variety is also Ḡ-invariant. Thus, using Theorem 3.8, the singularity
induced by G is not weakly exceptional. Finally,

|Γ| ≤ |Sq|
|Zq|
|G| = (q − 1)! |G|

�

From now on, fix the group G constructed above, the subgroup D ⊂ G, the
element τ ∈ G and the basis e1, . . . , eq for Cq constructed in Lemma 6.1. It should
be clear that obtaining a bound on the possible types of such groups G does the
same for the groups Γ (as each G can only be extended in very few ways). On the
other hand, the groups of this type turn out to be much easier to work with.

It is now necessary to obtain a specialised criterion for determining whether or
not such groups induce a weakly exceptional singularity. For that, a small classical
result is needed:

Proposition 6.3. Any irreducible representation of G (given above) over C is
either 1-dimensional or q-dimensional.

Proof. See [16, §8.1]: here, A = D, (G : D) = q, which is only divisible by 1 or
itself. �

Lemma 6.4 (generalising [3, Theorem 3.4]). Let q be an odd prime and assume
G ⊂ SLq (C) is a finite imprimitive subgroup isomorphic to AoZq for some abelian
A. Then the singularity of Cq/G is not weakly exceptional if and only if G has a
(non-constant) semi-invariant of degree d < q.

Proof. If G does have a semi-invariant of degree at most q− 1, then the singularity
is not weakly exceptional by Proposition 3.7. Suppose that G does not have any
such semi-invariants, but the singularity is not weakly exceptional.

Then, by Theorem 3.8, there exists a Ḡ-invariant irreducible normal Fano type

variety V ⊂ Pq−1, such that deg V ≤
(

q − 1
dimV

)
and hi (V,OV (m)) = 0 ∀i ≥ 1

∀m ≥ 0 (where OV (m) = OV ⊗OPq−1 (m)).
Let n = dimV . Then, since G has no semi-invariants of degree less than q, have

n ≤ q − 2. Let IV be the ideal sheaf of V . Then

h0 (V,OV (m)) = h0
(
Pq−1,OPq−1 (m)

)
− h0

(
Pq−1, IV (m)

)
For instance, h0 (V,OV ) = 1.

Take any m ∈ Z with 0 < m < q. Let Wm = H0
(
Pq−1, IV (m)

)
. This is a linear

representation of G, so q|dimWm (by Proposition 6.3, as G has no semi-invariants
of degree m < q). Since q|h0

(
Pq−1,OPq−1 (m)

)
,

h0 (V,OV (m)) ≡ 0 mod q

Since h0 (V,OV (t)) = χ (V,OV (t)) for any integer t ≥ 0, there exist integers
a0, . . . , an, such that

h0 (V,OV (t)) = P (t) = ant
n + an−1t

n−1 + · · ·+ a1t+ a0

Consider P (t) as a polynomial over Zq. Since

P (m) = h0 (V,OV (m)) ≡ 0 mod q
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whenever 0 < m < q, P (t) has at least q− 1 roots over Zq. But degP ≤ n ≤ q− 2,
so P (t) must be the zero polynomial over Zq. In particular, a0 ≡ 0 mod q. On the
other hand, a0 = P (0) = h0 (V,OV ) = 1 6≡ 0 mod q, leading to a contradiction.

�

Now let f (x1, . . . , xq) be a semi-invariant of G of degree d < q from Lemma 6.4.
Using the chosen basis, let

m (x1, . . . , xq) = xa11 xa22 · · ·xaqq
be a monomial contained in f (for some ai ∈ Z≥0). Then

∑
i ai = d and

∑q
i=0 λ

iτ i (m)
is a semi-invariant of G whenever λq = 1. So, without loss of generality, assume

f (x1, . . . , xq) =
[
m+ λτ (m) + · · ·+ λq−1τ q−1 (m)

]
(x1, . . . , xq)

Note that all the ai are non-negative integers, not all zero, and 0 <
∑
i ai = d < q.

This semi-invariant can now be exploited to obtain a bound for the possible size
of D. To do this, the following lemma is necessary:

Lemma 6.5. Consider the following q by q matrix with integer coefficients:

M =


a1 a2 · · · aq−1 aq
aq a1 · · · aq−2 aq−1

...
...

. . .
...

...
a3 a4 · · · a1 a2

a2 a3 · · · aq a1


The determinant of M is not zero.

Proof. Consider the matrix M over C, and assume detM = 0. Then one of the
eigenvalues of M must be zero. The eigenvectors and eigenvalues of this matrix are
easy to compute, so this implies

a1 + ωa2 + ω2a3 + . . .+ ωq−1aq = 0

for some ω with ωq = 1. Since all the ai-s are non-negative integers, this is a sum of
exactly d =

∑q
i=1 ai q-th roots of unity. So, by [10], d must be a sum of the prime

factors of q. But, by the initial assumptions, q is prime, and 0 < d < q, producing
a contradiction. �

This allows to bound the size of cyclic subgroups of D:

Lemma 6.6. Let g ∈ D, and let n be the smallest positive integer, such that gn is
a scalar matrix. Then n < q2q+1.

Proof. Assume n > 1. Since g ∈ G ⊂ SLq (C), gn = ζqIq, where ζq is a q-th root
of 1 and Iq is the identity matrix. Then, since all the elements of D are diagonal
matrices,

g = ζβ0
q

 ζβ1
n

. . .

ζ
βq
n


where βi ∈ Z, not all zero, with 0 ≤ βi < n ∀i > 0; 0 ≤ β0 < q. Since n was taken
to be minimal, the highest common factor of {n, β1, . . . , βq} is 1.
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Now consider the polynomial f of degree d < q described above. Since we know
g ∈ G, g (f) = λf for some λ ∈ C. Since gnq = Iq and all the monomials are
g-semi-invariant, λ = ζβ0

q ζCn , some C ∈ Z. This is equivalent to:

C ≡ a1β1 + a2β2 + · · ·+ aq−1βq−1 + aqβq mod n

≡ a1β2 + a2β3 + · · ·+ aq−1βq + aqβ1 mod n

≡ a1β3 + a2β4 + · · ·+ aq−1β1 + aqβ2 mod n

. . .

≡ a1βq + a2β1 + · · ·+ aq−1βq−2 + aqβq−1 mod n

This can be rewritten as

M (β1, . . . , βq)
T ≡ C (1, . . . , 1)

T
mod n

where M is the matrix from Lemma 6.5). However, since
∑q
i=1 ai = d, M also

satisfies

M (1, . . . , 1)
T

= d (1, . . . , 1)
T

Take v = d (β1, . . . , βq)
T − C (1, . . . , 1)

T
. By linearity, Mv ≡ 0 mod n. Multi-

plying both sides by the adjugate matrix of M , get:

(dβ1 − C) detM ≡ 0 mod n

(dβ2 − C) detM ≡ 0 mod n

. . .

(dβq − C) detM ≡ 0 mod n

Therefore,

dβ1 detM ≡ dβ2 detM ≡ · · · ≡ dβq detM ≡ C detM mod n

This implies that gd detM is a scalar matrix. By assumption, 0 < d < q (in Z), and,
by Lemma 6.5, detM 6= 0 (in Z), so |ddetM | = Kn for some positive integer K.
Thus, n ≤ |ddetM | ≤ q |detM |.

Now look at the entries Mi,j of the matrix M . Since 0 ≤ ak ≤ d < q for all k,
|Mi,j | ≤ d < q. Thus,

n ≤ q |detM | ≤ q
(
qmax

i,j
|Mi,j |

)q
< q2q+1

�

This result bounds the size of the biggest possible cyclic subgroup of D. This
bounds the order ofD, hence the order ofG, and therefore the order of Γ. Therefore,
this proves the following result:

Theorem 6.7. For a given prime number q, there are only finitely many finite
irreducible subgroups Γ ⊂ SLq (C), such that the singularity of Cn/Γ is not weakly
exceptional.

Note 9. Given a prime number q, it is actually possible to compute all possible
conjugacy classes for the group Γ: one simply needs to list all the possible monomials
of degree d (for each d < q, combine them into τ -orbits and then solve the equations
that are combined into the matrix M in Lemma 6.6 modulo detM . This will produce
all the possible subgroups D, which can easily be extended to groups G and then Γ.
Here, one needs to keep several things in mind:
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• This does not take into account the cases where D is trivial. Then Γ = T ⊂
Sq. These groups need to be checked.
• The primitive groups need to be checked separately. For small dimensions,

the classifications of such groups are known, but for large dimensions one
would need to be computed first.

Example 6.8. Let q = 5, consider monomials of degree 4: the orbits of x3
1x2, x3

1x3,
x3

1x4, x3
1x

5, x2
1x

2
2 and x2

1x
2
3. In the first 4 cases the relevant determinant is 4 · 61,

and in the last two cases it is 64. Solving the equations used to build the matrix M ,
obtain the specific actions of the elements of D. In the first 4 cases, these will be
pairwise incompatible, so |D| = 61 (or 61 · 5 if D includes the center of SL5 (C))
and T = Z5. In the last two cases, the actions are compatible, so T can also contain
the element (23) ∈ S5.

Going through the calculations for q = 5 as in the above example produces
the following result (Here, “[n, a1, . . . , a5]” denotes the diagonal matrix with the
diagonal entries ζa1 , . . . , ζa5 , where ζ primitive n-th root of unity):

Theorem 6.9. Let G ⊂ SL5 (C) be a finite subgroup acting irreducibly. Then the
singularity of C5/G is weakly-exceptional exactly when:

(1) The action of G is primitive and G contains a subgroup isomorphic to
the Heisenberg group of all unipotent 3 × 3 matrices over F5 (for a better
classification of all such groups, see [12]).

(2) The action of G is monomial (making G ∼= DoT , with D an abelian group
as above and T a transitive subgroup of S5), and none of the following hold:
• D is central in SL5 (C). In this case, G can be isomorphic to A5, S5,

or their central extensions by Z5.
• |G| = 55 or 55·5 with |D| = 11 or 11·5 resp., T ∼= Z5 ⊂ S5, and there is

a k ∈ Z, 1 ≤ k ≤ 4, such that D is generated by
[
11, 1, 4k, 42k, 43k, 44k

]
and (in the latter case) also the scalar element ζ5 ·Id. In this case, G
is isomorphic to Z11 o Z5 or (Z5 × Z11) o Z5.

• |G| = 305 or 305 · 5 with |D| = 61 or 61 · 5 resp., T ∼= Z5 ⊂ S5,
and there is a k ∈ Z, 1 ≤ k ≤ 4, such that D is generated by[
61, 1, 34k, 342k, 343k, 344k

]
and (in the latter case) also the scalar ele-

ment ζ5·Id. In this case, G is isomorphic to Z61oZ5 or (Z5 × Z61)oZ5.
• There exists some d ∈ {2, 3, 4} and ω with ω5 = 1, such that:

– ∀g ∈ D, gd is a scalar.
– |D| ∈

{
dk, 5 · dk

}
(depending on whether D contains any non-

trivial scalar elements) with 1 ≤ k ≤ 4.
– The polynomial xd1 + ωxd2 + ω2xd3 + ω3xd4 + ω4xd5 is G-semi-

invariant.

6.2. Non-prime dimensions (Abandon all hope, ye who enter here). Un-
fortunately, as soon as the assumption of the dimension being a prime number is
dropped, the finiteness results disappear. To see that, it is sufficient to recall Exam-
ple 5.2. It implies that whenever the dimension is a square, n = k2, it is possible to
find infinite families of irreducible groups G with semiinvariants of degree k. Also,
whenever n is even, it is possible to construct infinite families of irreducible groups
giving rise to singularities that are not weakly exceptional (using the construction
in Example 5.1 for a = 2). So the only result one can hope for is
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Conjecture 6.10. All infinite families of groups G giving rise to non-weakly excep-
tional singularities can be obtain using the construction from Examples 5.1 and 5.2.

However, even this is unknown, since the proof of Lemma 6.4 also relies on q
being a prime.
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Appendix A. ADE singularities

Example A.1 (see [18, Section 5.2.3]). Consider the Du Val singularities (i.e.canonical
singularitite sin dimension 2). It is well known, that these follow the well-known
A-D-E classification. It can be seen by taking their minimal resolutions and seeing
that the components of the exceptional divisor intersect as seen in Figure 1.

Figure 1. Blowup graphs of 2-dimensional singularities
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To make these look more familiar, take their dual graphs (where the vertices are
the exceptional divisors, and the edges signify their intersection) and compare them
with the standard Dynkin diagrams. These dual graphs can be seen in Figure 2.

On these graphs, one can easily see the possible plt blowups: for a singularity of
type An, choosing any curve on the resolution and blowing down all others produces
a plt blowup. For singularities of types D and E, the chosen curve needs to be
the unique curve that intersects three other curves — otherwise the log pair (W,E)
(in the definition of plt blowups) will have singularities that are worse than log
terminal. This implies that singularities of types D and E are weakly exceptional,
while singularities of type A are not. In fact, singularities of type E are exceptional.

It is also known that all these are in fact quotient singularities: they are all of
the form C2/G, where G ⊂ SL2 (C) is a finite subgroup. Mathcing these up with the
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Figure 2. Dual blowup graphs of 2-dimensional singularities
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list of finite subgroups of SL2 (C) (see Section B.1), one finds that the groups Zn
(or Zn if n is odd), D2n, A4, S4 and A5 correspond to singularities of types An−1,
Dn+2, E6, E7 and E8 respectively. One can blow these singularities up and look at
their blowup graphs.

Appendix B. Finite subgroups of SLn (C) for small values of n

B.1. Finite subgroups of SL2 (C). This is a well-known classical result, attrib-
uted to F. Klein (or sometimes to Plato). A modern treatment can be found in [4].
Note that care must be taking when writing out explicit matrix representations.

Let G ⊂ SL2 (C) be a finite group, Let Ḡ be its image under the projection to
PGL2 (C) = Aut

(
P1
)
. Then Ḡ belongs to one of the following classes:

• Cyclic: Zn, n ≥ 1.
• Dihedral: D2n =<a, b

∣∣ an = b2 = id, bab = a−1> (n ≥ 2).
• Polyhedral groups A4, S4, A5.

Lifting the actions of these groups to SL2 (C), one sees that Ḡ must be conjugate
to one of the following:

• Binary cyclic group

Zn =<a
∣∣ a2n = 1>
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All its faithful representations are 1–dimensional, and are of the form of
a ; ζl2n, some l ∈ Z. Thus a 2–dimensional representation has to be a
direct sum of two such.
• Cyclic group Zn, where n is odd. Similar to the binary cyclic group, this

group is abelian, and so its two-dimensional representation must be a di-
rect sum of two one-dimensional representations. When one projects these
groups into PGL2 (C), the kernel is trivial, and a lift of the projection back
to SL2 (C) can be chosen to be either Zn or Zn. To simplify notation later
on, always choose to lift it as Zn.
• Binary dihedral group

D2n =<a, b
∣∣ an = b2, b4 = 1, aba−1 = a−1>

The suitable 2–dimensional representations of this group are indexed by
different choices of ζ2n. They are:

a;

(
ζ2n 0
0 ζ−1

2n

)
, b;

(
0 1
−1 0

)
• Binary tetrahedral group

A4 =<ζ4(12)(34), ζ4(14)(23), ζ4(123)>

(using standard notation for elements of the symmetric group). Similarly
to above, the suitable 2–dimensional representations of this group are de-
termined by the choice of ζ8. They are:

ζ4(12)(34) ;

(
ζ2
8 0
0 −ζ2

8

)
, ζ4(14)(23) ;

(
0 1
−1 0

)
,

ζ4(234) ;
1√
2

(
ζ7
8 ζ7

8

ζ5
8 ζ8

)
• Binary octahedral group

S4 =<ζ4(12)(34), ζ4(14)(23), ζ4(123), ζ4(34)>

This group only has 2 suitable representations, each having a subrepresen-
tation isomorphic to the representation of A4 that uses the same value of
ζ8. The extra generator acts as

ζ4(34) ;

(
0 ζ8
−ζ7

8 0

)
• Binary icosahedral group

A5 =<ζ4(12345), ζ4(12)(34)>

ζ4(12345) ;

(
ζ3
5 0
0 −ζ2

5

)
,

ζ4(12)(34) ;
1√
5

(
−ζ5 + ζ4

5 ζ2
5 − ζ3

5

ζ2
5 − ζ3

5 ζ5 − ζ4
5

)
One can see that these group actions are of the following types:

• The actions of cyclic groups are not irreducible.
• A4, S4, A5 have primitive actions
• Binary dihedral groups have imprimitive monomial actions.
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B.2. Finite subgroups of SL3 (C). This result can be seen in H.F. Blichfeldt’s
book ([1]). However, the classical treatment of this result (including that in this
book) misses several of the groups. A more modern (and complete) treatment can
be found in [20]).

Define the following matrices:

S =

 1 0 0
0 ω 0
0 0 ω2

 T =

 0 1 0
0 0 1
1 0 0

 W =

 ω 0 0
0 ω 0
0 0 ω



U =

 ε 0 0
0 ε 0
0 0 εω

 Q =

 a 0 0
0 0 b
0 c 0

 V = 1√
−3

 1 1 1
1 ω ω2

1 ω2 ω


where ω = e2πi/3, ε3 = ω2 and a, b, c ∈ C are chosen arbitrarily, as long as abc = −1
and Q generates a finite group.

Up to conjugacy, any finite subgroup of SL3 (C) belongs to one of the following
types:

(1) Diagonal abelian group.
(2) Group isomorphic to an irreducible finite subgroup of GL2 (C), preserving

a plane C2 ⊂ C3, and not conjugate to a group of type (1).
(3) Group generated by the group in (1) and T and not conjugate to a group

of type (1) or (2).
(4) Group generated by the group in (3) and Q and not conjugate to a group

of types (1)—(3).
(5) Group E108 of size 108 generated by S, T and V .
(6) Group F216 of size 216 generated by the group E108 in (5) and an element

P := UV U−1.
(7) Hessian group H648 of size 648 generated by the group E108 in (5) and U .
(8) Simple group of size 60 isomorphic to alternating group A5.
(9) Klein’s simple group K168 of size 168 isomorphic to permutation group

generated by (1234567), (142) (356), (12) (35).
(10) Group of size 180 generated by the group A5 in (8) and W .
(11) Group of size 504 generated by the group K168 in (9) and W .
(12) Group G of size 1080 with its quotient G/ <W> isomorphic to the alter-

nating group A6.

One can see that these group actions are of the following types:

• The actions of groups of types (1) and (2) are not irreducible.
• Groups of types (3) and (4) have imprimitive monomial actions
• Groups E108, F216, H648, A5 and K168, as well as the central extensions of
A5, A6 and K168 by scalar matrices, have primitive actions.
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[7] F.G. Frobenius. Über den von L. Bieberbach gefundenen Beweis eines Satzes von C. Jordan.
Königliche Akademie der Wissenschaften, 1911.

[8] T. Hosoh. Automorphism groups of cubic surfaces. J. Algebra, 192(2):651–677, 1997.

[9] S.A. Kudryavtsev. Pure log terminal blow-ups. Mathematical Notes, 69(5):814–819, 2001.
[10] T. Y. Lam and K. H. Leung. On vanishing sums of roots of unity. J. Algebra, 224(1):91–109,

2000.
[11] D. Markushevich and Y.G. Prokhorov. Exceptional quotient singularities. American Journal

of Mathematics, 121(6):1179–1189, 1999.

[12] D. Mumford and G. Horrocks. A rank 2 vector bundle on P4 with 15,000 symmetries. Topology,
12:63–81, 1973.

[13] Isidro Nieto. The normalizer of the level (2, 2)-Heisenberg group. Manuscripta Math., 76(3-

4):257–267, 1992.
[14] Y.G. Prokhorov. Blow-ups of canonical singularities. In Algebra: proceedings of the Interna-

tional Algebraic Conference on the Occasion of the 90th Birthday of A.G. Kurosh, Moscow,

Russia, May 25-30, 1998, page 301. Walter De Gruyter Inc, 2000.
[15] B. Segre. The Non-singular Cubic Surfaces. Oxford University Press, Oxford, 1942.

[16] Jean-Pierre Serre. Linear representations of finite groups. Springer-Verlag, New York, 1977.

Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathe-
matics, Vol. 42.

[17] V. V. Shokurov. Three-dimensional log perestroikas. Izv. Ross. Akad. Nauk Ser. Mat.,

56(1):105–203, 1992.
[18] V.V. Shokurov. 3-fold log flips. Russ. Ac. SC Izv. Math., 40(1):95–202, 1993.

[19] T.A. Springer. Invariant theory. Springer-Verlag, 1977.
[20] S.S.-T. Yau and Y. Yu. Gorenstein quotient singularities in dimension three. American Math-

ematical Society, Providence, RI, 1993.


