
Lectures by Jean-Michel Bismut
Index theorem and the hypoelliptic Laplacian

I will explain some of the developments which took place in index theory
these last twenty years.

I will review the local index theorem for Dirac operators, including the proof
of the local families index theorem for families of Dirac operators using Quillen’s
superconnections.

I will explain the compatibility of these results to complex and algebraic ge-
ometry. In particular I will explain some of the results I proved with Berthomieu,
Gillet, Köhler, Lebeau, Soulé on Quillen metrics on determinants of direct im-
ages.

The Fourier transform aspects of index theory will be emphasized. This will
motivate the introduction of the hypoelliptic Laplacian, which is supposed to
provide a natural interpolation between the classical Laplacian and the geodesic
flow. I will show how to obtain a natural construction of the hypoelliptic Lapla-
cian in de Rham theory.

I will explain how the evaluation of semisimple orbital integrals via the
hypoelliptic Laplacian can be understood as a Riemann-Roch formula. In this
context, the Fourier transform aspect of index theory becomes dominant. Time
permitting, I will describe some applications of the hypoelliptic Laplacian in
complex geometry.
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