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1. Cylinders in rational surfaces

Let S be a surface with at most quotient singularities.

Definition 1.1. A Zariski open subset U ⊂ S is said to be a cylinder if U = C1 × Z for some
affine curve Z.

If S contains a cylinder, then S is ruled.

Exercise 1.2. Suppose that S is smooth and rational. Show that S contains a cylinder.

Exercise 1.3. Suppose that KS is pseudo-effective. Show that S does not contain cylinders.

Now we are ready to present examples of rational singular surfaces that do not contain cylin-
ders.

Exercise 1.4. Let E = C/(Z + τZ) be the elliptic curve of period τ = e
2
3π. Its j-invariant is 0

and it is isomorphic to the Fermat cubic curve. Suppose that S is the quotient surface

E × E/〈diag(−τ,−τ)〉.

Show that KS ∼Q 0 and S is rational. Use Exercise 1.3 to conclude that S does not contain
cylinders.

Exercise 1.5. Let a1, a2, a3, a4, w1, w2, w3 and w4 be positive integers with
gcd(w1, w2, w3, w4) = 1 that satisfy a system of equations

a1w1 + w2 = a2w2 + w3 = a3w3 + w4 = a4w4 + w1 = d

The paper was prepared within the framework of a subsidy granted to the HSE by the Government of the Russian
Federation for the implementation of the Global Competitiveness Program.
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with solutions 

w1 = (a2a3a4 − a3a4 + a4 − 1),
w2 = (a1a3a4 − a1a4 + a1 − 1),
w3 = (a1a2a4 − a1a2 + a2 − 1),
w4 = (a1a2a3 − a2a3 + a3 − 1),
d = a1a2a3a4 − 1.

Suppose that the surface S is the Klein-type hypersurface in P(w1, w2, w3, w4) defined by the
quasi-homogeneous equation of degree d

xa1
1 x2 + xa2

2 x3 + xa3
3 x4 + xa4

4 x1 = 0.
Show that S is a rational surface of Picard number three with 4 cyclic quotient singularities.
Furthermore, prove that KS is ample provided that all numbers a1, a2, a3, a4 are all greater
than 3. Use Exercise 1.3 to conclude that S does not contain cylinders.

The surface in Exercise 1.4 has numerically trivial canonical divisor. The surfaces in Exer-
cise 1.5 have ample canonical divisor. They all do not contain cylinders by Exercise 1.3. However,
it is much more interesting to consider the same problem for surfaces whose anticanonial divisor
is ample. Such surfaces are usually called del Pezzo surfaces (see Definition 3.1). They are
always rational, but they often contains plenty of cylinders. To construct examples of del Pezzo
surfaces without cylinders we need new tools.

2. Singularities of pairs

Let S be a surface with at most quotient singularities, let D be an effective non-zero Q-divisor
on the surface S, and let P be a point in the surface S. Put D =

∑r
i=1 aiCi, where each Ci is

an irreducible curve on S, and each ai is a non-negative rational number. We assume here that
all curves C1, . . . , Cr are different. We call (S,D) a log pair.

Let π : S̃ → S be a birational morphism such that S̃ is smooth. For each Ci, denote by C̃i its
proper transform on the surface S̃. Let F1, . . . , Fn be π-exceptional curves. Then

KS̃ +
r∑
i=1

aiC̃i +
n∑
j=1

bjFj ∼Q π
∗(KS +D

)
for some rational numbers b1, . . . , bn. Suppose, in addition, that

∑r
i=1 C̃i +

∑n
j=1 Fj is a divisor

with simple normal crossings.

Definition 2.1. The log pair (S,D) is said to be log canonical at the point P if the following
two conditions are satisfied:

• ai 6 1 for every Ci such that P ∈ Ci,
• bj 6 1 for every Fj such that π(Fj) = P .

This definition is independent on the choice of birational morphism π : S̃ → S provided that
the surface S̃ is smooth and

∑r
i=1 C̃i +

∑n
j=1 Fj is a divisor with simple normal crossings.

Exercise 2.2. Let R be any effective Q-divisor on S such that R ∼Q D and R 6= D. Put
Dε := (1 + ε)D − εR

for some rational number ε > 0. Then Dε ∼Q D. Show that there exists the greatest rational
number ε0 > 0 such that the divisor Dε0 is effective. Show that Supp(Dε0) does not contain at
least one irreducible component of Supp(R). Moreover, if (S,D) is not log canonical at P , and
(S,R) is log canonical at P , show that the log pair (S,Dε0) is not log canonical at P .
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The log pair (S,D) is called log canonical if it is log canonical at every point of S.
Exercise 2.3. Suppose that S is smooth at P . Let f : S̄ → S be a blow up of the point P , and
let E be the f -exceptional curve. Denote by D̄ the proper transform of the divisor D on the
surface S̄ via f . One has

KS̄ + D̄ +
(
multP (D)− 1

)
E ∼Q f

∗(KS +D
)
.

Then the log pair (
S̄, D̄ +

(
multP (D)− 1

)
E
)

is called the log pull back of the log pair (S,D) on the surface S̄. Show that it is log canonical
at every point of the curve E if and only if the log pair (S,D) is log canonical at the point P .
Conclude that (S,D) is not log canonical at P provided that multP (D) > 2,
Exercise 2.4. Suppose that S is smooth at P and (S,D) is not log canonical at P . Prove that
multP (D) > 1.

We can measure how far the pair (S,D) is from being log canonical at P by the positive
rational number

lctP
(
S,D

)
:= sup

{
λ ∈ Q | the log pair (S, λD) is log canonical at P

}
.

This number has been introduced by Shokurov and is called the log canonical threshold of the
pair (S,D) at the point P ∈ S. The log canonical threshold of the pair (S,D) is defined as

lct
(
S,D

)
:= inf

O∈S
lctO(S,D).

Exercise 2.5. Suppose that S is smooth at P . Show that
2

multP (D) > lctP
(
S,D

)
>

1
multP (D) .

The following exercise is a very special case of a much more general result known as Inversion
of Adjunction (see, for example, [16, Theorem 6.29]).
Exercise 2.6 ( [16, Exercise 6.31]). Suppose that both S and C1 is smooth at P , the log pair
(S,D) is not log canonical at P , and a1 6 1. Put ∆ =

∑r
i=2 aiCi. Show that multP (C1 ·∆) > 1.

Exercise 2.7. In the notation and assumptions of Exercise 2.3, suppose that (S,D) is not log
canonical at P , and multP (D) 6 2. Show that there exists a unique point in E such that
(S, D̄ + (multP (D)− 1)E) is not log canonical at it.

Exercise 2.8. Suppose that S has a singular point of type D4 at a point P . Let g : Ŝ → S be
the minimal resolution of the point P . Denote by E1, E2, E3 and E4 the g-exceptional curves,
where E4 is the (−2)-curve intersecting the other three (−2)-curves. Denote by D̂ the proper
transform of the Q-divisor D on the surface Ŝ. Then

D̂ ∼Q g
∗(D)−

4∑
i=1

aiEi,

for some rational numbers a1, a2, a3 and a4. Show that the log pair (S,D) is not log canonical
at P if and only if a4 > 1.
Exercise 2.9. Suppose that S is smooth at P . Suppose that both curves C1 and C2 are also
smooth at P and intersect each other transversally at P . Put ∆ =

∑r
i=3 aiCi. Suppose that

(S,D) is not log canonical at P , and multP (∆) 6 1. Show that multP (C1 ·∆) > 2(1 − a2) or
multP (C1 ·∆) > 2(1− a1).
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Exercise 2.10. Suppose that S is smooth at P . Suppose that both curves C1 and C2 are also
smooth at P and intersect each other transversally at P . Put ∆ =

∑r
i=3 aiCi. Suppose that

(S,D) is not log canonical at P , and suppose that there are non-negative rational numbers α,
β, A, B, M , and N such that αa1 +βa2 6 1, A(B− 1) > 1, M 6 1, N 6 1, α(1−M) +Aβ > A
and

α(A+M − 1) > A2(B +N − 1)β.
Suppose, in addition, that 2M +AN 6 2 or

α(B + 1−MB −N) + β(A+ 1−AN −M) > AB − 1.
Show that multP (C1 ·∆) > M +Aa1 − a2 or multP (C2 ·∆) > N +Ba2 − a1.

All exercises we have considered so far in this section are local. Let us conclude this section
by two global exercises.
Exercise 2.11. Suppose that S is a smooth surface in P3, and D is Q-linearly equivalent to its
hyperplane section. Prove that each ai does not exceed 1.
Exercise 2.12. Suppose that S is smooth at P , and there is a double cover τ : S → P2 branched
over quartic curve C that has at most two ordinary double points. Suppose that D is Q-linearly
equivalent to −KS . Show that each ai does not exceed 1. If (S,D) is not log canonical at P ,
show that τ(P ) ∈ C.

3. Del Pezzo surfaces without cylinders

Let S be a surface with at most quotient singularities such that the divisor −KS is ample. By
the Nakai–Moishezon criterion, the latter condition is equivalent to K2

S > 0 and −KS · C > 0
for every curve C on S. Note that K2

S is a rational number.
Definition 3.1. We say that S is a del Pezzo surface of degree K2

S .
Del Pezzo surfaces with quotient singularities are indeed rational. This easily follows from

Castelnuovo rationality criterion, basic vanishing theorems and the fact the fact that quotient
singularities are rational. Moreover, smooth and mildly singular del Pezzo surfaces are com-
pletely classified.
Exercise 3.2. Suppose that S is a smooth del Pezzo surface of degree d. Show that either
S = P1 × P1 and d = 8, or d 6 9 and S a blow up of P2 in 9− d points such that

• no three of them lie on a one line,
• no six of them lie on a one conic,
• no 8 of them lie on a cubic curve that is singular in one of them.

Exercise 3.3. Suppose that S is a del Pezzo surface of degree d such that S has Du Val
singularities. Show that either S = P1 × P1 and d = 8, or S is a quadric cone in P3 and d = 8,
or d 6 9 and there exists a diagram

S̃
f

��

g

��
S P2,

where f and g are birational morphisms such that S̃ is smooth, KS̃ ∼ f∗(KS), f contracts all
curves with self-intersection −2, and g is a blow up of P2 in 9 − d points such that no four of
them lie on a one line, and no seven them lie on a one conic. The surface S̃ is a weak del Pezzo
surface that corresponds to the surface S.
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Furthermore, if S is a del Pezzo surface of degree d > 3 with at worst du Val singularities, then
its the anticanonical divisor is very ample, and the anticanonical linear system embeds S into
the projective space Pd. In particular, del Pezzo surface of degree 3 with du Val singularities
is a cubic surface in P3. Similarly, del Pezzo surfaces of degree 2 with du Val singularities
are hypersurfaces in P(1, 1, 1, 2) of degree 4, and del Pezzo surfaces of degree 2 with du Val
singularities are hypersurfaces in the weighted projective space P(1, 1, 2, 3) of degree 6. This is
all well-known (see, for example, [11] or [15, Theorem 4.4]).

Exercise 3.4. Suppose that S is smooth del Pezzo surface of degree d 6 3. Let D be an effective
Q-divisor on S, i.e., D =

∑r
i=1 aiCi, where every Ci is an irreducible curve on S, and every ai is

a non-negative rational number. Suppose that D ∼Q −KS . Show that each ai does not exceed
1. If (S,D) is not log canonical at some point P ∈ S, show that there exists a unique divisor
T ∈ | −KS | such that T is singular at P , the log pair (S, T ) is not log canonical at P , and all
irreducible components of T is contained in Supp(D).

If S is smooth, then it always contains cylinders by Exercise 1.2. If S is singular, this is no
longer the case. To see this, we need

Exercise 3.5. Suppose that S contains a cylinder U . Denote by C1, . . . , Cn the irreducible
curves in S such that S \U =

∑n
i=1Ci. Show that n is at least the dimension of the vector space

Pic(S)⊗Q. Suppose that there are non-negative rational numbers λ1, . . . , λn such that

n∑
i=1

λiCi ∼Q −KS .

Show that the singularities of the log pair (S,
∑n
i=1 λiCi) are not log canonical.

Now we can give explicit examples of del Pezzo surfaces with Du Val singularities without
cylinders.

Exercise 3.6. Show that there exists a del Pezzo surface of degree 1 with Du Val singularities
whose singular locus consists of two singular points of type D4. Show that there exists a del
Pezzo surface of degree 1 with Du Val singularities whose singular locus consists of two singular
points of type A3 and two singular points of type A1. Show that there exists a del Pezzo surface
of degree 1 with Du Val singularities whose singular locus consists of four singular points of type
A2. Suppose that S is one of these surfaces. Show that S contains no cylinders.

One can show that surfaces described in Exercise 3.6 are the only del Pezzo surfaces with du
Val singularities that contains no cylinders.

Exercise 3.7. Suppose that for every effective Q-divisor D on S such that D ∼Q −KS , the log
pair (S,D) has log canonical singularities. Suppose, in addition, that S is of of Picard rank 1,
i.e., one has Pic(S)⊗Q ∼= Q.

Surfaces that satisfy all hypotheses of Exercise 3.7 do exist. One such example has been
constructed by Keel and Mckernan in [18, Example 21.3.3]. Moreover, in their example the
smooth locus of the surface has trivial algebraic fundamental groups, which provides a counter-
example to a conjecture by Miyanishi that smooth locus of every del Pezzo surface of Picard
rank 1 with quotient singularities has a finite unramified covering that contains a cylinder.
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4. α-invariants of Tian of polarized pairs

Let S be a surface with quotient singularities, and let H be an ample Q-Cartier divisor on it.
For the pair (S,H), we define its α-invariant as

α
(
S,H

)
:= sup

{
λ ∈ Q

∣∣∣∣∣ the log pair (S, λD) is log canonical
for every effective Q-divisor D ∼Q H

}
∈ R>0.

Exercise 4.1. For every ample divisor H on the surfce S, compute α(S,H) in the case when S
is one of the following surfaces: P2, P1 × P1, or F1.

The number α(S,H) has been studied intensively by many people who used different notations
for it. The notation α(S,H) is due to Tian who defined the number α(S,H) in a different way
(see [25, Appendix 2]). Both the definitions match by [8, Theorem A.3]. The α-invariant plays
an important role in Kähler geometry, e.g., if S is a del Pezzo surface and α(S,−KS) > 2

3 , then
S admits an orbifold Kähler–Einstein metric (see [24] and [10]).

Exercise 4.2. Suppose that S is a smooth del Pezzo surface of degree d 6 3. Compute
α(S,−KS).

The number α(S,H) is usually hard to compute. However, it can be approximated by numbers
that are much easier to control. Namely, if nH is a Weil divisor such that |nH| is not empty for
some n > 1, then we can define the n-th α-invariant of the pair (S,H) as

αn
(
S,H

)
:= sup

{
λ ∈ Q

∣∣∣∣∣ the pair
(
S,
λ

n
D

)
is log canonical for every D ∈ |nH|

}
∈ Q>0.

Otherwise we can simply put αn(S,H) = +∞. Thus, we have α(S,H) 6 αn(S,H) by definition.

Exercise 4.3. Show that
α
(
S,H

)
= inf

n>1

{
αn
(
S,H

)}
.

It is natural to expect that α(S,H) = α1(S,H) provided that H is a very ample Cartier
divisor on S (see [25, Conjecture 5.3]). This is indeed true in many cases.

Exercise 4.4. If S is a smooth del Pezzo surface, show that α(S,−KS) = α1(S,−KS).

Exercise 4.5. Suppose that S is a smooth surface in P3 of degree d 6 4, and H is its hyperplane
section. Show that α(S,H) = α1(S,H).

However, this is not true in general:

Exercise 4.6. Suppose that S is a general surface in P4 of degree d > 8, and H is its hyperplane
section. Show that α(S,H) < α1(S,H).

5. Anticanonical cylinders in del Pezzo surfaces

Let S be a del Pezzo surface with at most quotient singularities.

Definition 5.1. An anticanonical cylinder in S is an Zariski open subset U of S such that
(C) U = A1 × Z for some affine curve Z, i.e., U is a cylinder in S,
(P) there is an effective Q-divisor D on S with D ∼Q −KS and U = S \ Supp(D).

We know that there are singular del Pezzo surfaces without cylinders, so that there are singular
del Pezzo surfaces without anticanonical cylinders as well. An easy way to construct infinitely
many families of such surfaces is by using
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Exercise 5.2. Suppose that S contains an anticanonical cylinder U . Denote by C1, . . . , Cn the
irreducible curves in S such that S \ U =

∑n
i=1Ci, and let λ1, . . . , λn be non-negative rational

numbers such that
∑n
i=1 λiCi ∼Q −KS . Show that the singularities of the log pair (S,

∑n
i=1 λiCi)

are not log canonical. Conclude that α(S,−KS) < 1.

If α(S,−KS) > 1, then S is usually called weakly-exceptional. We see that weakly-exceptional
del Pezzo surfaces do not contain anticanonical cylinders. By Exercises 4.2 and 4.4, smooth del
Pezzo surface is weakly-exceptional if and only if it has degree 1 and its anticanonical linear
system does not contain cuspidal curves. Weakly-exceptional del Pezzo surfaces with du Val
singularities has been classified in [4]. Many weakly-exceptional del Pezzo surfaces has been
constructed in [5] and [9].

Exercise 5.3. Suppose that S is a smooth del Pezzo surface of degree d 6 3. Show that S does
not contain anticanonical cylinders.

Exercise 5.4. Suppose that S is a smooth del Pezzo surface of degree d > 4. Show that S
contains an anticanonical cylinder.

Thus, if S is a smooth del Pezzo surface of degree d, then it does not contain anticanonical
cylinders if and only if d 6 3. This can be generalized for del Pezzo surface with du Val
singularities as follows.

Exercise 5.5. Suppose that S is a del Pezzo surface of degree 1 whose singular points are du
Val singular points of type A1, A2, A3, or D4. Show that S does not contain anticanonical
cylinders.

Exercise 5.6. Suppose that S is a del Pezzo surface of degree 2 with only ordinary double
points. Show that S does not contain anticanonical cylinders.

Exercise 5.7. Suppose that S is a singular cubic surface that has du Val singularities. Show
that S contains an anticanonical cylinder.

Exercise 5.8. Suppose that S is a del Pezzo surface of degree d > 4 with du Val singularities.
Show that S contains an anticanonical cylinder.

Exercise 5.9. Suppose that S is a del Pezzo surface of degree d with du Val singularities. Show
that S contains an anticanonical cylinder if and only if one of the following conditions holds:

• d > 4,
• d = 3 and S is singular,
• d = 2 and S has a singular point that is not of type A1,
• d = 1 and S has a singular point that is not of type A1, A2, A3, or D4.

We show how to construct an anticanonical cylinder on a del Pezzo surface of degree 2 with
a single Du Val singular point of type A2.

Example 5.10. On the projective plane P2, take a Q-divisor

DP2 = 7
4L1 + 5

4L2,

where L1 and L2 are distinct two lines. Let h : Š → P2 be the composition of these ten blow
ups. Denote by E¬ (resp. E, . . . , Eµ) the proper transform of the exceptional divisor of the
first (resp. second,. . ., tenth) blow up to the surface Š. Suppose that this blow ups follow the
depicted instruction:
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L1

¬

®



¯

°
±

²
³

´
µ

L2

��
�

rrrrrr
∼∼∼∼∼∼

Here we labeled E¬ (resp. E, . . . , Eµ) by ¬ (resp. , . . . , µ) for simplicity. We then obtain

KŠ +DŠ ∼Q h
∗
(
KP2 +DP2

)
∼Q 0,

where DŠ is the divisor
3
4E¬ + 1

4E¯ + 1
4E° + 1

4E± + 1
4E² + 1

4E³ + 1
4E´ + 1

4Eµ + 5
4L2 + 6

4E + 5
4E® + 7

4L1

Here, the proper transforms of L1 and L2 by h are denoted using the same notation. On
the surface Š, the curve L2 is a (−5)-curve, the curve E¬ is a (−3)-curve, the curves E, E®

are (−2)-curves and the other eight curves in the second column of the table are (−1)-curves.
Starting from the (−1)-curve L1, we can contract E and E® in turn to the smooth weak del
Pezzo surface S̃ corresponding to a del Pezzo surface S of degree 2 with singularity type A2 (see
Exercise 3.3). Denote the composition of these three blow downs by g : Š → S̃. Put

DS̃ = g

(3
4E¬ + 1

4E¯ + 1
4E° + 1

4E± + 1
4E² + 1

4E³ + 1
4E´ + 1

4Eµ + 5
4L2

)
.

This is an effective anticanonical Q-divisor on the surface S̃. Note that the curves g(E¬) and
g(L2) are the only (−2)-curves on the surface S̃ and they intersect each other in the form of A2.
Contracting these two (−2)-curves, we obtain a birational morphism f : S̃ → S, where S is a
del Pezzo surface of degree 2 with one singular point of type A2. Put

DS = f ◦ g
(1

4E¯ + 1
4E° + 1

4E± + 1
4E² + 1

4E³ + 1
4E´ + 1

4Eµ

)
.

Then DS an effective Q-divisor on the surface S such that DS ∼Q −KS , and
S \ Supp(DS) ∼= P2 \ Supp(DP2) ∼= C× C?

is a cylinder. Note that we have some freedom for the coefficients in the divisor DŠ . We have
fixed its coefficients just for simplicity. Namely, we can replaced consider DP2 above by

(2− ε)L1 + (1 + ε)L2

Then the proper transform of the divisor DP2 by the birational morphism h must be replaced
by

(1− ε)E¬ + (1− 3ε)E¯ + εE° + εE± + εE² + εE³+
+ εE´ + εEµ + (1 + ε)L2 + (2− 2ε)E + (2− 3ε)E® + (2− ε)L1

For this divisor to be effective and to contain the exceptional divisors of the birational morphism
h, it is enough to take a rational number ε such that 0 < ε < 1

3 . In our original DP2 , we have
simply chosen ε = 1

4 .

One can use construction in this example to prove the existence of an anticanonical cylinder
on every del Pezzo surface of degree 2 with a single Du Val singular point of type A2 (see [7] for
details).
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6. Polarized cylinders in smooth del Pezzo surfaces

Let S be a smooth del Pezzo surface of degree d.

Remark 6.1. The Mori cone NE(S) of the surface is polyhedral. Moreover, if d 6 7, then NE(S)
is generated by all (−1)-curves in S. This is well-known (see, for example, [12, Theorem 8.2.23]).

Let H be an ample Q-divisor on the surface S. Let us generalize Definition 5.1 as follows:

Definition 6.2. An H-polar cylinder in S is an Zariski open subset U of S such that
(C) U = A1 × Z for some affine curve Z, i.e., U is a cylinder in S,
(P) there is an effective Q-divisor D on S with D ∼Q H and U = S \ Supp(D).

This notion has been introduced and utilized by Kishimoto, Prokhorov and Zaidenberg in
[19], [20] and [21]. It plays an important role in the study of the unipotent group actions on
affine cones, e.g., [20, Corollary 3.2] implies

Theorem 6.3. Suppose that H is an ample Cartier divisor on S. Put

V := Spec
(⊕
n>0

H0
(
S,OS

(
nH

)))
.

If V is normal, then it admits an effective algebraic action of the additive group C+ if and only
if the surface S contains an H-polar cylinder.

This theorem and Exercise 5.3 imply

Corollary 6.4. Let V be a threefold in C3 that is given by

f3(x, y, z, w) = 0,

where f3 is a homogeneous polynomial. Suppose that V has isolated singularity at the origin.
Then V does is not admit an effective algebraic action of the additive group C+.

Example 6.5 (cf. [13, Question 2.22]). The threefold in C3 that is given by

x3 + y3 + z3 + w3 = 0

does not admit an effective algebraic action of the additive group C+.

Let Amp(S) be the ample cone of S. Denote by Ampcyl(S) the set{
H ∈ Amp(S) : there is an H-polar cylinder on S

}
.

We will call this set the cone of cylindrical ample divisors of the surface S.

Exercise 6.6. Show that Ampcyl(S) is not empty.

Exercise 6.7. Suppose that d > 8. Show that Ampcyl(S) = Amp(S).

By Exercises 5.3 and 5.4, we know that

−KS ∈ Ampcyl
(
S
)
⇐⇒ d > 4.

To study Ampcyl(S) more systematically, let us recall the invariant of the pair (S,H) defined by
Hasset, Tanimoto and Tschinkel in [17, Definition 2.2]. This number was implicitly introduced
by Fujita in [14]. It plays an essential role in Manin’s conjecture (see, for example, [17]).
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Definition 6.8. The Fujita invariant of the pair (S,H) is the positive rational number

µH := inf
{
λ ∈ Q>0

∣∣∣ the Q-divisor KS + λH is pseudo-effective
}
.

The smallest extremal face ∆H of the Mori cone NE(S) that contains KS + µHH is called the
Fujita face of H. The Fujita rank of (S,H) is defined by rH := dim ∆H .

Now we can generalize Exercises 3.5 and 5.2 as

Exercise 6.9. Suppose that S contains an H-polar cylinder U . Denote by C1, . . . , Cn the
irreducible curves in S such that S \U =

∑n
i=1Ci. Let λ1, . . . , λn be some non-negative rational

numbers such that
n∑
i=1

λiCi ∼Q H.

Show that the singularities of the log pair (S, µH
∑n
i=1 λiCi) are not log canonical. Conclude

that α(S,H) < 1
µH

.

Let φH : S → Z be the contraction given by the Fujita face ∆H of the divisor H. Then
either φH is a birational morphism, or φH is a conic bundle with Z ∼= P1. In the former case,
the ample Q-divisor H is said to be of type B(rH), and in the latter case it is said to be of type
C(rH).

Remark 6.10. If H is of type B(0), then φH is an isomorphism and
H ∼Q −λKS

for some positive rational number λ. In this case, every H-polar cylinder is an anticanonical
cylinder.

The Fujita invariants can be used to describe the ample cone Amp(S) explicitly.

Exercise 6.11. Suppose that H is of type B(rH) and rH > 0. Show that Z is a del Pezzo
surface of degree d + rH , and the Fujita face ∆H is generated by rH disjoint (−1)-curves on S
contracted by φH , where rH 6 9− d. Denote these (−1)-curves by E1, . . . , ErH . Show that

KS + µHH ∼Q

rH∑
i=1

aiEi

for some positive rational numbers a1, . . . , arH such that ai < 1 for every i. Vice versa, for every
positive rational numbers ε1, . . . , εrH that are less than 1, show that the divisor −KS+

∑rH
i=1 εiEi

is ample.

Let us denote the set of all ample Q-divisors of type B(rH) on S by AmpBrH
(S). It follows

from Remark 6.10 that AmpB0 (S) is the ray generated by the anticanonical divisor −KS .

Exercise 6.12. Suppose that H is of type C(rH). Show that rH = 9 − d > 0, the Fujita face
∆H is generated by the (−1)-curves in the 8− d reducible fibers of φH , and each reducible fiber
consists of two (−1)-curves that intersect transversally at one point. Denote by B the general
fiber of φH . Show that there are (8− d) disjoint (−1)-curves E1, E2, . . . , E8−d, each of which is
contained in a distinct fiber of φH , such that

KS + µHH ∼Q aB +
8−d∑
i=1

aiEi

for some positive rational number a and non-negative rational numbers a1, . . . , a8−d such that
ai < 1 for every i. Conclude that the curves B and E1, E2, . . . , E8−d generate the Fujita face ∆H .
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Vice versa, show that for every positive rational number ε and non-negative rational numbers
ε1, . . . , ε8−d such that εi < 1 for each i, the divisor −KS + εB +

∑8−d
i=1 εiEi is ample.

In the case when H is of type C(rH), we put
`H =

∣∣{ai|ai 6= 0
}∣∣

and say that H is to be of length `H . The set of all ample Q-divisors of type C(rH) with length
`H on S is denoted by AmpC`H (S). It is clear that

Amp(S) =
8−d⋃
`=0

AmpC` (S) ∪
9−d⋃
r=0

AmpBr (S).

Exercise 6.13. Suppose that d > 4. Show that Ampcyl(S) = Amp(S).

Exercise 6.14. Suppose that d = 3. Show that Ampcyl(S) = Amp(S) \AmpB0 (S).

Thus, we have a complete description of the set Ampcyl(S) for d > 3. Unfortunately, we do
not have such description for d 6 2. But we know a lot about Ampcyl(S) in the case d = 2, and
we know something about Ampcyl(S) in the case d = 1.

Exercise 6.15. If d = 2, show that Ampcyl(S) is disjoined from AmpB0 (S) and AmpB1 (S).

Exercise 6.16. Suppose that d = 2. Show that( 6⋃
`=3

AmpC` (S)
)⋃( 7⋃

r=3
AmpBr (S)

)
⊂ Ampcyl(S),

show that the sets
Ampcyl(S)

⋂
AmpB2 (S),Ampcyl(S)

⋂
AmpC2 (S),Ampcyl(S)

⋂
AmpC1 (S)

are not empty. Furthermore, if there is a tacnodal curve in | −KS |, show that Ampcyl(S) also
contains AmpC0 (S) and AmpC1 (S).

Exercise 6.17. If d = 1, show that Ampcyl(S) is disjoined from the sets AmpB0 (S), AmpB1 (S),
and AmpB2 (S)

Exercise 6.18. Suppose that d = 1. Show that
Ampcyl(S)

⋂
AmpBr (S) 6= ∅

for each 3 6 r 6 8, and show that
Ampcyl(S)

⋂
AmpC` (S) 6= ∅

for each 2 6 ` 6 7.
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Solutions to selected exercises

Exercise 1.2. Applying Minimal Model Program to S, we obtain either a birational morphism
S → Fn or a birational morphism S → P2. Considering appropriate cylinders in Fn and P2, we
obtain the required assertion. �

Exercise 1.3. Suppose S contains a cylinder U . Then U be a Zariski open subset in S such that
U = C1 × Z for some affine curve Z. Consider the commutative diagram

P1 × P1

p2

��

C1 × P1? _oo

pP1

��

C1 × Z? _oo

pZ

��

U �
� // S

ψ

��

Z � r

##

K k

xx

S̃

π

ff

φ
uuP1 P1 P1

such that pZ and pP1 are natural projections, p2 is the projection to the second factor, ψ is
a rational map, π is a birational morphism, S̃ is a smooth surface, and φ is a morphism. By
construction, general fiber of φ is P1. Let C1, . . . , Cn be irreducible curves in S such that

S \ U =
n⋃
i=1

Ci.

Let E1, . . . , Er be the π-exceptional curves of π (if π is an isomorphism, we simply put r = 0),
and let Γ be the section of p2 that is a complement of C1×P1 in P1×P1. Denote by C̃1, . . . , C̃n
and Γ̃ the proper transforms of the curves C1, . . . , Cn and Γ on the surface S̃, respectively.
Then Γ̃ is a section of φ. Moreover, the curve Γ̃ is one of the curves C̃1, . . . , C̃n and E1, . . . , Er.
Furthermore, all other curves among C̃1, . . . , C̃n and E1, . . . , Er are irreducible components of
some fibers of φ. Thus, we may assume that either Γ̃ = C̃1, or Γ̃ = Er. On the other hand, we
have

KS̃ +
r∑
i=1

µiEi ∼Q π
∗(KS

)
for some rational numbers µ1, . . . , µr. Since S has quotient singularities, all these numbers are
less than 1 (see [16]). Let F̃ be a general fiber of φ. Then KS̃ · F̃ = −2 by the adjunction
formula. Put F = π(F̃ ). Then KS ·F > 0, because F̃ is a general fiber of φ. On the other hand,
if Γ̃ = Er, then

− 1 > −2 + µr = −2 + µrEr · F̃ = −2 +
r∑
i=1

µiEi · F̃ =

=
(
KS̃ +

r∑
i=1

µiEi
)
· F̃ = π∗

(
KS

)
· F̃ = KS · F > 0,

which is absurd. Similarly, if Γ̃ = C1, then

−2 = −2 +
r∑
i=1

µiEi · F̃ =
(
KS̃ +

r∑
i=1

µiEi
)
· F̃ = π∗

(
KS

)
· F̃ = KS · F > 0,

which is absurd as well. �
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Exercise 1.4. By construction, the divisor 6KS is linearly trivial. Since there is no non-zero
regular 1-form on E×E invariant by diag(−τ,−τ), we obtain h1(S,OS) = 0. Using Castelnuovo
rationality criterion and rationality of quotient singularities, we conclude that the surface S is
a rational surface. For details, see the proof of [1, Proposition 5.1]. �

Exercise 1.5. See the proof of [22, Theorem 39]. �

Exercise 2.2. Use D = 1
1+ε0Dε0 + ε0

1+ε0R and Definition 2.1. �

Exercise 2.3. Use Definition 2.1. �

Exercise 2.4. Use Exercise 2.3 and induction on n (see [16, Exercise 6.18]). �

Exercise 2.5. Use Exercises 2.4 and 2.3. �

Exercise 2.6. The required assertion is well-known (see, for example, [3, Theorem 7]). Put
m = mult(∆). If m > 1, then we are done, since

multP
(
C1 ·∆

)
> m.

In particular, we may assume that the log pair (S,D) is log canonical in a punctured neighbor-
hood of the point P . Since the log pair (S,D) is not log canonical at P , there exists a birational
morphism h : Ŝ → S that is a composition of r > 1 blow ups of smooth points dominating P ,
and there exists an h-exceptional divisor, say Er, such that er > 1, where er is a rational number
determined by

KŜ + a1Ĉ1 + ∆̂ +
r∑
i=1

eiEi ∼Q h
∗(KS +D

)
,

where each ei is a rational number, each Ei is an h-exceptional divisor, ∆̂ is a proper transform
on Ŝ of the divisor ∆, and Ĉ1 is a proper transform on Ŝ of the curve C1.

Let f : S̄ → S be the blow up of the point P , let ∆̄ be the proper transform of the divisor ∆
on the surface S̄, let E be the f -exceptional curve, and let C̄1 be the proper transform of the
curve C1 on the surface S̄. Then the log pair (S̄, a1C̄1 + (a1 +m− 1)E+ ∆̄) is not log canonical
at some point Q ∈ E by Exercise 2.3.

Let us prove the inequality multP (C1 ·∆) > 1 by induction on r. If r = 1, then

a1 +m− 1 > 1,

which implies that m > 2−a1 > 1. This implies that multP (C1 ·∆) > 1 in the case when r = 1.
Thus, we may assume that r > 2. Since

multP
(
C1 ·∆

)
> m+ multQ

(
C̄1 · ∆̄

)
,

it is enough to prove that m+ multQ(C̄1 · ∆̄) > 1. Moreover, we may assume that m 6 1, since
multP (C1 ·∆) > m. Then the log pair(

S̄, a1C̄1 + (a1 +m− 1)E + ∆̄
)

is log canonical at a punctured neighborhood of the point Q ∈ E, since a1 +m− 1 6 2.
If Q 6∈ C̄1, then the log pair (S̄, (a1 +m− 1)E+ ∆̄) is not log canonical at the point Q, which

implies that
m = ∆̄ · E > multQ

(
∆̄ · E

)
> 1
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by induction. The latter implies that Q = C̄1 ∩ E, since m 6 1. Then

a1 +m− 1 + multQ
(
C̄1 · ∆̄

)
= multQ

((
(a1 +m− 1)E + ∆̄

)
· C̄1

)
> 1

by induction. This implies that multQ(C̄ · ∆̄) > 2− a1 −m. Then

m+ multQ
(
C̄1 · ∆̄

)
> 2− a1 > 1

as required. �

Exercise 2.7. If multP (D) 6 2 and (S̄, D̄+(λmultP (D)−1)E) is not log canonical at two distinct
points P1 and P̃1, then

2 > multP
(
D
)

= D̄ · E > multP1

(
D̄ · E

)
+ multP̃1

(
D̄ · E

)
> 2

by Exercise 2.6. Now use Exercise 2.3. �

Exercise 2.8. The required assertion is [4, Lemma 2.5]. We have

KŜ + D̂ +
4∑
i=1

aiEi ∼Q g
∗(KS +D

)
.

This implies that the log pair (S,D) is not log canonical at P if and only if the log pair
(Ŝ, D̂ +

∑4
i=1 aiEi) is not log canonical at some point in E1 ∪ E2 ∪ E3 ∪ E4. This follow from

Definition 2.1. This, if a4 > 1, then (S,D) is not log canonical.
To complete the solution, we may assume that a4 6 1. We must show that (S,D) is log

canonical. Then the log pair (Ŝ, D̂ +
∑4
i=1 aiEi) is not log canonical at some point Q ∈ E1 ∪

E2 ∪ E3 ∪ E4. Without loss of generality, we may assume that Q ∈ E1 ∪ E2.
We have D̂ ·E1 > 0, D̂ ·E2 > 0, D̂ ·E3 > 0 and D̂ ·E4 > 0. This gives the system of equations

2a1 − a4 > 0,
2a2 − a4 > 0,
2a3 − a4 > 0,
2a4 − a1 − a2 − a3 > 0,
a4 6 1,

which implies that a1 6 1, a2 6 1, and a3 6 1.
Suppose that Q 6∈ E4. Then the log pair (Ŝ, D̂ + a1E1) is not log canonical at Q. By

Exercise 2.6, we get
2a1 − a4 = D̂ · E1 > 1,

which contradicts the system of equations above. This shows that Q ∈ E4.
We have Q = E1 ∩ E4. Then (Ŝ, D̂ + a1E1 + a4E4)is not log canonical at Q. Applying

Exercise 2.6 to this pair and the curve E1, we get

2a1 − a4 = D̂ · E1 > 1− a4,

which give a1 >
1
2 . Applying Exercise 2.6 to the same pair and the curve E4, we get

2a4 − a1 − a2 − a3 = D̂ · E4 > 1− a1,
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which give 2a4 > 1 + a2 + a3. Thus, we have

a1 >
1
2 ,

2a2 − a4 > 0,
2a3 − a4 > 0,
2a4 > 1 + a2 + a3,

a4 6 1.
This system of equations is inconsistent. �

Exercise 2.9. The required assertion is [3, Theorem 13]. We may assume that a1 6 1 and
a2 6 1. Put m = multP (∆). Since m 6 1, the log pair (S, a1C1 + a2C2 + ∆) is log canonical in
a punctured neighborhood of the point P . Thus, there exists a birational morphism h : Ŝ → S
that is a composition of r > 1 blow ups of smooth points dominating P , and there exists an
h-exceptional divisor, say Er, such that er > 1, where er is a rational number determined by

KŜ + a1Ĉ1 + a2Ĉ2 + ∆̂ +
r∑
i=1

eiEi ∼Q h
∗(KS + a1C1 + a2C2 + ∆

)
,

where ei is a rational number, each Ei is an h-exceptional divisor, ∆̂ is a proper transform on Ŝ
of the divisor ∆, Ĉ1 and Ĉ2, are proper transforms on Ŝ of the curves C1 and C2, respectively.

Let f : S̄ → S be the blow up of the point P , let ∆̄ be the proper transform of the divisor ∆
on the surface S̄, let E be the f -exceptional curve, let C̄1 and C̄2 be the proper transforms of
the curves C1 and C2 on the surface S̄, respectively. Then(

S̄, a1C̄1 + a2C̄2 +
(
a1 + a2 +m− 1

)
E + ∆̄

)
is not log canonical at some point Q ∈ E by Exercise 2.3.

If r = 1, then a1 + a2 +m− 1 > 1, which implies that m > 2− a1− a2. On the other hand, if
m > 2− a1 − a2, then either m > 2(1− a1) or m > 2(1− a2), because otherwise we would have

2m 6 4− 2(a1 + a2),
which contradicts to m > 2 − a1 − a2. Thus, if r = 1, then multP (∆ · C1) > 2(1 − a2) or
multP (∆ · C2) > 2(1− a1) as desired.

Let us prove the required assertion by induction on r. The case r = 1 is already done. Thus,
we may assume that r > 2. If Q 6= E ∩ C̄1 and Q 6= E ∩ C̄2, then it follows from Exercise 2.6
that

m = ∆̄ · E > 1,
which is impossible, since m 6 1 by assumption. Thus, either Q = E ∩ C̄1 or Q = E ∩ C̄2.
Without loss of generality, we may assume that Q = E ∩ C̄1.

By induction, we can apply the required assertion to the log pair(
S̄, a1C̄1 +

(
a1 + a2 +m− 1

)
E + ∆̄

)
at the point Q. This implies that either

multQ
(
∆̄ · C̄1

)
> 2

(
1− (a1 + a2 +m− 1)

)
= 4− 2a1 − 2a2 − 2m

or multQ(∆̄ · E) > 2(1− a1). In the latter case, we have

multP
(
∆ · C2

)
> m > 2(1− a1),
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since m = multQ(∆̄ · E) > 2(1 − a1), which is exactly what we want. Thus, to complete the
proof, we may assume that multQ(∆̄ · C̄1) > 4− 2a1 − 2a2 − 2m.

If multP (∆ ·C2) > 2(1− a1), then we are done. Thus, we assume multP (∆ ·C2) 6 2(1− a1).
This gives m 6 2(1− a1), because multP (∆ · C2) > m. Then

multP
(
∆ · C1

)
> m+ multQ

(
∆̄ · C̄1

)
> m+ 4− 2a1 − 2a2 − 2m =

= 4− 2a1 − 2a2 −m > 2(1− a2),

because m 6 2(1− a1). �

Exercise 2.10. The required assertion is [4, Theorem 1.28]. Suppose that multP (∆ · C1) 6
M +Aa1 − a2 and multP (∆ · C2) 6 N +Ba2 − a1. Let us seek for a contradiction.

First we observe that A+M > 1, B > 1,
α
(
B + 1−MB −N

)
+ β

(
A+ 1−AN −M

)
> AB − 1,

β(1−N) +Bα > B, α(2−M)B + β(1−N)(A+ 1) > B(A+ 1),
α(2−M)
A+ 1 + β(2−N)

B + 1 > 1,

a1 >
1−M
A , a2 >

1−N
B , a1 < 1 and a2 < 1.

Put m0 = multP (∆). Then m0 6 M + Aa1 − a2 and m0 6 N + Ba2 − a1. Then the above
inequalities imply that m0 + a1 + a2 6 2.

Let π1 : S1 → S be the blow up of the point P . Denote by F1 the π1-exceptional curve, and
denote by ∆1, C1

1 and C1
2 the proper transforms of ∆, C1, C2 on the surface S1, respectively.

Then the log pair (
S1, ∆1 + a1C

1
1 + a2C

1
2 +

(
m0 + a1 + a2 − 1

)
F1
)

is not log canonical at some point P1 ∈ F1 by Exercise 2.3, and this point is unique by Exer-
cise 2.7. Note that m0 + a1 + a2 − 1 > 0 by Exercise 2.4.

We claim that either P1 = F1 ∩ C1
1 or P1 = F1 ∩ C1

2 . Indeed, suppose that P1 6∈ C1
1 ∪ C1

2 .
Then the log pair (S1,∆1 + (m0 + a1 + a2 − 1)F1) is not log canonical at P1. Then

m0 = ∆1 · F1 > 1
by Exercise 2.6. Thus, we have

m0

(
β +Bα

AB − 1 + α+Aβ

AB − 1

)
6
(
M +Aa1 − a2

)β +Bα

AB − 1 +
(
N +Ba2 − a1

)α+Aβ

AB − 1 ,

because m0 6M +Aa1 − a2 and m0 6 N +Ba2 − a1. On the other hand, we have(
M +Aa1 − a2

)β +Bα

AB − 1 +
(
N +Ba2 − a1

)α+Aβ

AB − 1 6 1 + Mβ +MBα+Nα+ANβ

AB − 1 ,

because αa1 + βa2 6 1 and AB− 1 > 0. But we already proved that m0 > 1. Thus, we see that
β +Bα+ α+Aβ 6 AB − 1 +Mβ +MBα+Nα+ANβ,

which is impossible. This shows that either P1 = F1 ∩ C1
1 or P1 = F1 ∩ C1

2 .
Now we claim that P1 6= F1 ∩ C1

1 . Indeed, suppose that this is not the case. Then the log
pair (S1,∆1 + a1C

1
1 + (m0 + a1 + a2 − 1)F1) is not log canonical at the point P1. Applying

Exercise 2.6 to this pair and the curve C1
1 , we get

M +Aa1 − a2 −m0 = ∆1 · C1
1 > 1−

(
m0 + a1 + a2 − 1

)
.
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This gives a1 >
2−M
A+1 . Then

2−Mα

A+ 1 + β(1−N)
B

< αa1 + βa2 6 1,

because a2 >
1−N
B . Thus, we see that 2−Mα

A+1 + β(1−N)
B < 1 which is impossible. This shows that

P1 6= F1 ∩ C1
1 .

Since P1 = F1 ∩ C1
2 , the log pair (S1,∆1 + a1C

1
1 + a2C

1
2 + (m0 + a1 + a2 − 1)F1) is not log

canonical at the point P1.
For any positive integer n, we consider a sequence of blow ups

Sn
πn // Sn−1

πn−1 // · · · π3 // S2
π2 // S1

π1 // S

such that πi+1 : Si+1 → Si is a blow up of the point Fi ∩ Ci2 for every i < n, where we denote
by Fi the exceptional curve of the morphism πi, and we denote by Ci2 the proper transform of
the curve C2 on the surface Si. For every positive k 6 n and i 6 k, denote by ∆k, Ck1 and F ki
the the proper transforms on Sk of the divisors ∆, C1 and Fi, respectively. Put mi = multPi(∆i)
for every i 6 n. For every k 6 n, put Pk = Fk ∩ Ck2 The log pair(

Sn,∆n + a1C
n
1 + a2C

n
2 +

n∑
i=1

(
a1 + ia2 − i+

i−1∑
j=0

mj

)
Fni

)

is the log pull back of the log pair (S,D) on the surface Sn. By Exercise 2.3, it is not log canonical
at some point of the set Fn1 ∪Fn2 ∪ · · · ∪Fnn . We claim that this log pair is log canonical at every
point of this set except the point Pn, and

1 > a1 + ia2 − i+
i−1∑
j=0

mj > 0,

for every i 6 n. If we prove this claim for every n > 1, we immediately obtain a contradiction,
because the fact that (S,D) is not log canonical at P implies that

a1 + na2 − n+
n−1∑
j=0

mj > 1

for some n > 1. Let us prove this claim by induction on n. The case n = 1 is already done.
Thus, we may assume that n > 2.

For every k < n, the log pair(
Sk,∆k + a1C

k
1 + a2C

k
2 +

k∑
i=1

(
a1 + ka2 − k +

i−1∑
j=0

mj

)
F ki

)

is the log pull is the log pull back of the log pair (S,D) on the surface Sk. By induction, it is
not log canonical at Pk and is log canonical at every point of the set F k1 ∪ F k2 ∪ · · · ∪ F kk that
is different from Pk. Thus, it is not log canonical at Pk by Exercise 2.3. Similarly, we have
1 > a1 + ka2 − k +

∑k−1
j=0 mj > 0 for every k < n. We must show that the same assertions hold

for k = n.
By induction, the log pair(

Sn−1,∆n−1 + a2C
k
2 +

(
a1 +

(
n− 1

)
a2 −

(
n− 1

)
+
n−2∑
j=0

mj

)
Fnn−1

)
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is not log canonical at the point Pn−1. By Exercise 2.4, we have a1 + na2 − n+
∑n−1
j=0 mj > 0 .

Moreover, applying Exercise 2.6 to this log pair and the curve Cn−2
2 , we obtain

N −Ba2 − a1 −
n−2∑
j=0

mj = ∆n−1 · Cn−1
2 > 1−

(
a1 +

(
n− 1

)
a2 −

(
n− 1

)
+
n−2∑
j=0

mj

)
,

which implies that a2 >
n−N
B+n−1 .

Now let us prove that a1 + na2 − n +
∑n−1
j=0 mj 6 1. Suppose that this is not true, i.e., we

have a1 + na2 − n+
∑n−1
j=0 mj > 1. We have m0 + a2 6M +Aa1. Then

a1 + nM + nAa1 − n > a1 + na2 − n+ nm0 > a1 + na2 − n+
n−1∑
j=0

mj > 1,

which immediately implies a1 >
n+1−Mn
nA+1 . One the other hand, we just proved that a2 >

n−N
B+n−1 .

Therefore, we see that(
α−M
A

+ β

)
+ α

A− 1 +M

A(An+ 1) + β
1−B −N
B + n− 1 =

= α
n+ 1−Mn

nA+ 1 + β
n−N

B + n− 1 < αa1 + βa2 6 1,

where α1−M
A + β > 1. Therefore, one has

α
A+M − 1
A(An+ 1) < β

B +N − 1
B + n− 1 ,

where n > 2. But A+M > 1 and B > 1. Thus, we see that
A(An+ 1)

α(A+M − 1) >
B + n− 1

β(B +N − 1) ,

while A2(B +N − 1)β 6 α(A+M − 1) by assumption. Then

A

α(A+M − 1) −
B − 1

β(B +N − 1) >

>

(
A2

α(A+M − 1) −
1

β(B +M − 1)

)
n+ A

α(A+M − 1) −
B − 1

β(B +N − 1) > 0,

which implies that βA(B +N − 1) > α(B − 1)(A+M − 1). Then
α(A+M − 1)

A
> βA

(
B +N − 1

)
> α

(
B − 1

)(
A+M − 1

)
,

because A2(B+N−1)β 6 α(A+M−1) by assumption. Then α 6= 0 and A(B−1) < 1, which is
impossible, because A(B− 1) > 1 by assumption. This shows that a1 +na2−n+

∑n−1
j=0 mj 6 1.

Now let us show that the log pull back of the log pair (S,D) on the surface Sn is log canonical
in every point of Fn that is different Fn ∩ Fnn−1 and Fn ∩ Cn2 . Suppose that this is not true, so
that this log pair is not log canonical at some point Q ∈ Fn that is different from Fn ∩Fnn−1 and
Fn ∩ Cn2 . Then the log pair(

Sn,∆n +
(
a1 + na2 − n+

n−1∑
j=0

mj

)
Fn

)
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is also not log canonical at the point Q. Thus, m0 > mn−1 = ∆n ·Fn > 1 by Exercise 2.6. Then

m0

(
β +Bα

AB − 1 + α+Aβ

AB − 1

)
6
(
M +Aa1 − a2

)β +Bα

AB − 1 +
(
N +Ba2 − a1

)α+Aβ

AB − 1 ,

because m0 6M +Aa1 − a2 and m0 6 N +Ba2 − a1. Thus, we have(
M +Aa1 − a2

)β +Bα

AB − 1 +
(
N +Ba2 − a1

)α+Aβ

AB − 1 6 1 + Mβ +MBα+Nα+ANβ

AB − 1 ,

because αa1 + βa2 6 1 and AB − 1 > 0. But m0 > 1. This gives
β +Bα+ α+Aβ 6 AB − 1 +Mβ +MBα+Nα+ANβ,

which contradicts one of our initial assumptions.
To finish the proof of the claim (and complete the solution of the exercise), we must prove

the log pull back of the log pair (S,D) on the surface Sn is log canonical at the point Fn∩Fnn−1.
Suppose that this is not the case. Then the log pair(

Sn,∆n +
(
a1 +

(
n− 1

)
a2 −

(
n− 1

)
+
n−2∑
j=0

mj

)
Fnn−1 +

(
a1 + na2 − n+

n−1∑
j=0

mj

)
Fn

)
is also not log canonical at the point Fn ∩ Fnn−1. Then

mn−2 −mn−1 = ∆n · Fn−2 > 1−
(
a1 + na2 − n+

n−1∑
j=0

mj

)
by Exercise 2.6. Since

M +Aa1 − a2 −m0 > multP
(
∆ · C1

)
−m0 > ∆ · C1 −m0 = ∆1 · C1

1 > 0,

we have m0 + a2 6 Aa1 +M . Then

nM + nAa1 − na2 > nm0 >
(
n+ 1

)
m0 −mn−1 > mn−2 −mn−1 +

n−1∑
j=0

mj > n+ 1− a1 − na2,

which gives a1 >
n+1−nM
An+1 . Arguing as in the proof of the inequality a1 +na2−n+

∑n−1
j=0 mj 6 1,

we immediately obtain a contradiction. This completes the solution of the exercise. �

Exercise 2.11. Let X be a cone over the curve Ci whose vertex is a general enough point in P3.
Then

X ∩ S = Ci + Ĉi,

where Ĉi is an irreducible curve of degree (deg(S) − 1)deg(Ci). Moreover, Ĉi is not contained
in the support of the divisor D, and the intersection Ci ∩ Ĉi consists of exactly deg(Ĉi) singular
points. Thus, we have

deg
(
Ĉi
)

= D · Ĉi > aiCi · Ĉi > aideg
(
Ĉi
)
,

which implies that ai 6 1. This solution is due to Pukhlikov. For an alternative solution, see
the proof of [16, Lemma 5.36]. �

Exercise 2.12. Suppose that a1 > 1. Let us seek for a contradiction. We may writeD = a1C1+Ω,
where Ω =

∑r
i=2 aiCi. Since

2 = −KS ·D = −KS · (a1C1 + Ω) = −a1KS · C1 −KS · Ω > −a1KS · C1 > −KS · C1,

we have −KS · C1 = 1. Then τ(C1) is a line in P2. Thus, there exists an irreducible reduced
curve C ′1 on S such that C1 + C ′1 ∼ −KS and τ(C1) = π(C ′1). Note that C1 = C ′1 if and only if
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the line π(C1) is an irreducible component of the branch curve C. Since C is irreducible, this is
not the case. Thus, we have C1 6= C ′1.

Note that C2
1 = (C ′1)2 because C1 and C ′1 are interchanged by the biregular involution of S

induced by the double cover τ . Thus, we have

2 = (−KS)2 =
(
C1 + C ′1

)2
= 2C2

1 + 2C1 · C ′1,

which implies that C1 ·C ′1 = 1−C2
1 . Since C1 and C ′1 are smooth rational curves, we can easily

obtain
C2

1 = (C ′1)2 = −1 + k

2 ,

where k is the number of singular points of S that lie on C1. Now we write D = a1C1 +a′1C ′1 +Γ,
where a′1 is a non-negative rational number and Γ is an effective Q-divisor whose support contains
neither C1 nor C ′1. Then

1 = C1 ·
(
a1C1 + a′1C

′
1 + Γ

)
=

= a1C
2
1 + a′1C1 · C ′1 + C1 · Γ >

> a1C
2
1 + a′1C1 · C ′1 = a1C

2
1 + a′1(1− C2

1 ),

and hence 1 > a1C
2
1 + a′1(1− C2

1 ). Similarly, from C ′1 ·D = 1, we obtain
1 > a′1C2

1 + a1(1− C2
1 ).

The obtained two inequalities imply that a1 6 1 and a′1 6 1 since C2
1 = −1 + k

2 , k = 0, 1, 2.
Since a1 > 1 by our assumption, this is a contradiction.

We see that a1 6 0. Similarly, we see that ai 6 1 for every i. Now we suppose that (S,D)
is not log canonical at P . Let us show that τ(P ) ∈ C. Suppose that this is not the case, i.e.,
τ(P ) 6∈ C.

Let H be a general curve in | −KS | that passes through the point P . Since τ(P ) 6∈ C, the
surface S is smooth at the point P . Then

2 = H ·D > multP (H)multP (D) > multP (D),
and hence multP (D) 6 2.

Let f : S̄ → S be the blow up of the surface S at P . Denote by D̄ the proper transform of
the divisor D on D̄, and denote by E the exceptional curve of the blow up f . Then it follows
from Exercise 2.3 that the log pair(

S̄, D̄ +
(
multP (D)− 1

))
is not log canonical at some point Q ∈ E. Moreover, this point is unique by Exercise 2.7.
Applying Exercise 2.4 to this log pair, we get

multP
(
D
)

+ multQ
(
D̄
)
> 2.

Since τ(P ) 6∈ C, there exists a unique reduced but possibly reducible curve R ∈ | −KS | such
that R passes through P and its proper transform on S̄ passes through the point Q. Note that
R is smooth at P . This enables us to assume that the support of D does not contain at least
one irreducible component of R by Exercise 2.2. Denote by R̄ the proper transform of R on the
surface R̄. If the curve R is irreducible, then

2−multP (D) = 2−multP (C)multP (D) = R̄ · D̄ > multQ(R̄)multQ(D̄) = multQ(D̄),
which is impossible, since we already proved that multP (D) + multQ(D̄) > 2. Thus, the curve
R must be reducible.
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We may write R = R1 + R2, where R1 and R2 are irreducible smooth curves. Without loss
of generality we may assume that the curve R1 is not contained in the support of D. Then the
point P must belong to R2, because otherwise we would have

1 = D ·R1 > multP (D) > 1,
since multP (D) > 1 by Exercise 2.4. Thus, we put D = aR2 + Ω, where a is a non-negative
rational number and Ω is an effective Q-divisor whose support does not contain the curve R2.
Then

1 = R1 ·D =
(
2− 1

2 l
)
a+R1 · Ω >

(
2− 1

2 l
)
a,

where l is the number of singular points of S contained in the curve R1. Denote by R̄2 the
proper transform of the curve R2 on the surface S̄, and denote by Ω̄ the proper transform of the
divisor Ω on the surface S̄. Then the log pair(

S̄, aR̄2 + Ω̄ +
(
multP (D)− 1

)
E
)

is not log canonical at Q. Note that we already proved that a 6 1. Thus, it follows from
Exercise 2.6 that (

2− 1
2 l
)
a = R̄2 ·

(
Ω̄ +

(
multP (D)− 1

)
E
)
> 1.

This is a contradiction. �

Exercise 3.2. Use the fact that K2
S > 0 and −KS · C > 0 for every curve C on S (see [12]). �

Exercise 3.3. Let f : S̃ → S be the minimal resolution of singularities. Then KS̃ ∼ f∗(KS), so
that −KS̃ is big and nef, i.e., K2

S̃
> 0 and −KS ·C > 0 for every curve C on S̃. Use this to show

that either S is a quadric in P3 and d = 8, or S̃ is a blow up of P2 in 9− d points such that no
four of them lie on a one line, and no seven of them lie on a one conic. See [11] for details. �

Exercise 3.4. If d = 3, then each ai does not exceed 1 by Exercise 2.11. If d = 3, then ai 6 1
for each i by Exercise 2.12. If d = 1, we have

1 = d = K2
S = D · (−KS) =

r∑
i=1

aiCi · (−KS) > aiCi · (−KS),

which immediately implies that ai 6 1 for each i.
Suppose now that (S,D) is not log canonical at some point P ∈ S. Let us show that there

exists a unique divisor T ∈ | − KS | such that T is singular at P , the log pair (S, T ) is not
log canonical at P , and all irreducible components of T is contained in Supp(D). We consider
the cases d = 1, d = 2 and d = 3 separately. For an alternative prove in the case d = 3,
see [6, Theorem 1.12].

Suppose that d = 1. Let C be a curve in |−KS | that passes through P . Then C is irreducible.
If C is not contained in the support of D, we have

1 = d > K2
S = D · C > multP (D) > 1,

by Exercise 2.4. This shows that C is contained in the support of D. If (S,C) is not log canonical
at P , then we can put T = C and we are done. Thus, we may assume that (S,C) is log canonical
at P . Then Exercise 2.2 implies the existence of an effective Q-divisor D′ such that D′ ∼Q −KS ,
the curve C is not contained in the support of D′, and (S,D′) is not log canonical at P . Now
Exercise 2.4 implies that

1 = d > K2
S = D′ · C > multP (D′) > 1,

which is absurd.
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Now we consider the case d = 2. In this case there exists a double cover τ : S → P2 branched
over a smooth quartic curve C. Moreover, we have

D ∼Q −KS ∼ τ∗(L),
where L is a line in P2. By Exercise 2.12, we have τ(P ) ∈ C. Now we may assume that L is
tangent to the curve C. Denote by R the curve in | −KS | that is mapped to L by τ . Then R
is singular at P by construction. If R is irreducible and is not contained in the support of D,
then Exercise 2.4 gives

2 = d > K2
S = D ·R > multP (D)multP (R) > 2multP (D) > 2,

which is absurd. Note that either R is irreducible or R consists of two (−1)-curves that both
pass through P . Thus, if one component of R is not contained in the support of D, then we
obtain a contradiction in a similar way by intersecting D with this irreducible component of D.
Thus, we may assume that all irreducible component of R are contained in the support of D.
Now we can use Exercise 2.2 as in the case d = 1 to conclude that (S,R) is not log canonical at
P . Hence, we can put T = R and we are done again.

Finally, let us consider the case d = 3. In this case, S is a smooth cubic surface in P3. Denote
by TP the intersection of S with the hyperplane in P3 that is tangent to S at the point P . By
Exercise 2.11, TP is a reduced cubic curve that is singular at P . If (S, TP ) is not log canonical
at P and all irreducible components of TP are contained in Supp(D), we can put T = TP and
we are done. Thus, we may assume that this is not the case. Now using Exercise 2.2, we may
assume that at lest one irreducible components of TP is not contained the support of the divisor
D. To complete the solution, we must obtain a contradiction.

If LP is a line in S that passes through P , then LP is contained in in Supp(D), because
otherwise we would get

1 = d > D · LP > multP (D)multP (LP ) > multP (D) > 1
by Exercise 2.4. Thus, we see that multP (TP ) = 2.

Let f : S̃ → S be the blow up of the point P . Denote by D̃ the proper transform of the divisor
D on the surface S̃, denote by T̃P the proper transform of the curve TP on the surface S̃, and
denote by E the f -exceptional curve. Then multP (D) > 1 by Exercise 2.4, and the log pair(

S̃, D̃ +
(
multP (D)− 1

)
E
)

is not log canonical at some point Q ∈ E by Exercise 2.3. Moreover, there exists a commutative
diagram

S̃

f

��

g // S̄

h
��

S
ψ // P2,

where ψ is a projection from P , the morphism g is a contraction of the proper transforms of
all lines in S that pass through P , and h is a double cover branched over a quartic curve. This
quartic curve has at most two ordinary double points, because multP (TP ) 6= 3. Now applying
Exercise 2.12, we see Q ∈ E ∩ T̃P .

Note that TP is one of the following curves: an irreducible cubic curve, a union of a conic and
a line, a union of three lines. Let us consider this cases separately.

Suppose that TP splits as a union of a conic and a line. Then TP = LP + CP , where LP is a
line, and CP is an irreducible conic. We already proved that LP is contained in the support of
D. Hence, CP is not contained in the support of D. Thus, we write D = aLP + Ω, where a is a
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positive rational number, and Ω is an effective Q-divisor on S whose support contains none of
the curves LP and CP . Put m = multP (Ω). Then multP (D) = m+ a and

2− 2a = Ω · CP > m,
which gives m+ 2a 6 2. Similarly, we have

1 + a = LP ·D = Ω · LP > m,
which gives 1 + a > m. Denote by C̃P the proper transform of the conic CP on the surface S̃,
denote by L̃P be the proper transform of the line LP on the surface S̃, and denote by Ω̃ be the
proper transform of the divisor Ω on the surface S̃. Put m̃ = multQ(Ω̃). Then the log pair(

S̃, aL̃P + Ω̃ +
(
m+ a− 1

)
E
)

is not log canonical at P . Applying Exercise 2.4 to this log pair, we obtain 2a + m + m̃ > 2.
One the other hand, if Q ∈ C̃P , then

2− 2a−m = Ω̃ · C̃P > m̃,
which implies that Q 6∈ C̃P . Since we already proved that Q ∈ T̃P , we see that Q ∈ L̃P . Now
we can apply Exercise 2.10 to the log pair (S̃, aL̃P + Ω̃ + (m + a − 1)E) at the point Q. Put
C1 = E, C2 = L̃P , M = 1, A = 1, N = 0, B = 2, and α = β = 1. One can easily check that all
hypotheses of Exercise 2.10 are satisfied. Thus, Exercise 2.10 gives

m = multQ(Ω̃ · E) > 1 + (n+m− 1)− n = m

or
1 + n−m = multQ(Ω̃ · L̃) > 2n− (n+m− 1) = 1 + n−m,

which is absurd. Note that we can obtain a contradiction in the case also by using Exercise 2.9
instead of Exercise 2.10.

We see that TP a union of three lines. Denote these lines by L1, L2 and L3. Without loss of
generality, we may assume that P = L1 ∩ L2, and P 6∈ L3. We proved earlier that L1 and L2
are contained in the support of D. Thus, we write D = a1L1 + a2L2 + ∆, where a1 and a2 are
positive rational numbers, and ∆ is an effective Q-divisor whose support does not contain the
lines L1 and L2. Note that the support of ∆ does not contain the curve L3 by assumption. Put
n = multP (∆). Then

n 6 ∆ · L1 =
(
H − a1L1 − a2L2

)
· L1 = 1 + a1 − a2,

because L1 · L2 = 1 and L2
1 = −1 on the surface S. Similarly, we see that

n 6 ∆ · L2 =
(
H − a1L1 − a2L2

)
· L2 = 1− a1 + a2,

because L2
2 = −2 on the surface S. Adding these inequalities, we get n 6 1. Thus, applying

Exercise 2.9, we get
1 + a1 − a2 = ∆ · L1 > 2(1− a2)

or
1− a1 + a2 = ∆ · L2 > 2(1− a1).

Thus, we get a1 + a2 > 1. On the other hand, we have

0 6 ∆ · L3 =
(
H − a1L1 − a2L2

)
· L3 = 1− a1 − a2,

which implies that a1 + a2 6 1. The obtained contradiction completes the solution. �
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Exercise 3.5. Since Cl(U) is trivial, the curves C1, · · · , Cn generate the group Cl(S). Since S
has at most quotient singularities, the group Cl(S) ⊗ Q coincides with the group Pic(S) ⊗ Q.
Thus, the curves C1, · · · , Cn generate the vector space Pic(S) ⊗ Q over Q, which implies that
their number n is at least the dimension of this space.

Since U is a cylinder, U = C1×Z for some affine curve Z. Consider the commutative diagram

P1 × P1

p2

��

C1 × P1? _oo

pP1

��

C1 × Z? _oo

pZ

��

U �
� // S

ψ

��

Z � r

##

K k

xx

S̃

π

ff

φ
uuP1 P1 P1

such that pZ and pP1 are natural projections, p2 is the projection to the second factor, ψ is
a rational map, π is a birational morphism, S̃ is a smooth surface, and φ is a morphism. By
construction, general fiber of φ is P1. Let E1, . . . , Er be the π-exceptional curves of π (if π is
an isomorphism, we simply put r = 0), and let Γ be the section of p2 that is a complement of
C1×P1 in P1×P1. Denote by C̃1, . . . , C̃n and Γ̃ the proper transforms of the curves C1, . . . , Cn
and Γ on the surface S̃, respectively. Then Γ̃ is a section of φ. Moreover, the curve Γ̃ is one
of the curves C̃1, . . . , C̃n and E1, . . . , Er. Furthermore, all other curves among C̃1, . . . , C̃n and
E1, . . . , Er are irreducible components of some fibers of φ. Thus, we may assume that

• either Γ̃ = C̃1,
• or Γ̃ = Er.

If Γ̃ = C̃1, then ψ is a morphism, so that we may assume that π is an isomorphism. If Γ̃ = Er,
then we may assume that π is a composition of r blow ups of centers the discrete valuation νΓ
associated to the curve Γ, so that Γ̃ is the exceptional curve of the last blow up. Then

KS̃ +
n∑
i=1

λiC̃i +
r∑
i=1

µiEi ∼Q π
∗
(
KS +

n∑
i=1

λiCi
)
∼Q 0.

for some rational numbers µ1, . . . , µr. Let F̃ be a general fiber of φ. Then KS̃ · F̃ = −2 by the
adjunction formula. Put F = π(F̃ ). If Γ̃ = Er, then

− 2 + µr = −2 + µrEr · F̃ = −2 +
n∑
i=1

λiC̃i · F̃ +
r∑
i=1

µiEi · F̃ =

=
(
KS̃ +

n∑
i=1

λiC̃i +
r∑
i=1

µiEi
)
· F̃ =

(
π∗
(
KS +

n∑
i=1

λiCi
))
· F̃ =

(
KS +

n∑
i=1

λiCi
)
· F = 0

Similarly, if Γ̃ = C1, then

− 2 + λ1 = −2 + λ1C̃1 · F̃ = −2 +
n∑
i=1

λiC̃i · F̃ +
r∑
i=1

µiEi · F̃ =

=
(
KS̃ +

n∑
i=1

λiC̃i +
r∑
i=1

µiEi
)
· F̃ =

(
π∗
(
KS +

n∑
i=1

λiCi
))
· F̃ =

(
KS +

n∑
i=1

λiCi
)
· F = 0

Therefore, we see that
• either λ1 = 2 (in the case when Γ̃ = C̃1),
• or µr = 2 (in the case when Γ̃ = Er).
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In particular, the singularities of the log pair (S,
∑n
i=1 λiCi) are not log canonical. �

Exercise 3.6. The existence of desired surfaces is well-known. See, for example, [15]. The absence
of cylinders on S follows from [7, Theorem 1.5]. Indeed, suppose that S contains a cylinder U .
Denote by C1, . . . , Cn the irreducible curves in S such that S \U =

∑n
i=1Ci. Note that the rank

of the Picard group of S is 1. Hence, there is a positive rational number λ such that

λ
n∑
i=1

Ci ∼Q −KS .

Put D = λ
∑n
i=1Ci. Then the singularities of the log pair (S,D) are not log canonical at some

point P ∈ S by Exercise 3.5.
Let C be a curve in | − KS | that passes through P . Then C is an irreducible curve. Note

that C contains at most one singular point of S. This implies that C 6= D, because S \ U is
smooth, and S \C is not smooth. Thus, there exists a positive rational number µ > 0 such that
the support of the Q-divisor

(1 + µ)C − µC
does not contain at least one irreducible component of P . Applying Exercise 3.5 to this divisor,
we see that the log pair (S, (1+µ)D−µC) is not log canonical at P . ReplacingD by (1+µ)D−µC,
we may assume that (S,D) is not log canonical at P , and C is not contained in the support of
the divisor D. Let us show that this leads to a contradiction.

If S is smooth at P , then
1 = K2

S = C ·D > multP (C)multP (D) > multP (D) > 1
by Exercise 2.4. Hence, P is a singular point of S.

Let f : S̃ → S be the minimal resolution of the singular point P . Denote by E1, . . . , Er the
f -exceptional curves, denote by D̃ the proper transform of the divisor D on the surface S̃, and
denote by C̃ the proper transform of the curve C on the surface S̃. Then there are non-negative
rational numbers a1, . . . , ar such that

KS̃ + D̃ +
r∑
i=1

aiEi ∼Q f
∗(KS +D

)
∼Q 0.

We can immediately see how the proper transform C̃ of the effective anticanonical divisor C
intersects the exceptional divisors Ei.

Suppose that P is a singular point of type D4. Then r = 4 and we may assume that the
exceptional divisor E4 is the (−2)-curve that intersects all the other three (−2)-curves. We see
that, C̃ · E4 = 1 and C̃ · E1 = C̃ · E2 = C̃ · E3 = 0. We then obtain

1− a4 =
(
f∗(−KS)−

r∑
i=1

aiEi
)
· C̃ = D̃ · C̃ > 0.

Thus, the log pair (S,D) is log canonical at P by Exercise 2.8, which is a contradiction. We see
that P is not a singular point of type D4.

Suppose that P is a singular point of type Ar, where r 6 3 by assumption. If r > 1, then
we assume that E1 and Er are the tail curves, i.e., the (−2)-curves intersecting only one (−2)-
curve, respectively. In this case the curve C̃ intersects E1 and Er, respectively, at one point
transversally, and it does not intersect the other (−2)-curve in the case when r = 3. If r = 1,
then C̃ · E1 = 2. Therefore, we have

1− a1 − ar =
(
f∗(−KS)−

r∑
i=1

aiEi
)
· C̃ = D̃ · C̃ > 0,
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and hence a1 + ar 6 1 (if r = 1, then a1 6 1
2).

Consider the case r = 1. Since D̃ · E1 = 2a1 6 1, the log pair (S̃, D̃ + a1E1) is log canonical
along the exceptional curve E1 by Exercise 2.6. Therefore, the log pair (S,D) is log canonical
at P .

Next we consider the case r = 2. We then have a1 + a2 6 1. Moreover, we obtain 2a1 > a2
from the inequality

2a1 − a2 = D̃ · E1 > 0.
Similarly, 2a2 > a1. Since a1 + a2 6 1, we may assume that a1 6 1

2 . We obtain(
D̃ + a2E2

)
· E1 = 2a1 6 1,

and hence the log pair (S̃, D̃+a1E1 +a2E2) is log canonical along the curve E1 by Exercise 2.6.
Furthermore, the inequality

D̃ · E2 = 2a2 − a1 6 2a1 + (a2 − a1) = a1 + a2 6 1

and Exercise 2.6 imply that the log pair (S̃, D̃ + a1E1 + a2E2) is log canonical along the curve
E2. Consequently, the log pair (S,D) is log canonical at P .

Finally we consider the case r = 3. We have a1 + a3 6 1. Moreover, we may obtain 2a1 > a2,
2a2 > a1 + a3 and 2a3 > a2 from

2a1 − a2 = D̃ · E1 > 0,
2a2 − a1 − a3 = D̃ · E2 > 0,
2a3 − a2 = D̃ · E3 > 0.

We may assume that a1 6 1
2 , since a1 + a3 6 1. Since(

D̃ + a2E2 + a3E3
)
· E1 = 2a1 6 1,

the log pair (S̃, D̃+a1E1 +a2E2 +a3E3) is log canonical along the curve E1 by Exercise 2.6. By
Exercise 2.6, the log pair (S̃, D̃+ a1E1 + a2E2 + a3E3) is log canonical at every point of E2 ∪E3
that is different from E3 ∩ E2, since{

D̃ · E3 = 2a3 − a2 6 (2a2 − a1) + a3 − a2 6 a1 + a3 6 1,
D̃ · E2 = 2a2 − a1 − a3 6 2(a1 + a3)− (a1 + a3) = a1 + a3 6 1.

Let Q be the intersection point of E2 and E3. We have{
D̃ · E2 = 2a2 − a1 − a3 6 (4a1 − a1 + a3)− 2a3 = 2a1 + (a1 + a3)− 2a3 6 2(1− a3),
D̃ · E3 = 2a3 − a2 = 2a3 + a2 − 2a2 6 2a3 + 2a1 − 2a2 6 2(1− a2),

and multQ(D̃) 6 E3 · D̃ = 2a3 − a2 6 1. Thus, the log pair (S̃, D̃ + a1E1 + a2E2 + a3E3) is log
canonical at Q by Exercise 2.9.

We proved that the log pair (S̃, D̃ + a1E1 + a2E2 + a3E3) is log canonical along the three
exceptional curves, and hence (S,D) is log canonical at P , which is a contradiction. �

Exercise 3.7. The required assertion follows from Exercise 3.5. �

Exercise 4.1. Use Exercises 2.2 and 2.4. �
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Exercise 4.2. It follows from Exercises 3.4 and 2.2 that α(S,−KS) = α1(S,−KS). The number
α1(S,−KS) is easy to compute. Thus, if d = 1, then

α
(
S,−KS

)
=


1 if | −KS | contains a cuspidal curve,
5
6 if | −KS | does not contain cuspidal curves.

Similarly, if d = 2, one has

α
(
S,−KS

)
=


3
4 if | −KS | contains a tacknodal curve,
5
6 if | −KS | does not contain tacknodal curves.

Finally, if d = 3, we have

α
(
S,−KS

)
=


2
3 if S contains an Eckardt point,
3
4 if S does not contain Eckardt points.

For an alternative solution, see the proof of [2, Theorem 1.7]. �

Exercise 4.3. This follows from the definitions of α(X,L) and αn(X,L). �

Exercise 4.4. By Exercises 4.1 and 4.2, we may assume that 7 > K2
S > 4. Then

α
(
S,−KS

)
6 α1

(
S,−KS

)
6

2
3 .

Suppose that α(S,−KS < α1(S,−KS). Then there exists an effective Q-divisor D such that
D ∼Q −KS and (S, λD) is not log canonical for some λ < α1(S,−KS). One can easily see that
the log pair (S, λD) is log canonical outside of finitely many points.

Let P be one of these points at which (S, λD) is not log canonical. Then there exists a
birational morphism f : S → P2 such that f contracts 9 −K2

S disjoint (−1)-curves and f is an
isomorphism in a neighborhood of the point P . Then(

P2, λf
(
D
))

is not log canonical at the point f(P ) and is log canonical outside of finitely many points. Note
that f(D) ∼Q −KP2 . This easily leads to a contradiction (see the proof of [2, Theorem 1.7]). �

Exercise 4.5. If d 6 2, then the required assertion follows from Exercise 4.1. If d = 3, then
the required assertion follows from Exercise 4.2. Thus, we assume that d = 4. Suppose that
α(S,H) < α1(S,H). Then there exists an effective Q-divisor D such that D ∼Q H and (S, λD)
is not log canonical for some λ < α1(S,H). By Exercise 2.11, the log pair (S, λD) is log canonical
outside of finitely many points.

Let P be one of these points at which (S, λD) is not log canonical. Then the support of D
contains all lines in S that passes through P . Indeed, if L is such a line and L is not contained
in the support of D, then

1 = L ·H = L ·D > multP (L)multP (D) = m >
1
λ
> 1

by Exercise 2.4.
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Consider the quartic curve TP that is cut out on S by the hyperplane in P3 that is tangent
to S at the point P . By Exercise 2.11, TP is a reduced plane quartic curve. Note that TP is
singular at the point P . By Exercise 2.5, one has

lctP
(
S, TP

)
6

2
multP

(
TP
) .

In particular, if multP (TP ) > 3, then λ < 2
3 . Use parameter count to show that α1(S,H) 6 3

4 ,
so that λ < 3

4 .
By Exercise 2.2, we may assume that the support of the divisor D does not contain at least one

irreducible component of the plane quartic curve TP . In particular, we see that multP (TP ) < 4,
since the support of D contains all lines in S that passes through P . Similarly, if C is an
irreducible quartic curve and multP (TP ) = 3, then

4 = H · C = D · C > multP (C)multP (D) > 3multP (D) > 3
λ
,

which is impossible, since λ < 3
4 . In all other cases, we can obtain a contradiction in a similar

way using Exercises 2.6 and 2.9, the fact that (S, λD) is not log canonical at P , the inequalities
λ < 3

4 and λ < 2
multP (TP ) , and the assumption that the support of the divisor D does not contain

at least one irreducible component of the plane quartic curve TP . Let us consider just the case
when TP consists of a (possibly reducible) conic and two lines, and the two lines intersect at P
and P does not lie on the conic.

We suppose that TP consists of two lines L1 and L2, and a possibly reducible conic C1, where
P is the intersection point of the lines L1 and L2, and P is not contained in the conic C1. We
denote by C? the irreducible component of the curve TP that is not contained in the support of
the divisor D. We already know that both lines L1 and L2 are contained in the support of the
divisor D. In particular, C? 6= L1 and C? 6= L2. Write D = Ω + a1L1 + a2L2, where a1 and a2
are positive rational numbers, and Ω is an effective Q-divisor whose support does not contain
the lines L1 and L2. Note that the support of Ω does not contain the curve C? by assumption.
Put n = multP (Ω). Then

n 6 Ω · L1 =
(
H − a1L1 − a2L2

)
· L1 = 1 + 2a1 − a2,

because L1 · L2 = 1 and L2
1 = −2 on the surface S. Similarly, we see that

n 6 Ω · L2 =
(
H − a1L1 − a2L2

)
· L2 = 1− a1 + 2a2,

because L2
2 = −2 on the surface S. Finally, we have

0 6 Ω · C? =
(
H − a1L1 − a2L2

)
· C? = deg

(
C?
)(

1− a1 − a2
)
,

which implies that a1 + a2 6 1. Adding these three inequalities together, we get n 6 3
2 .

Let f : S̃ → S be a blow up of the surface S at the point P . Denote by E the f -exceptional
curve, and denote by Ω̃ the proper transform of the divisor Ω on the surface Ω̃. Similarly, denote
by L̃1 and L̃2 the proper transform of the lines L1 and L2 on the surface Ω̃, respectively. Then
the log pair (

S̃, λa1L̃1 + λa2L̃2 + λΩ̃ +
(
λ(a1 + a2 + n)− 1

)
E
)
.

is not log canonical at some point Q ∈ E by Exercise 2.3. On the other hand, n+ a1 + a1 6 5
2 ,

because a1 + a2 6 1 and n 6 3
2 . Thus, the latter log pair is log canonical at every point of the

curve E that is different from Q.
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Put ñ = multQ(Ω̃). Then ñ 6 n.
Suppose Q ∈ L̃1. Then Q 6∈ L̃2 and

ñ 6 Ω̃ · L̃1 = Ω · L1 − n = 1 + 2a1 − a2 − n.

This gives 2ñ 6 ñ+n 6 1+2a1−a2, because ñ 6 n. Since, we already know that n 6 1−a1+2a2,
we get

3ñ 6 2ñ+ n 6 2 + a1 + a2 6 3,
because a1 + a2 6 1. Thus, we see that ñ 6 1. On the other hand, the log pair(

S̃, λa1L̃1 + λΩ̃ +
(
λ(a1 + a2 + n)− 1

)
E
)
.

is not log canonical at Q. Thus, we can apply Exercise 2.9 to this log pair. This gives

λ
(
1 + 2a1 − a2 − n

)
= λ

(
Ω · L1 − n

)
= λΩ̃ · L̃1 > 2

(
1−

(
λ(a1 + a2 + n

)
− 1

)
or λn = λΩ̃ ·E > 2(1−λa1). Since λ 6 3

4 , the former inequality gives n+4a1 +a2 >
13
3 , and the

later inequality gives n+2a1 >
8
3 . Since we already proved that n 6 1+2a2−a1 and a1 +a2 6 1,

the inequality n+ 4a1 + a2 >
13
3 leads to a contradiction, and the inequality n+ 2a1 >

8
3 gives

a2 >
2
3 . Hence, we have a2 >

2
3 . Now applying Exercise 2.6, we obtain

λ+ 3λa1 − 1 = λ
(
1 + 2a1 − a2

)
+ λa1 + λa2 − 1 =

= λ
(
H − a1L1 − a2L2

)
· L1 + λa1 + λa2 − 1 = λΩ · L1 + λa1 + λa2 − 1 =

= λ
(
Ω · L1 − n

)
+ λa1 + λa2 + λn− 1 = λΩ̃ · L̃1 + λa1 + λa2 + λn− 1 =

=
(
λΩ̃ +

(
λ(a1 + a2 + n)− 1

)
E
)
· L̃1 > 1,

which results in a1 >
5
9 . On the other hand, we have a1 + a2 6 1 and a2 >

2
3 , which is absurd.

We see that Q 6∈ L̃1. Similarly, we see that Q 6∈ L̃2.
Let g : S → S̃ be the blow up of the surface S̃ at the point Q, and let F be the exceptional

curve of g. Denote by E the proper transforms of E on the surface S, and denote by Ω the
proper transform of the divisor Ω on the surface S. Since Q 6∈ L̃1 ∪ L̃2, the log pair(

S, λΩ +
(
λ(a1 + a2 + n)− 1

)
E +

(
λ(a1 + a2 + n+ ñ)− 2

)
F
)

is not log canonical at some point O ∈ F . Since a1 + a2 6 1 and ñ 6 n 6 3
2 , we have

a1 + a2 + n+ ñ 6 a1 + a2 + 2n 6 4 < 3
λ
,

because λ < 3
4 . Thus, it follows from Exercise 2.7 the latter log pair is log canonical at every

point of F that is different from O. If O = F ∩ E, then

λ
(
a1 + a2 + 2n)− 2 = λ

(
n− ñ

)
+ λ(a1 + a2 + n+ ñ)− 2 =

= λΩ · E + λ(a1 + a2 + n+ ñ)− 2 =
(
λΩ +

(
λ(a1 + a2 + n+ ñ)− 2

)
F
)
· E > 1

by Exercise 2.6, which implies that a1 + a2 + 2n > 3
λ > 4, because λ < 3

4 . Since we already
proved that a1 + a2 6 1 and n 6 3

2 , we see that O 6= F ∩ E. Applying Exercise 2.4, we get

a1 + a2 + n+ ñ+ multO
(
Ω
)
>

3
λ
> 4.
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Consider the linear system

M :=
∣∣(f ◦ g)∗(H)− 2F − E

∣∣.
It is a free pencil, because Q 6∈ L̃1 ∪ L̃2. Thus, M contains a unique curve that passes through
the point O. Denote this curve by M , and denote its proper transform on S by M . Then M is
a hyperplane section of the surface S and P ∈M . In particular, M is reduced by Exercise 2.11.
Moreover, M 6= TP by construction. Thus, M is smooth at P , which implies that M is the
proper transform of the curve M on the surface S.

Since M is smooth at P , the log pair (S, λM) is log canonical at P . Thus, it follows from
Exercise 2.2 that there exists an effective Q-divisor D′ such that D′ ∼Q H, the log pair (S, λD′)
is not log canonical at P , the support of the divisor D′ is contained in the support of the divisor
D, and the support of the divisor D′ does not contain at least one irreducible component of the
curve M . Replacing D by D′, we may assume that D enjoys all these properties.

Denote by M? the irreducible component of the curve M that is not contained in the support
of D. Similarly, denote by M

′ the irreducible component of the curve M that contain O, and
denote its image on S by M ′. If M? = M ′, then

multO
(
Ω
)
6M

′ · Ω 6 deg
(
M ′
)
− a1 − a2 − n− ñ 6 4−−a1 − a2 − n− ñ,

which contradicts the inequality we obtained earlier. Thus, we see that M? 6= M ′. In particular,
the curve M is not irreducible.

Since M is smooth at P and P ∈ M ′, we have P 6∈ M?. Since Q 6∈ L̃1 ∪ L̃2, the curve M ′ is
not a line. Hence, either M ′ is a conic or M ′ is a cubic curve. Put Ω = aM ′ + ∆, where a is a
non-negative rational number, and Ω is an effective Q-divisor whose support does not contain
M ′. Then a 6 1 by Exercise 2.11. In fact, we can say more. Indeed, we have

deg
(
M?
)

= H ·M? = D ·M? > aM
′ ·M?.

Since M ′ ·M? = deg(M ′)deg(M?) on the surface S, we have

a 6
deg

(
M?
)

deg
(
M ′
)
deg

(
M?
) ,

which implies that a 6 1
2 .

Denote by ∆̃ the proper transform of the divisor ∆ on the surface S̃. Put m = multP (∆) and
m̃ = multQ(∆̃). Since O 6= E ∩ F and Q 6∈ L̃1 ∪ L̃2, the log pair(

S, λaM
′ + λ∆ +

(
λm+ λa1 + λa2 + λm̃+ 2λa− 2

)
F
)
.

is not log canonical at the point the point O. Applying Exercise 2.6 to this log pair, we obtain

M
′ ·∆+

(
λn+λa1 +λa2 +λm̃+2λa−2

)
= M

′ ·
(
λ∆+

(
λm+λa1 +λa2 +λm̃+2λa−2

)
F
)
> 1.

This gives

M
′ ·∆ +m+ a1 + a2 + m̃+ 2a > 3

λ
.

On the other hand, we have

M
′·∆ = M ′·∆−m−m̃ = M ′·

(
H−a1L1−a2L2−aM ′)−m−m̃ 6 deg

(
M ′
)
−a1−a2−a(M ′)2−m−m̃.

Therefore, we obtain

deg
(
M ′
)
− a(M ′)2 >

3
λ
− 2a > 4− 2a,
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because λ > 3
4 . Thus, we have

a
(
2− (M ′)2

)
> 4− deg

(
M ′
)
.

This gives a > 1
2 , which is impossible, because a 6 1

2 . �

Exercise 4.6. We must show that α(S,H) < α1(S,H). First, we use parameter count to show
that α1(S,H) = 3

4 . To show that α(S,H) < 3
4 , pick a point P in S, and consider a blow up

f : S̃ → S of the surface S at the point P . Denote by E the f -exceptional curve, and denote
by H the class of a hyperplane section of the surface S. Fix a rational number m such that
8
3 < m <

√
d. Put D = f∗(H)−mE, so that

D2 = d−m2 > 0,
because 8

3 < m <
√
d. Let n be a sufficiently large integer such that mn is an integer. By the

Riemann-Roch formula for surfaces, we get

h0(nD)+ h2(nD) > h0(nD)− h1(nD)+ h2(nD) = χ
(
O
S̃

)
+ 1

2
(
n2D2 − nD ·K

S̃

)
.

By Serre duality, we have
h2(nD) = h0(K

S̃
− nD

)
= h0((d− 4− n)f∗(H) + (mn+ 1)E

)
,

which vanishes for n > d− 4. Hence, it follows from positivity of D2 that h0(nD) > 0 for large
enough n. Fix such n. Pick M̃ ∈ |nD|. Then

M̃ ∼ nH̃ − nmE.
Denote by M the proper transform of the divisor M̃ on the surface S. Put D = 1

nM . Then
D ∼Q H and multP (D) > m. By Exercise 2.3, the log pair (S, 3

4D) is not log canonical, and
hence α(S,H) < α1(S,H) = 3

4 . �

Exercise 5.2. The required assertion follow from Exercise 3.5. �

Exercise 5.3. If d 6 2, the required assertion is [21, Proposition 5.1]. If d = 3, the required
assertion is [6, Theorem 1.7]. In all cases, the required assertion follow from Exercises 3.4 and
5.2. Indeed, suppose that S contains an anticanonical cylinder U . Denote by C1, . . . , Cn the
irreducible curves in S such that S \ U =

∑n
i=1Ci. Then there are positive rational numbers

λ1, . . . , λn such that
n∑
i=1

λiCi ∼Q −KS .

Put D =
∑n
i=1 λiCi. Then the singularities of the log pair (S,D) are not log canonical at some

point P ∈ S by Exercise 5.2. Hence, by Exercise 3.4, there exists a unique divisor T ∈ | −KS |
such that T is singular at P , the log pair (S, T ) is not log canonical at P , and all irreducible
components of T is contained in Supp(D). Note that D 6= T , because n > 3 by Exercise 5.2,
and T does not have more than d 6 3 irreducible components. Thus, there exists a positive
rational number µ > 0 such that the support of the Q-divisor

(1 + µ)D − µT
does not contain at least one irreducible component of P . Applying Exercise 5.2 to this divisor,
we see that the log pair (

S, (1 + µ)D − µT
)

is not log canonical at P . This contradicts to Exercise 3.4, because (1+µ)D−µT ∼Q −KS . �
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Exercise 5.4. The required assertion is [19, Theorem 3.19]. Let us consider the case d = 4. Then
there exists a birational morphism f : S → P2 such that f is the blow up of P2 at five points
that lie on a unique irreducible conic. Denote this conic by C. Let C̃ be the proper transform of
the conic C on the surface S and let E1, . . . , E5 be the exceptional divisors of the morphism f .
Let L be a sufficiently general line in P2 that is tangent to C. Denote by L̃ its proper transform
on S. Then

−KS ∼Q (1 + ε)C̃ + (1− 2ε)L̃+
5∑
i=1

εEi,

where ε is any positive rational number such that ε < 1
2 . On the other hand, we have

S̃ \
(
C̃ ∪ L̃ ∪ E1 ∪ E2 ∪ E3 ∪ E3 ∪ E5

)
∼= P2 \

(
C ∪ L

)
is a cylinder. �

Exercise 5.5. The required assertion follows from [7, Theorem 1.5]. In fact, its proof is almost
identical to the solution to Exercise 3.6. �

Exercise 5.6. The required assertion follows from [7, Theorem 1.5]. Its proof is mixture of
solutions to Exercises 3.6 and 5.3, see also Exercise 2.12. For details, see the proof of [7,
Theorem 1.5]. �

Exercise 5.7. Use projection from a singular point. For details, see [7]. �

Exercise 5.8. Use Exercise 5.7 (see [7]). �

Exercise 5.9. By Exercises 5.3, 5.5, 5.6, 5.7 and 5.8, we may assume that either d = 2 and S
has a singular point that is not an ordinary double point, or d = 1 and S has a singular point
that is not of type A1, A2, A3, or D4. Then we have many possibilities for S. In all of them we
can construct an anticanonical cylinder on S similar to Example 5.10. These constructions can
be used to prove that all such del Pezzo surfaces admit anticanonical cylinders. This is done
in [7]. Namely, for a given singular del Pezzo surface S we find an effective Q-divisor DS such
that DS ∼Q −KS and the complement of the support of DS is a cylinder. To this end, instead
of the singular surface S, we can consider its minimal resolution f : S̃ → S. Since we only allow
du Val singularities on the surface S, the surface S̃ is a smooth weak del Pezzo surface, i.e., a
smooth surface with nef and big anticanonical class −KS̃ (see Exercise 3.3). On this smooth
weak del Pezzo surface, it is enough to find an effective Q-divisor DS̃ such that DS̃ ∼Q −KS̃ ,
its support contains all the (−2)-curves on S̃, and the complement of the support of DS̃ is a
cylinder. Then we can take the divisor DS as f(DS̃). In order to find such a divisor DS̃ , we
start with the projective plane P2 and one of the following effective Q-divisors DP2 on it:

• a triple line 3L;
• a1L1 + a2L2, where a1 + a2 = 3 and L1, L2 are distinct lines;
• aL+ bC, where a+ 2b = 3, C is an irreducible conic and L is a line tangent to the conic
C;
• a1L1 + a2L2 + a3L3, where a1 + a2 + a3 = 3 and L1, L2, L3 are three distinct lines

meeting at a single point.
In all these cases, DP2 ∼Q −KP2 , and the complement P2 \ Supp(DP2) is a cylinder.

Let S be a given del Pezzo surface with du Val singularities and S̃ be its minimal resolution.
Starting from P2 with one of the divisors DP2 we will present the composition of a sequence of
blow ups h : Š → P2 and a contraction g : Š → S̃ with the following properties. We write

KŠ ∼ h
∗(KP2) +

∑
aiEi,
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where Ei’s are h-exceptional curves. Then we consider an effective Q-divisor DŠ on Š such that
(Š,DŠ) is the log pull back of (P2, DP2) (see Exercise 2.3). Then DŠ ∼Q −KŠ , since DP2 ∼Q
−KP2 . In all cases, we will see that DŠ is effective, its support contains all the exceptional
curves of h, and its support contains all the curves contracted by g. We put DS̃ = g(DŠ) and
DS = f(DS̃). Existence of such birational morphisms h and g shows that the given surface S
admits an anticanonical cylinder.

For a given del Pezzo surface S that satisfies the above restrictions, we provide the divisor DP2

and the birational morphisms h and g. They are described in Tables 1 and 2, below. We read
these tables in the following way. In the first column the singularity types are given in normal
size letters. The singularity types in small letters in Table 1 are those for del Pezzo surfaces
of degree 2. These singularity types in small letters will be explained later. The birational
morphism h is obtained by successive blow ups with exceptional curves E¬, . . . , E13 in this order.
The configuration of these exceptional curves given in the third column shows how to take these
blow ups. The exceptional curves E¬, . . . , E13 are labelled by ¬, ... , 13, respectively, in the
third column. The configuration in the third column also shows DP2 . We denote the proper
transforms of lines from P2 by Li (or L). We denote the proper transforms of an irreducible
conic from P2 by Q. In the second column, the sum of the first divisor and the second divisor
(if any) is the divisor DŠ . If we have the second divisor in the second column, the birational
morphism g is obtained by contracting curves drawn by dotted curves in the third column. The
second divisor in the second column is contracted by g. Indeed, each component of the second
divisor is depicted by a dotted curve in the third column. If we do not have the second divisor
in the second column, then Š = S̃ and the morphism g is the identity. The fat curves in the
third column are the curves to be (−2)-curves on S̃. The wiggly lines are the curves to be
non-negative curves on S̃. The thin lines with dots at one of the ends are the curves to be (−1)-
curves on S̃. The curves without superscripts are (−2)-curves on Š. The curves superscripted
by black-circled numbers are the smooth rational curves on Š with self-intersection numbers of
the negatives of the black-circled numbers. The curves superscripted by the circled numbers are
the smooth rational curves on Š with self-intersection numbers of the circled numbers.

For a del Pezzo surface of degree 2 with a singularity type written in small letters in Table 1
the divisor DP2 and the birational morphisms h and g can be easily obtained by contracting
one of the (−1)-curves (thin lines with dots at one of the ends) in the third column. Only for
singularity types D4, A3 and A2 they cannot be obtained in this way. For these three types, we
provide the divisor DP2 and the birational morphisms h and g separately.

The methods are given according to the singularity types of singular del Pezzo surfaces. Even
though they show how to construct the birational morphisms h and g for a seemingly single del
Pezzo surface S of a given singularity type, they indeed demonstrate how to obtain the birational
morphisms h and g for every del Pezzo surface S of a given singularity type (see [7] for details).

Table 1: Degree 1

Singularity
Type

Tiger/
Divisor contracted (if any) Construction

E8
E7

2E¬ +4E +6E® +5E¯ +4E° +3E± +
2E² + E¶

³ + 3L
³

¬



®

¯

°

±

²

L

��
�HHH��

�HHH��
�HHH��

� q
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E7 + A1
E6, D6 + A1

5
3E¬+ 10

3 E+ 8
3E®+2E¯+ 4

3E°+ 2
3E

¶
± +

4
3E² + 1

3E
¶
³ + 1

3Q+ 7
3L

L

Q

¬ ® °

 ¯ ±

²

³

��
�HHH��

�HHH��
�

��
�

q
q

E7
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Table 2: Degree 2

Singularity
Type

Tiger/
Divisor contracted (if any) Construction
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Exercise 6.6. See the solution of Exercise 1.2. For details, see [19, Proposition 3.13]. �

Exercise 6.7. Straightforward (cf. Exercise 4.1). �

Exercise 6.9. The required assertion follows from the solution to Exercise 3.5. �

Exercise 6.11. Straightforward. �

Exercise 6.12. Straightforward. �

Exercise 6.13. The required assertion was proved by Perepechko in [23]. By Exercise 6.7, we
my assume that d 6 7. Now we can use Exercises 6.11 and 6.12 together with the solution to
Exercise 5.4. Namely, let H be an arbitrary ample divisor on S, let µ be the Fujita invariant
of H, let ∆ be the Fujita face of H and let r be the Fujita rank of H. Let φ : S → Z be the
contraction given by ∆. By Exercise 5.4, we may assume that ∆ is not an origin.

Suppose that H is of type B(r) and Z 6∼= P1 × P1. Let us show that S contains an H-polar
cylinder. Let E1, . . . , Er be the (−1)-curves that generate the face ∆. Then

KS + µH ∼Q

r∑
i=1

aiEi

for some positive rational numbers a1, . . . , ar. Note that r 6 9− d and E1, . . . , Er are disjoint.
The surface Z is a smooth del Pezzo surface of degree d+ r. Since Z 6∼= P1 × P1, either Z = P2

or Z is a blow up of P2 in 9 − d − r distinct points in general position. Let ψ : Z → P2 be
such a blow up. Put k = 9 − d and σ = ψ ◦ φ. If k > r, denote the proper transforms of these
ψ-exceptional curves on S by Er+1, . . . , Ek. Put Pi = σ(Ei). Let C be an irreducible conic in
P2 passing through the points P2, . . . , Pk. Such a conic exists because k 6 6. Let L be a line in
P2 passing through the point P1 and tangent to the conic C. For a positive rational number ε
we have −KP2 ∼Q (1 + ε)C + (1− 2ε)L. Hence,

−KS ∼ σ∗(−KP2)−
k∑
i=1

Ei ∼Q (1 + ε)C̃ + (1− 2ε)L̃− 2εE1 + ε
k∑
i=2

Ei,
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where C̃ and L̃ are the proper transforms in S of C and L, respectively. Thus, we have

H ∼Q
1
µ

(1 + ε)C̃ + (1− 2ε)L̃+ (a1 − 2ε)E1 +
r∑
i=2

(ai + ε)Ei + ε
k∑

i=r+1
Ei

 .
For 0 < ε < a1

2 , this is an H-polar cylinder.
Suppose that H is of type B(8−d) and Z 6∼= P1×P1. Let us show that S contains an H-polar

cylinder. Let E1, . . . , Er be the (−1)-curves that generate the face ∆. Note that r = 8 − d.
Then

KS + µH ∼Q

r∑
i=1

aiEi

for some positive rational numbers a1, . . . , ar. The (−1)-curves E1, . . . , Er are disjoint. Put
Pi = σ(Ei). Since r 6 5, there is an irreducible curve C of type (2, 1) in P1 × P1 passing
through the points P1, · · · , Pr. Let L be a curve of type (0, 1) in P1 × P1 that is tangent to
the curve C. Let P be the intersection point of C and L. Then there is a unique curve M of
type (1, 0) in P1 × P1 passing through the point P . For a positive rational number ε we have
−KP1×P1 ∼Q (1− ε)C + (1 + ε)L+ 2εM . Hence,

−KS ∼ φ∗(−KP1×P1)−
r∑
i=1

Ei ∼Q (1− ε)C̃ + (1 + ε)L̃+ 2εM̃ − ε
r∑
i=1

Ei,

where C̃, L̃, and M̃ are the proper transforms in S of C, L, and M , respectively. Thus, we have

H ∼Q
1
µ

(
(1− ε)C̃ + (1 + ε)L̃+ 2εM̃ +

r∑
i=1

(ai − ε)Ei

)
.

Furthermore, we see

S \ (C̃ ∪ L̃ ∪ M̃ ∪ E1 ∪ · · · ∪ Er) ∼= P1 × P1 \ (C ∪ L ∪M).

By taking 0 < ε < min{a1, . . . , ar} we obtain an H-polar cylinder on S
To complete the solution, we may assume that the contraction φ is a conic bundle. Let us

show that S contains an H-polar cylinder. If the contraction φ is a conic bundle, then, we may
write

KS + µH ∼Q aB +
r∑
i=1

aiEi

where B is an irreducible fiber of φ, a is a positive rational number, ai’s are non-negative rational
numbers, and r = 8 − d. We may assume that a1 > a2 > · · · > ar. Let φ1 : S → Z be the
birational morphism obtained by contracting the disjoint (−1)-curves E1, . . . , Er.

Case 1. ar 6= 0 and Z ∼= F1.

There is a (−1)-curve E on S whose image by φ1 is the unique (−1)-curve on Z. Let ψ :
Z → P2 be the birational morphism given by contracting E. Put σ = φ1 ◦ φ. Denote the points
σ(Ei) by Pi, i = 1, · · · , r , the point σ(E) by P , and the line σ(B) by M . Note that the line M
passes through the point P .

Let C be the conic passing the five points P1, · · · , Pr. Such a conic exists because r 6 5. Let
L be a line that passes through the point P and that is tangent to the conic C. We may assume
that the line L is different from M .
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For any rational number ε we have −KP2 ∼Q (1− ε)C + (1 + 2ε+ a)L− aM . Hence,

−KS ∼ σ∗(−KP2)−
r∑
i=1

Ei − E

∼Q (1− ε)C̃ + (1 + 2ε+ a)L̃+ 2εE − aB − ε
r∑
i=1

Ei,

where C̃ and L̃ are the proper transforms of C and L on S, respectively. Thus, we have

H ∼Q
1
µ

(
(1− ε)C̃ + (1 + 2ε+ a)L̃+ 2εE +

r∑
i=1

(ai − ε)Ei

)
.

By taking a sufficiently small positive rational number ε we obtain an H-polar cylinder on S.

Case 2. ar = 0 or ar 6= 0, Z ∼= P1 × P1.

Let Ēr be the other (−1)-curve in the fiber of φ contained the (−1)-curve Er.
In case where ar = 0, by contracting Ēr instead of Er, we may assume that Z ∼= P1×P1. Let

E be the (−1)-curve, in the fiber of φ containing Er, that is contracted by φ1. The curve E is
either Er or Ēr.

Denote the points φ1(Ei) by Pi, i = 1, · · · , r− 1 , the point φ1(E) by P , and the curve φ1(B)
by M . The curve M is a curve of type (0, 1) or (1, 0) on P1 × P1. We may assume that it is of
type (0, 1).

There is a unique curve C of type (1, 2) passing through the points P, P1, · · · , Pr−1. There is
a curve L of type (1, 0) that is tangent to C. Let Q be the point at which L meets C and let N
be the curve of type (0, 1) passing through the point Q.

For an arbitrary rational number ε we have −KP1×P1 ∼Q (1+ε)C+(1−ε)L+(a−2ε)N−aM .
Hence,

−KS ∼ φ∗1(−KP1×P1)− E −
r−1∑
i=1

Ei

∼Q (1 + ε)C̃ + (1− ε)L̃+ (a− 2ε)Ñ − aB + εE +
r−1∑
i=1

εEi,

where C̃, L̃, and Ñ are the proper transforms of C, L, N on S, respectively. Thus, we have

H ∼Q
1
µ

(
(1 + ε)C̃ + (1− ε)L̃+ (a− 2ε)Ñ + εE +

r−1∑
i=1

(ai + ε)Ei,
)
.

By taking a sufficiently small positive rational number ε we obtain an H-polar cylinder on S �

Exercise 6.14. This follows from the solution to Exercise 6.13. We just need to use Exercise 5.3
instead of Exercise 5.4. �

Exercise 6.15. Use Exercise 5.3 and its proof. The set Ampcyl(S) is disjoined from AmpB0 (S)
Exercise 5.3. Let us show that Ampcyl(S) is disjoint from AmpB1 (S). To do this, let E be a (−1)-
curve on S. For a positive rational number a the surface S does not contain any (−KS+aE)-polar
cylinder. Suppose that there exists an effective Q-divisor D such that D ∼Q −KS + aE and
S \ Supp(D) is a cylinder.
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Let f : S → S̄ be the contraction of the curve E. Put D̄ = f(D). Then S̄ is a smooth del Pezzo
surface of degree d + 1 6 3. Moreover, we have D̄ ∼Q −KS̄ . This implies that E 6⊂ Supp(D).
Indeed, if E ⊂ Supp(D), then

S̄ \ Supp(D̄) ∼= S \ Supp(D) ∼= Z × A1,

which implies that S̄ \ Supp(D̄) is a (−KS̄)-polar cylinder on S̄. This contradicts Theorem ??.
Since

1− a = (−KS + aE) · E = D · E > 0,
we see that a 6 1. Note that the divisor D is nef and big.

Put D =
∑n
i=1 aiDi, where D1, . . . , Dn are irreducible curves, and a1, . . . , an are positive

rational numbers. None of the the curves D1, . . . , Dn is contracted by the morphism f and
n∑
i=1

aif(Di) = D̄ ∼Q −KS̄ .

Therefore, we have ai 6 1 for each i = 1, . . . , n by Exercise 3.4, and hence it follows from
Exercise 6.9 that there exists a point P on S such that for every effective Q-divisor B on the
surface S such that KS + B is pseudo-effective and Supp(B) ⊂ Supp(D), the log pair (S,B) is
not log canonical at P . In particular, we see that (S,D) is not log canonical at the point P .

The inequality
1 > 1− a = (−KS + aE) · E = D · E > multP (D)multP (E)

and Exercise 2.4 show that P lies outside of E. Therefore, (S̄, D̄) is not log canonical at the
point f(P ).

Let T̄ be the unique divisor in | − KS̄ | that is singular at f(P ). Denote by T its proper
transform on the surface S. Since D̄ ∼Q −KS̄ and (S̄, D̄) is not log canonical at the point f(P ),
it follows from Exercise 3.4 that (S̄, T̄ ) is not log canonical at f(P ) and Supp(T̄ ) ⊂ Supp(D̄).
Hence, Supp(T ) ⊂ Supp(D).

For every non-negative rational number µ, put Dµ = (1+µ)D−µT and D̄µ = (1+µ)D̄−µT̄ .
Since −KS̄ · T̄ = K2

S̄
6 3, the divisor T consists of at most 3 irreducible components. Therefore,

D 6= T because the divisor D has at least 8 component by Exercise 3.5. Put

ν = sup
{
µ ∈ R>0

∣∣∣ Dµ is effective
}
.

Then Supp(T ) 6⊂ Supp(Dν) and Supp(T̄ ) 6⊂ Supp(D̄ν). In particular, we have ν > 0 since
Supp(T ) ⊂ Supp(D).

We have D̄µ ∼Q D̄ ∼Q T̄ ∼Q −KS̄ for each rational number µ. This implies that
Dµ ∼Q −KS + aµE

for some rational number aµ. Note that aµ is either linear or constant in µ.
Suppose that aν > 0. Then KS + Dν is pseudo-effective. Therefore, the log pair (S,Dν) is

not log canonical at the point P by Exercise 6.9. Then (S̄, D̄ν) is not log canonical at f(P ).
The latter contradicts Exercise 5.9 because Supp(T̄ ) 6⊂ Supp(D̄ν) by the choice of ν.

Suppose that aν < 0. Since a0 = a > 0, there exists a positive rational number λ ∈ (0, ν)
such that aλ = 0. It follows from λ < ν that Supp(T ) ⊂ Supp(Dλ) and Supp(Dλ) = Supp(D).
Therefore,

S \ Supp(Dλ) ∼= S \ Supp(D) ∼= Z × A1

is a cylinder. However, this contradicts Exercise 5.3, because aλ = 0, i.e., Dλ ∼Q −KS . �

Exercise 6.16. Use the solution to Exercise 6.13. �
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Exercise 6.17. Use Exercise 6.15 together with Exercise 5.3 and its proof. The set Ampcyl(S)
is disjoined from AmpB0 (S) Exercise 5.3. The solution of Exercise 6.15 implies that Ampcyl(S)
is disjoint from AmpB1 (S). Let us show that Ampcyl(S) is disjoint from AmpB2 (S). To do this,
let E and F be two disjoint (−1)-curves on S. We must show that the surface S contains no
(−KS + aE + bF )-polar cylinder for any positive rational numbers a and b. Suppose that there
exists an effective Q-divisor D such that D ∼Q −KS + aE + bF and such that S \ Supp(D) is
isomorphic a cylinder. Let us seek for a contradiction.

Let g : S → Ŝ be the contraction of the curve E. Put D̂ = g(D) and F̂ = g(F ). Then Ŝ is
a smooth del Pezzo surface of degree 2, F̂ is a (−1)-curve and D̂ ∼Q −KŜ + bF̂ . This implies
that E 6⊂ Supp(D). Indeed, if E ⊂ Supp(D), then

Ŝ \ Supp(D̂) ∼= S \ Supp(D) ∼= Z × A1

is a D̂-polar cylinder on Ŝ, which is impossible by Exercise 6.15. Since E 6⊂ Supp(D), we have

1− a = (−KS + aE + bF ) · E = D · E > 0,

which implies that a 6 1. Similarly, we see that F 6⊂ Supp(D) and b 6 1.
Write D =

∑n
i=1 aiDi, where D1, . . . , Dn are irreducible curves and a1, . . . , an are positive

rational numbers.
Let f : S → S̄ be the contraction of the curves E and F . Put D̄ = f(D). Then S̄ is a smooth

cubic surface and D̄ ∼Q −KS̄ . None of the the curves D1, . . . , Dn is contracted by the morphism
f and

n∑
i=1

aif(Di) = D̄ ∼Q −KS̄ .

Therefore, we have ai 6 1 for each i = 1, . . . , n by Exercise 3.4, and hence it follows from
Exercise 6.9 that there exists a point P on S such that for every effective Q-divisor B on the
surface S such that KS + B is pseudo-effective and Supp(B) ⊂ Supp(D), the log pair (S,B) is
not log canonical at P . In particular, we see that (S,D) is not log canonical at the point P .

We claim that P belongs to neither E nor F . Indeed, if P ∈ E, then

1 > 1− a = (−KS + aE) · E = D · E > multP (D) > 1

by Exercise 2.4. This shows that P 6∈ E. Similarly, we see that P 6∈ F . Therefore, the birational
morphism f is an isomorphism in a neighborhood of the point P , and hence the log pair (S̄, D̄)
is not log canonical at the point f(P ).

Let T̄ be the unique divisor in | − KS̄ | that is singular at f(P ). Denote by T its proper
transform on the surface S. Since D̄ ∼Q −KS̄ and (S̄, D̄) is not log canonical at the point f(P ),
it follows from Exercise 3.4 that (S̄, T̄ ) is not log canonical at f(P ) and Supp(T̄ ) ⊂ Supp(D̄).
Hence, Supp(T ) ⊂ Supp(D).

For every non-negative rational number µ, put Dµ = (1+µ)D−µT and D̄µ = (1+µ)D̄−µT̄ .
Since −KS̄ · T̄ = K2

S̄
= 3, the divisor T consists of at most 3 irreducible components. Therefore,

D 6= T because the divisor D has at least 9 component by Exercise 3.5. Put

ν = sup
{
µ ∈ R>0

∣∣∣ Dµ is effective
}
.

Then Supp(T ) 6⊂ Supp(Dν) and Supp(T̄ ) 6⊂ Supp(D̄ν). In particular, we have ν > 0 since
Supp(T ) ⊂ Supp(D).

We have D̄µ ∼Q D̄ ∼Q T̄ ∼Q −KS̄ for each rational number µ. This implies that

Dµ ∼Q −KS + aµE + bµF
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for some rational numbers aµ and bµ. From −KS +E+F ∼Q f
∗(D̄µ) = (1 +µ)f∗(D̄)−µf∗(T̄ )

and a0 = a, b0 = b we obtain
aµ =

(
multf(E)(T̄ )−multf(E)(D̄)

)
µ+ a

bµ =
(
multf(F )(T̄ )−multf(F )(D̄)

)
µ+ b.

Because multf(E)(T̄ ) > multf(E)(D̄) and multf(F )(T̄ ) > multf(F )(D̄), we have aν > 0 and bν >
0. Then KS +Dν is pseudo-effective, and hence the log pair (S,Dν) is not log canonical at the
point P by Exercise 6.9. Then (S̄, D̄ν) is not log canonical at f(P ). Since Supp(T̄ ) 6⊂ Supp(D̄ν),
this contradicts Exercise 5.9. �

Exercise 6.18. Use the solution to Exercise 6.13. �
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