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Work of Ilya Piatetski-Shapiro and new ways
of constructing complex and p-adic L-functions

In June 2011 Roger Howe invited me to this conference devoted to assessing
the work of Ilya Piatetski-Shapiro, especially in the areas of autmorphic
forms and geometry.

Many thanks to the organizers for this invitation and this occasion both
to review the accomplishments of Ilya Piatetski-Shapiro and his colleagues,
and to point to productive directions to take research from here.

I new Ilya since 1973-74 during our joint participation in the seminar of
Manin and Kirillov on p-adic L-functions, and attending his informal lectures
on GL(3) in Moscow University in April-May 1975.

After many years we met again in Jerusalem in February 1998 during the
conference "p-Adic Aspects of the Theory of Automorphic Representations".

Ilya liked my construction of p-adic standard L-functions of Siegel modu-
lar forms [Pa91], and suggested to extend it to spinor L-functions, using the
restriction of an Eisenstein series to the Bessel subgroup in the generalized
Whittaker models (see Olga Taussky Todd memorial volume [PS3]). So we
started a joint work "On p-adic L-functions for GSp(4)".
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In 1998, a conference for Ilya Piatetski-Shapiro

was organized in the Fourier Institute (Grenoble, France), with participation
of A.Andrianov, G.Henniart, H.Hida, J.-P.Labesse, J.-L.Waldspurger and
others.

In IAS, we had the most intensive period of our joint work in the Fall
1999-2000.

My last meeting Ilya was on January 31, 2009 at the the Weizmann Insti-
tute home of Volodya Berkovich and his wife Lena, who is Grisha Freiman’s
daughter. Vera brought Ilya, Edith, and Edith’s mother Ida to Berkovich’s.
This very pleasant gathering also included Grisha Freiman, his wife Nina,
Steve and Mary Gelbart, Antoine Ducros, and my wife Marina, see also
[CGS], p. 1268.

That was the last party in Ilya’s life.

His favorite automorphic forms were the Eisenstein series, and the main
subject of this talk will be my new construction of meromorphic p-adic fam-

ilies of Siegel-Eisenstein series in relation to the geometry of homogeneuos

spaces, both complex and p-adic, for any prime p.
I am glad that this construction fits into the particular subject "Auto-

morphic Forms and Related Geometry" of our conference.

p-adic Siegel-Eisenstein series and related geometry

Let us consider the symplectic group Γ = Spm(Z) (of (2m × 2m)-matrices),
and prove that the Fourier coefficients ah(k) of the original Siegel-Eisenstein

series Em
k admit an explicit p-adic meromorphic interpolation on k where

h runs through all positive definite half integral matricies for det(2h) not
divisible by p, where

Em
k (z) =

∑

(c,d)/∼

det(cz + d)−k =
∑

γ∈P\Γ

det(cz + d)−k

=
∑

h∈Bm

ah exp(tr(hz))

on the Siegel upper half plane Hm = {z = tz ∈Mm(C)|Im(z) > 0} of degree
m, (c, d) runs over equivalence classes of all coprime symmetric couples,

2



γ =

(
a b
c d

)
runs over equivalence classes of Γ modulo the Siegel parabolic

P =

(
∗ ∗
0 ∗

)
.

p-adic Siegel-Eisenstein series and related geometry

The homogeneuos space X = {(c, d)/ ∼} = P\Spm and its p-adic points

admit Siegel’s coordinates

ν = det(c) and R = c−1d

defined on the main subset given by det(c) ∈ GL1, which is used in the
construction.

I try also to present various applications: to p-adic L-functions, to Siegel’s

Mass Formula, to p-adic analytic families of automorphic representations.

Eisenstein series are basic automorphic forms, and there exist several
ways to construct them via group theory, lattice theory, Galois representa-
tions, spectral theory...

For me, the Eisenstein series is the main tool of analytic constructions
of complex and p-adic L-functions, in particular via the doubling method,
see [PSR], [GRPS], [Boe85], [Shi95], [Boe-Schm],. . . , greatly thanks to Ilya
Piatetski-Shapiro and his collaborators.

General strategy

For any Dirichlet character χ mod pv consider Shimura’s "involuted" Siegel-
Eisenstein series assuming their absolute convergence (i.e. k > m+ 1):

E∗
k(χ, z) =

∑

(c,d)/∼

χ(det(c)) det(cz + d)−k =
∑

0<h∈Bm

ah(k, χ)q
h.

The two sides of the equality produce dual approaches: geometric and al-

gebraic. The Fourier coefficients can be computed by Siegel’s method (see
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[St81], [Shi95], . . . ) via the singular series

ah(E
∗
k(χ, z)) (1)

=
(−2πi)mk

2
m(m−1)

2 Γm(k)

∑

R mod 1

χ(ν(R))ν(R)−k det hk−
m+1

2 em(hR)

The orthogonality relations mod pv produce two families of distributions (no-
tice that terms in the RHS are invariant under sign changes, and (3) is
algebraic after multiplying by the factor in (1)):

1

ϕ(pv)

∑

χ mod pv

χ̄(b)
∑

(c,d)/∼

χ(det(c))

det(cz + d)k
=

∑

(c,d)/∼
det(c)≡b mod pv

sgn(det(c))k

det(cz + d)k
(2)

1

ϕ(pv)

∑

χ mod pv

χ̄(b)
∑

R mod 1

χ(ν(R))em(hR)

ν(R)k
=

∑

R mod 1
ν(R)≡b mod pv

em(hR)sgnν(R)k

ν(R)k
(3)

The use of Iwasawa theory and pseudomeasures

We express the integrals of Dirichlet characters θ mod p along the distributions (3)
through the reciprocal of a product of L-functions, and elementary integral factors.
The result turns out to be an Iwasawa function of the variable t = (1 + p)k − 1
divided by a distinguished polynomial provided that deth is not divisible by p.

Thus the second family (3) comes from a unique pseudomeasure µ∗
h which be-

comes a measure after multiplication by an explicit polynomial factor (in the sense
of the convolution product).

Then we deduce that (2) determines a unique pseudomeasure with coefficients
in Q[[qBm ]] whose moments are given by those of the coefficients (3) (after removing
from the Fourier expansion f(z) =

∑
h≥0 ahem(hz) all h with deth divisible by p):

∑

h>0,p6 |deth
ahq

h = p−m(m+1)/2
∑

h0 mod p

p 6 |det h0

∑

x∈S mod p

em(−h0x/p)f(z + (x/p)).

In this way a p-adic family of Siegel-Eisenstein series is geometrically produced.

Contents

1 Complex and p-adic L-functions 5

2 p-adic meromorphic continuation of the Siegel-Eisenstein series 6
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3 Pseudomeasures and their Mellin transform 15

4 Application to Minkowski-Siegel Mass constants 18

5 Link to Shahidi’s method for SL(2) and regular prime p 20

6 Doubling method and Ikeda’s constructions 22

A Appendix. On p-adic L-functions for GSp(4) 23
A.0 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.1 Complex analytic L-functions for GSp(4). . . . . . . . . . . . . . . . 24
A.2 Initial idea of a p-adic construction. . . . . . . . . . . . . . . . . . . 26
A.3 Λ-adic modular forms. . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.4 p-adic L-functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.5 p-adic families of automorphic representations. . . . . . . . . . . . . 31

1 Complex and p-adic L-functions

Generalities about p-adic L-functions

There exist two kinds of L-functions

• Complex-analytic L-functions (Euler products)

• p-adic L-functions (Mellin transforms Lµ of p-adic measures)

Both are used in order to obtain a number (L-value) from an automorphic form.
Usually such a number is algebraic (after normalization) via the embeddings

Q →֒ C, Q →֒ Cp = Q̂p.

How to define and to compute p-adic L-functions? We use Mellin transform of a
Zp-valued distribution µ on a profinite group

Y = lim
←
i

Yi, µ ∈ Distr(Y,Zp) = Zp[[Y ]] = lim
←
i

Zp[Yi] =: ΛY

(the Iwasawa algebra of Y ).

Lµ(x) =

∫

Y

x(y)dµ, x ∈ XY = Homcont(Y,C
∗
p)

(the Mellin transform of µ on Y ).
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Examples of p-adic measures and L-functions

• Y = Zp, XY = {χt : y 7→ (1 + t)y}. The Mellin transform

Lµ(χt) =

∫

Zp

(1 + t)ydµ(y)

of any measure µ on Zp is given by the Amice transform, which is the following
power series

Aµ(t) =
∑

n≥0

tn
∫

Zp

(
y

n

)
dµ(y) =

∫

Zp

(1 + t)ydµ(y),

e.g. Aδm = (1 + t)m. Thus, Distr(Zp,Zp) ∼= Zp[[T ]].

• Y = Z∗
p = ∆× Γ = {y = δ(1 + p)z, δp−1 = 1, z ∈ Zp}

XZ∗p
= {θχ(t) | θ mod p, χ(t)(χ(t)) = (1 + t)z, where

∆ is the subgroup of roots of unity, Γ = 1 + pZp.
The p-adic Mellin transform Lµ(θχ(t)) =

∫
Z∗p
θ(δ)(1 + t)zµ(y) of a measure µ

on Z∗
p is given by the collection of Iwasawa series Gθ,µ(t) =

∑

n≥0

an,θt
n, where

(1 + t)z =
∑

n≥0

(
z

n

)
tn,

an,θ =
∑

δ mod p, n≥0

θ(δ)tn ·
∫

Zp

(
z

n

)
µ(δ(1 + p)z).

• A general idea is to construct p-adic L-functions directly from Fourier coef-
ficients of modular forms (or from the Whittaker functions of automorphic
forms).

2 p-adic meromorphic continuation of the Siegel-
Eisenstein series

Mazur’s p-adic integral

For any choice of a natural number c ≥ 1 not divisible by p, there exists a p-adic
measure µc on Z∗

p, such that the special values

ζ(1 − k)(1− pk−1) =

∫
Z∗p
yk−1dµc

1− ck
∈ Q (k ≥ 2 even ),

produce the Kubota-Leopoldt p-adic zeta-function ζp : Xp → Cp (whereXp = XZ∗p
=

Homcont(Z
∗
p,C

∗
p)) as the p-adic Mellin transform

ζp(x) =

∫
Z∗p
x(y)dµc(y)

1− cx(c)
=

Lµc(x)

1− cx(c)
,
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with a single simple pole at x = x−1
p ∈ X , where Cp = Q̂p the Tate field, the

completion of an algebraic closure of the p-adic field Qp, x ∈ Xp (a Cp-analytic Lie
group), xp(y) = y ∈ Xp, and x(y) = χ(y)yk−1 as above.

Explicitly: Mazur’s measure is given by

µc(a+ pvZp) =
1

c

[
ca

pv

]
+

1− c

2c
=

1

c
B1({

ca

pv
})−B1(

a

pv
), B1(x) = x− 1

2
,

see [LangMF], Ch.XIII.

Meromorphic p-adic continuation of 1
ζ(1−k)(1−pk−1)

For any odd prime p take the Iwasawa series Gθ,c(t) of Mazur’s measure µc where

θ is a character modp, Gθ,c(t) :=
∫

Z∗p

θ(y)χ(t)(〈y〉)µc =
∞∑

n=0

ant
n ∈ Zp[[t]], and

χ(t) : (1+p)
z 7→ (1+t)z, 〈y〉 = y

ω(y)
, ω the Teichmüller character. Mazur’s integral

of the character yk−1 = ωk−1 · χ(t) shows that θ = ωk−1, (1 + t) = (1 + p)k−1

ζ(1 − k)(1− pk−1) =
Gθ,c((1 + p)k−1 − 1)

1− ck
. (4)

By the Weierstrass preparation theorem we have a decomposition

Gθ,c(t) = Uθ,c(t)Pθ,c(t)

with a distinguished polynomial Pθ,c(t) and invertible power series Uθ,c(t). The
inversion of (4) for any even k ≥ 2 gives :

1

ζ(1 − k)(1− pk−1)
= Gθ,c((1 + p)k−1 − 1)−1(1− ck).

The answer: for any prime p > 2 and even k ≥ 2

is the following Iwasawa function on t = tk = (1+p)k−1 divided by a distingushed
polynomial:

1

ζ(1− k)(1 − pk−1)
=
U∗
θ,c((1 + p)k−1 − 1)(1− ck)

Pθ,c((1 + p)k−1 − 1)
(5)

=
U∗
θ,c((1 + tk)(1 + p)−1 − 1)(1− ck)

Pθ,c((1 + tk)(1 + p)−1 − 1)

which is meromorphic in the unit disc of the variable t = (1 + p)k − 1 with a finite
number of poles (expressed via roots of Pθ,c) for θ = ωk−1, and

U∗
θ,c((1 + p)k−1 − 1) := 1/Uθ,c((1 + p)k−1 − 1).
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The above formula immediately extends to all Dirichlet L-functions of charac-
ters χ mod pv as the following Iwasawa function divided by a polynomial:

1

L(1− k, χ)(1− χ(p)pk−1)
=
U∗
θ,c(χ(1 + p)(1 + p)k−1 − 1)(1− χ(c)ck)

Pθ,c(χ(1 + p)(1 + p)k−1 − 1)

where U∗
θ,c(χ(1 + p)(1 + p)k−1 − 1) := 1

Uθ,c(χ(1 + p)(1 + p)k−1 − 1)

Illustration: numerical values of ζ(1−2k)−1(1−p2k−1)−1 for p = 37

gp >zetap1(p,n)= -2*n/(bernfrac(2*n)*(1-pˆ(2*n-1)+O(pˆ5)));

gp > p=37;
gp > for(k=1,(p-1)/2, print(2*k, zetap1(p,k)))
2k ζ(1 − 2k)−1(1− p2k−1)−1

2 25 + 24 ∗ 37 + 24 ∗ 372 + 24 ∗ 373 + 24 ∗ 374 +O(375)
4 9 + 3 ∗ 37 + 9 ∗ 373 + 3 ∗ 374 +O(375)
6 7 + 30 ∗ 37 + 36 ∗ 372 + 36 ∗ 373 + 36 ∗ 374 +O(375)
8 18 + 6 ∗ 37 +O(375)
10 16 + 33 ∗ 37 + 36 ∗ 372 + 36 ∗ 373 + 36 ∗ 374 +O(375)
12 8 + 25 ∗ 37 + 28 ∗ 372 + 23 ∗ 373 +O(375)
14 25 + 36 ∗ 37 + 36 ∗ 372 + 36 ∗ 373 + 36 ∗ 374 +O(375)
16 6 + 16 ∗ 37 + 31 ∗ 372 + 29 ∗ 373 + 20 ∗ 374 +O(375)
18 3 + 4 ∗ 37 + 10 ∗ 372 + 32 ∗ 373 + 25 ∗ 374 +O(375)
20 11 + 13 ∗ 37 + 19 ∗ 372 + 36 ∗ 373 + 12 ∗ 374 +O(375)
22 1 + 26 ∗ 37 + 15 ∗ 372 + 35 ∗ 373 + 9 ∗ 374 +O(375)
24 16 + 28 ∗ 37 + 24 ∗ 372 + 27 ∗ 373 + 31 ∗ 374 +O(375)
26 4 + 17 ∗ 37 + 25 ∗ 372 + 25 ∗ 373 + 19 ∗ 374 +O(375)
28 22 + 36 ∗ 37 + 8 ∗ 372 + 4 ∗ 373 + 33 ∗ 374 +O(375)
30 22 + 5 ∗ 37 + 35 ∗ 372 + 9 ∗ 373 + 5 ∗ 374 +O(375)
32 36 ∗ 37−1 + 28 + 3 ∗ 37 + 19 ∗ 372 + 18 ∗ 373 + O(374)
34 20 + 37 + 30 ∗ 372 + 15 ∗ 373 + 22 ∗ 374 +O(375)

36 36 ∗ 37 + 29 ∗ 372 + 35 ∗ 373 + 5 ∗ 374 + 375 +O(376)

Fourier expansion of the Siegel-Eisenstein series

has the form
Emk (z) =

∑

γ∈P\Γ
det(cz + d)−k =

∑

h∈Bm

ahq
h,

where ah = ah(k) = ah(E
m
k ), qh = e2πitr(hz), h runs over semi-definite half integral

m×m matrices.
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The rationality of the coefficients ah was established in Siegel’s pioneer work
[Si35] in connection with a study of local densities for quadratic forms. Siegel
expressed ah(k) as a product of local factors over all primes and ∞.

In a difficult later work [Si64b] Siegel proved the boundedness of their denom-
inators, and S.Boecherer [Boe84] gave a simplified proof of a more precise result
in 1984. M.Harris extended the rationality to wide classes of Eisenstein series on
Shimura varieties [Ha81], [Ha84]. Their relation to the Iwasawa Main Conjecture
and p-adic L-functions on the unitary groups was established in [HLiSk].

Explicit p-adic continuation of ah(k)

as Iwasawa functions on t = (1 + p)k − 1 divided by distinguished polynomials. Let

a
(p)
h (k) denote the p-regular part of the coefficient ah(k) (i.e. with the Euler p-factor

removed from the product). Namely, for any even k, a(p)h (k) = ah(E
m
k ) times





1/((1− pk−1)(1 + ψh(p)p
k−m

2 −1)
∏(m/2)−1
i=1 (1− p2k−2i−1))

= (1− ψh(p)p
k−m

2 −1)/((1− pk−1)
∏m/2
i=1 (1 − p2k−2i−1)), m even

1/((1− pk−1)
∏(m−1)/2
i=1 (1− p2k−2i−1)), m odd,

where the p-correcting factor is a p-adic unit, and ψh(n) :=

(
det(2h)(−1)m/2

n

)
.

Main Theorem 2.1 (A.P., 2012) Let h be any positive definite half integral ma-
trix with det(2h) not divisible by p. Then there exist explicitly given distinguished
polynomials PEθ,h(T ) ∈ Zp[T ] and Iwasawa series SEθ,h(T ) ∈ Zp[[T ]] such that the

p-regular part a(p)h (k) of the Fourier coefficient ah(k) admit the following p-adic
meromorphic interpolation on all even k with θ = ωk fixed

a
(p)
h (k) =

SEθ,h((1 + p)k−1 − 1)

PEθ,h((1 + p)k−1 − 1)

with a finite number of poles expressed via the roots of PEθ,h(T ) where the denomi-
nator depends only on det(2h) mod 4p and k mod p− 1.

Computation of the Fourier coefficients

Recall that Siegel’s computation of the coefficients ah = ah(E
m
k ) :

Emk (z) =
∑

γ∈P\Γ
det(cz + d)−k =

∑

h∈Bm

ahq
h

is based on the Poisson summation formula giving the equality (see [Maa71], p.304):

∑

a∈Sm

det(z + a)−k =
(−2πi)mk

2
m(m−1)

2 Γm(k)

∑

h∈Cm

det(h)k−
m+1

2 e2πitr(hz),
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where Γm(k) = πm(m−1)/4
∏m−1
j=0 Γ(s− j

2 ), q
h = e2πitr(hz), h runs over the set Cm

of positive definite half integral m×m symmetric matrices, and a runs over the set
Sm of integral m×m symmetric matrices, see [Si39], p.652, [St81], p.338.

Formulas for the Fourier coefficients for det(2h) 6= 0

ah(E
m
k ) =

(−2πi)mkΓ−1
m (k)

ζ(k)
∏[m/2]
i=1 ζ(2k − 2i)

× det(2h)k−
m+1

2 Mh(k)

{
L(k − m

2
, ψh), m even,

1, m odd.

The integral factor Mh(k) =
∏

ℓ∈P (h)

Mℓ(h, ℓ
−k) is a finite Euler product, extended

over primes ℓ in the set P (h) of prime divisors of all elementary divisors of the
matrix h. The important property of the product is that for each ℓ we have that
Mℓ(h, t) ∈ Z[t] is a polynomial with integral coefficients.

Notice the L-factor L(k − m
2 , ψh) depends on the index h of the Fourier coeffi-

cient; this makes a difference to the case of odd m; the case of GL(2) corresponds
to m = 1.

Proof: the use of the normalized Siegel-Eisenstein series

defined as in [Ike01], [PaSE] and [PaLNM1990] by

E
m
k = Emk (z)2m/2ζ(1 − k)

[m/2]∏

i=1

ζ(1 − 2k + 2i),

I show that it produces a nice p-adic family, namely:

Proposition 2.2

(1) For any non-degenerate matrice h ∈ Cm the following equality holds

ah(E
m
k ) = 2−

m
2 dethk−

m+1
2 Mh(k) (6)

×
{
L(1− k + m

2 , ψh)C
m
2 −k+(1/2)

h , m even,

1, m odd,

where Ch is the conductor of ψh.

(2) for any prime p > 2, and det(2h) not divisible by p, define the p-regular
part ah(Emk )(p) of the coefficient ah(Emk ) of E

m
k by introducing the factor{

(1 − ψh(p)p
k−m

2 −1)C
m
2 −k+(1/2)

h , m even,

1, m odd.

Then ah(E
m
k )(p) is a p-adic analytic Iwasawa function of t = (1+ p)k − 1 for

all k with ωk fixed, and divided by the elementary factor 1− ψh(ch)c
k−m

2

h .

10



Proof of (1) of Proposition 2.2

Proof of (1) is deduced like at p.653 of [Ike01] from the Gauss duplication formula

Γ(
s

2
)Γ(

s+ 1

2
) = 21−s

√
πΓ(s),

the definition

Γm(k) = πm(m−1)/4
m−1∏

j=0

Γ(s− j

2
)

and the functional equations

ζ(1 − k) =
2(k − 1)!

(−2πi)k
ζ(k),

ζ(1 − 2k + 2i) =
2(2k − 2i− 1)!

(−2πi)2k−2i
ζ(2k − 2i),

L(1− k +
m

2
, ψh) =

2(k − m
2 − 1)!

(−2πi)k−
m
2
L(k − m

2
, ψh)C

k−m
2 − 1

2

h

Proof of (2) of Proposition 2.2

is then deduced easily :
Notice that for any a ∈ Z∗

p, the function of t = (1 + p)k − 1

k 7→ ak = ω(a)k〈a〉k = ω(a)k(1 + p)k
log〈a〉

log(1+p) (7)

= ω(a)k(((1 + p)k − 1) + 1)
log〈a〉

log(1+p)

= ω(a)k
∞∑

n=0

( log〈a〉
log(1+p)

n

)
tn

is a p-adic analytic Iwasawa function denoted by ã(t) ∈ Zp[[t]], of t = (1 + p)k − 1

with ωk fixed, where
(
x
n

)
=x(x−1)···(x−n+1)

n! .
Then Mazur’s formula applied to L(1 − k + m

2 , ψh)(1 − ψh(p)p
k−m

2 −1) shows
that this function is a p-adic analytic Iwasawa function of t = (1 + p)k − 1 with ωk

fixed (a single simple pole may occur at k = m
2 only if ωk−

m
2 is trivial).

Proof of Main Theorem 2.1

Let us use the equality

Emk = E
m
k (z) · 2−m/2

ζ(1 − k)
∏[m/2]
i=1 ζ(1 − 2k + 2i)

and the properties of the normalized series Enk (z) in Proposition 2.2.
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First let us compute the reciprocal of the product of L-functions

ζ(1− k)

[m/2]∏

i=1

ζ(1 − 2k + 2i)

using the above: for even k ≥ 2,

ζ(1 − k)−1(1− pk−1)−1 =
U∗
θk,c

((1 + p)k−1 − 1)(1− ck)

Pθk,c((1 + p)k−1 − 1)
(8)

ζ(1 − 2k + 2i)−1(1− p2k−2i−1)−1

=
U∗
θ2k−2i,c

((1 + p)2k−2i−1 − 1)(1− c2k−2i)

Pθ2k−2i,c((1 + p)2k−2i−1 − 1)
(9)

which is meromorphic in the unit disc with a finite number of poles (expressed via
roots of Pθ) for θk = ωk−1.

Let us use again the notation 1 + t = (1 + p)k with k ∈ Zp.

2−m/2

ζ(1 − k)(1 − pk−1)
∏[m/2]
i=1 ζ(1 − 2k + 2i)(1− p2k−2i−1)

=
UEωk(t)

PE
ωk(t)

(10)

where the numerator is (an Iwasawa function) UEωk(t) =

U∗
θk,c(

1 + t

1 + p
− 1)(1− ck)

[m/2]∏

i=1

U∗
θ2k−2i,c(

(1 + t)2

(1 + p)2i+1
− 1)(1− c2k−2i),

and

PEωk(t) = Pθ,c

(
1 + t

1 + p
− 1

) [m/2]∏

i=1

Pθ2k−2i,c

(
(1 + t)2

(1 + p)2i+1
− 1

)

is the polynomial denominator which depends only on k mod p− 1.

Proof of Main Theorem 2.1: control over the conductor of ψh

Moreover, Mazur’s formula applied to L(1− k + m
2 , ψh)(1− ψh(p)p

k−m
2 −1) (in the

numerator) shows that for all h with det(2h) not divisible by p,

L(1− k +
m

2
, ψh)(1− ψh(p)

k−m
2 −1) (11)

=
Gθ,h((1 + p)k−

m
2 −1 − 1)

1− ψh(ch)c
k−m

2

h

12



which is meromorphic in the unit disc with a possible single simple pole at k = m
2

for all k with θ = ωk−1. It comes from Mazur’s measure on the finite product∏

ℓ∈Ph

Z∗
ℓ extended over primes ℓ in the set Ph = P (h) ∪ {p}; recall that P (h) is the

set of prime divisors of all elementary divisors of the matrix h as above.
Indeed, for any choice of a natural number ch > 1 coprime to

∏
ℓ∈Ph

ℓ, there
exists a p-adic measure µch,h on Z∗

p, such that the special values

L(1− k +
m

2
, ψh)(1− ψh(p)p

k−1−m
2 ) =

∫
Z∗p
yk−

m
2 −1dµch,h

1− ψh(ch)c
k−m

2

h

:= (1− ψh(ch)c
k−m

2

h )−1

∫
∏

ℓ∈Ph
Z∗ℓ

ψh(y)y
k−m

2 −1
p dµch ,

where Mazur’s measure µch extends on the product
∏

ℓ∈Ph

Z∗
ℓ

yp−→Z∗
p (see §3,Ch.XIII

of [LangMF]):

µch(a+ (N)) =
1

ch

[ cha
N

]
+

1− ch
2ch

=
1

ch
B1({

cha

N
})−B1(

a

N
)

for any natural number N with all prime divisors in Ph.
The regularizing factor is the following Iwasawa function which depends on

ch mod 4p and k mod p− 1:

1− ψh(ch)c
k−m

2

h = 1− (ψhω
k−m

2 )((
(1 + p)k

(1 + p)
m
2
− 1) + 1)

log〈ch〉

log(1+p) (12)

= 1− (ψhω
k−m

2 )(ch)

∞∑

n=0

( log〈ch〉
log(1+p)

n

)
((

(1 + p)k

(1 + p)
m
2
− 1)n

= 1− (ψhω
k−m

2 )(ch)

∞∑

n=0

( log〈ch〉
log(1+p)

n

)
(

(1 + t)

(1 + p)
m
2
− 1)n ∈ Zp[[t]],

where we write ch in place of ip(ch) and use the notation 1 + t = (1 + p)k. The
function (12) is divisible by t or invertible in Zp[[t]] according as ωk−

m
2 ψch is trivial

or not because t = 0 ⇐⇒ k = 0 and 1 + t = (1 + p)k.

Elementary factors

Notation:

uch(t) =

{
(1− ψh(ch)c̃h(t))/t, if ωk−

m
2 ψh is trivial,

1− ψh(ch)c̃h(t), otherwise.

13



By (12) we have that uch(t) ∈ Zp[[t]]
∗, and we denote by u∗ch(t) its inverse. Moreover,

(6) gives the elementary factor

Mh((1 + p)k − 1) = 2−
m
2 dethk−

m+1
2

∏

ℓ|P (h)

M(h, ℓ−k)C
k−m+1

2

h

which is also an Iwasawa function as above:

Mh((1 + p)k − 1) = Mh(t) ∈ Zp[[t]].

Proof of Main Theorem 2.1: the numerator

It follows that

a
(p)
h (k) =

SEθ,h((1 + p)k − 1)

PEθ,h((1 + p)k − 1)
=
SEθ,h(t)

PEθ,h(t)
,

where

SEθ,h = u∗ch((1 + p)k − 1)M((1 + p)k − 1)

× Uθ,h((1 + p)k−
m
2 −1 − 1)(1− ckh)U

∗
θk,c

((1 + p)k−1 − 1)

×
[m/2]∏

i=1

U∗
θ2k−2i,c

((1 + p)2k−2i−1 − 1)(1− c2k−2i
h )

= u∗ch(t)M(t)Uθ,h((1 + t)(1 + p)−
m
2 −1 − 1)

× (1− c̃h(t))U
∗
θk,ch((1 + t)(1 + p)−1 − 1)

×
[m/2]∏

i=1

U∗
θ2k−2i,ch((1 + t)2(1 + p)−2i−1 − 1)(1− c̃2h(t)c

−2i
h ),

Proof of Main Theorem (end)

The denominator is the following distinguished polynomial

PEθ,h((1 + p)k−1 − 1) = (1 + ((1 + p)k−1 − 2)δ(ωk−
m
2 ψch))

× Pθk,ch((1 + p)k−1 − 1)

[m/2]∏

i=1

Pθ2k−2i,ch((1 + p)2k−2i−1 − 1)

= (1 + (t− 1)δ(ωk−
m
2 ψch))Pθk,ch((1 + t)(1 + p)−1 − 1)

×
[m/2]∏

i=1

Pθ2k−2i,c((1 + t)2(1 + p)−2i−1 − 1), where

14



δ(ωk−
m
2 ψch) =

{
1, if ωk−

m
2 ψch is trivial,

0, otherwise,
so that

1 + (t− 1)δ(ωk−
m
2 ψch) =

{
t, if ωk−

m
2 ψch is trivial,

1, otherwise.
.

It remains to notice that different choices of ch coprime to p det(2h) give the same
polynomial factors PEθ,h (up to invertible Iwasawa function). Indeed they all give
the same single simple zero.

3 Pseudomeasures and their Mellin transform

Interpretation: Mellin transform of a pseudomeasure

Pseudomeasures were introduced by J.Coates [Co] as elements of the fraction field
L of the Iwasawa algebra. Such a pseudomeasure is defined by its Mellin transform
which is a ring homomorphism and we can extend it by universality (the extension
of the integral along measures in Λ = Zp[[T ]] to the whole fraction field L).

The p-adic meromorphic function

a
(p)
h (k) =

SEθ,h((1 + p)k − 1)

PEθ ((1 + p)k − 1)
=
SEθ,h(t)

PEθ (t)
,

is attached to an explicit pseudo-measure:

ρEh =
µEh
νEh

,
SEθ,h(t)

PEθ (t)
=

∫
Z∗p
θχ(t)µh

∫
Z∗p
θχ(t)νh

• S(x) =
∫
Z∗p
xµEh is given by the collection of Iwasawa functions Sθ(t) =

∫
Z∗p
θχ(t)µ

E
h (the numerator),

• P(x) =
∫
Z∗p
xνEh is given by the collection of polynomials Pθ(t) =

∫
Z∗p
θχ(t)ν

E
h

(the denominator).

Pseudomeasure ρ as a family of distributions

A pseudomeasure ρ can be described as a certain family of distributions, parametrized
by the set Xp of p-adic characters.

For any x ∈ Xp we have a distribution given by the formula

ρEh,x(a+ (pv)) =
1

ϕ(pv)

∑

χ mod pv

′χ(a)−1 S
E(χx)

PE(χx)

15



where ′ means that the terms with P(χx) = 0 are omited. It follows that

∫

Z∗p

χρEh,x =





SE(χx)

PE(χx)
, if PE(χx) 6= 0

0, otherwise,

where

S
E
h (χx) = SE(χx)∆,h(χx(1 + p)− 1) = SEθ,h((1 + p)t − 1),

θ = (χx)∆, (χx)(1 + p) = 1 + t,

P
E
h (χx) = PE(χx)∆,h(χx(1 + p)− 1) = PEθ,h((1 + p)t − 1).

A geometric construction: Siegel’s method and duality

For any Dirichlet character χ mod pv consider Shimura’s "involuted" Siegel-Eisenstein
series assuming their absolute convergence (i.e. k > m+ 1):

E∗
k(χ, z) =

∑

(c,d)/∼
χ(det(c)) det(cz + d)−k =

∑

h∈Bm

ah(E
∗
k(χ, z))q

h

The series on the left is geometrically defined, and the Fourier coefficients on the
right can be computed by Siegel’s method (see [St81] [Shi95], . . . ) via the singular
series

ah(E
∗
k(χ, z)) (13)

=
(−2πi)mk

2
m(m−1)

2 Γm(k)

∑

R mod 1

χ(ν(R))ν(R)−k dethk−
m+1

2 em(hR)

If χ = χ0 mod p is trivial and p 6 | deth then

ah(E
∗
k(χ0, z)) (14)

=
(−2πi)mk

2
m(m−1)

2 Γm(k)

∑

R mod 1

χ0(ν(R))ν(R)−k det hk−
m+1

2 em(hR) =

ah(E
m
k )×





(1− p−k)(1 + ψh(p)p
−k+m

2 )
∏(m/2)−1
i=1 (1− p−2k+2i), m even

(1− p−k)
∏(m−1)/2
i=1 (1 − p−2k+2i), m odd.

The formula (14) means that the series E∗
k(χ0, z) coincides with Emk after re-

moving h with deth divisible by p and normalizing by the factor in (14). More-
over, the Gauss reciprocity law shows that the normalizing factor depends only on
deth mod 4p = deth0 mod 4p, where h0 ≡ h mod 4p runs through a representa-
tive system. Let us denote this factor by C+(h0, k, 4p): for the trivial character
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χ = χ0 mod p and deth not divisible by p

ah(E
∗
k(χ0, z)) = ah(E

m
k )C+(h0, k, 4p), where (15)

C+(h0, k, 4p) =





(1− p−k)(1 + ψh(p)p
−k+m

2 )
∏(m/2)−1
i=1 (1 − p−2k+2i), m even

(1− p−k)
∏(m−1)/2
i=1 (1− p−2k+2i), m odd.

From the Fourier coefficients to modular forms:
If we remove in the Fourier expansion E

m

k
(z ) =

∑
h≥0

ahem(hz ) all terms with
deth divisible by p the equality of Fourier coefficients (15) transforms to the equality
of the series

E∗
k(χ0, z) = (4p)−m(m+1)/2

∑

h0 mod 4p

p 6 |det h0

C+(h0, k, 4p)× (16)

∑

x∈S mod 4p

em(−h0x/4p)Emk (z + (x/4p)).

A geometric construction

Let us apply the interpolation theorem (Theorem 2.1) to all the coefficients

a
(p)
h (k) = ah(E

m
k )C−(h0, k, 4p), where (17)

C−(h0, k, 4p) =





1−ψh(p)p
k−m

2
−1

(1−pk−1)
∏m/2

i=1 (1−p2k−2i−1)
, m even

1

(1−pk−1)
∏(m−1)/2

i=1 (1−p2k−2i−1)
, m odd,

and (16) becomes a "geometric-algebraic equality" of two families of modular forms

E∗
k(χ0, z) = (4p)−m(m+1)/2

∑

h0 mod 4p

p 6 |det h0

C+(h0, k, 4p)× (18)

C−(h0, k, 4p)
∑

x∈S mod 4p

em(−h0x/4p)Emk (z + (x/4p)).

A geometric construction (end)

We deduce by the orthogonality that
∑

x′∈S mod 4p

em(−h0x′/4p)E∗
k(χ0, z + (x′/4p)) = (19)

C+(h0, k, 4p)
∑

x∈S mod 4p

em(−h0x/4p)Emk (z + (x/4p)).
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Each series C−(h0, k, 4p)
∑
x∈S mod 4p em(−h0x/4p)Emk (z + (x/4p)) in (18) deter-

mines a unique pseudomeasure with coefficients in Q̄[[qBm ]] whose moments are given
by those of the coefficients (17).The unicity means that a pseudomeasure is deter-
mined by its Mellin transform. It is also a family of distributions geometrically
defined by the series

C−(h0, k, 4p)

C+(h0, k, 4p)

∑

x∈S mod 4p

em(−h0x/4p)E∗
k(χ0, z + (x/4p)).

4 Application to Minkowski-Siegel Mass constants

p-adic version of Minkowski-Siegel Mass constants.

An application of the construction is the p-adic version of Siegel’s Mass formula. It
expresses the Mass constant through the above product of L-values. This product
can be viewed as the proportionality coefficient between two kinds of Eisenstein
series in the symplectic case extending Hecke’s result (1927) of the two kinds of
Eisenstein series and the relation between them. However, there is no direct ana-
logue of Hecke’s computation in the symplectic case.

Thus this mass constant admits an explicit product expression through the
values of the functions (5) at tj = (1 + p)j − 1, for j = k, and j = 2, 4, . . . , 2k − 2.

Recall that ([ConSl98], p.409)

unimodular latticies have the property that there are explicit formu-
lae, the mass formulae, which give appropriately weighted sums of the
theta-series of all the inequivalent latticies of a given dimension. In
particular, the numbers of inequivalent latticies is given by Minkowski-
Siegel Mass constants for unimodular latticies.

In the particular case of even unimodular quadratic forms of rank m = 2k ≡
0(mod8), this formula means that there are only finitely many such forms up to
equivalence for each k and that, if we number them Q1, . . . , Qhk

, then we have the
relation

hk∑

i=1

1

wi
ΘQi(z) = mkEk

where wi is the number of automorphisms of the form ΘQi is the theta series of
Qi, Ek the normalized Eisenstein series of weight k = m/2 (with the constant term
equal to 1),

The dimension of lattices is 2k and the Mass formula express an identity of a
sum of weighted theta functions and a Siegel-Eisenstein series of weight k, multiplied
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by the Mass constant

mk = 2−kζ(1 − k)

k−1∏

i=1

ζ(1 − 2k + 2i) = (−1)k
Bk
2k

×
k−1∏

j=1

B2j

4j

which is related the above normalising coefficient.
gp > mass(4)

% = 1/696729600

gp > mass(8)

% = 691/277667181515243520000

The present result says that the p-regular part of 1/mk is a product of values
of the p-adic meromorphic functions (5) at tj = (1 + p)j − 1, j = k and j =
2, 4, . . . , 2k − 2.

It is known that the rational number mk becomes very large rapidly, when k
grows (using the functional equation). It means that the denominator of 1/mk

becomes enormous. The explicit formula (10) applied to the reciprocal of the
product of L-functions as above shows that these are only irregular primes which
contribute to the denominator, and this contribution can be evaluated for all primes
knowing the Newton polygons of the polynomial part Pθ, which can be found directly
from the Eisenstein measure. Precisely, for the distingushed polynomial P (t) =
Pθ(t) = adt

d + · · · + a0, ordpad = 0, and ordpai > 0 for 0 ≤ i ≤ d − 1, and
ordp(tj) = ordpj + 1, where tj = (1 + p)j − 1 for j = k and j = 2, 4, . . . , 2k − 2.
Then

ordpP (tj) = min
i=0,...,d

(ordpai,k + i(ordpj + 1)) .

the values ordpai,k for 0 ≤ i ≤ d come from the Iwasawa series in the denominator
in the left hand side of (10). Also, it gives an important information about the
location of zeroes of the polynomial part as in (10)). However P (tj) 6= 0 in our case
because all the L-values in question do not vanish.

Application to Minkowski-Siegel Mass constant
(numerical illustration)

for(k=1,10,print(2*k, factor(denominator(1/mass(2*k)))))

2 1

4 1

6 1

8 [691, 1]

10 [691, 1; 3617, 1; 43867, 1]

12 [131, 1; 283, 1; 593, 1; 617, 1; 691, 2; 3617, 1; 43867, 1]

14 [103, 1; 131, 1; 283, 1; 593, 1; 617, 1; 691, 1; 3617, 1; 43867, 1;

6579 31, 1; 2294797, 1]

16 [103, 1; 131, 1; 283, 1; 593, 1; 617, 1; 691, 1; 1721, 1; 3617, 2;
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9349, 1; 43867, 1; 362903, 1; 657931, 1; 2294797, 1; 1001259881, 1]

18 [37, 1; 103, 1; 131, 1; 283, 1; 593, 1; 617, 1; 683, 1; 691, 1; 1721,

1; 3617, 1; 9349, 1; 43867, 2; 362903, 1; 657931, 1; 2294797, 1; 305065927,

1; 1001259881, 1; 151628697551, 1]

20 [103, 1; 131, 1; 283, 2; 593, 1; 617, 2; 683, 1; 691, 1; 1721, 1; 3617,

1; 9349, 1; 43867, 1; 362903, 1; 657931, 1; 2294797, 1; 305065927, 1;

1001259881, 1; 151628697551, 1; 154210205991661, 1; 26315271553053477373,

1]

5 Link to Shahidi’s method for SL(2) and regular
prime p

Methods of constructing p-adic L-functions

Our long term purposes are to define and to use the p-adic L-functions in a way
similar to complex L-functions via the following methods:

(1) Tate, Godement-Jacquet;
(2) the method of Rankin-Selberg;
(3) the method of Euler subgroups of Piatetski-Shapiro and the doubling method

of Rallis-Böcherer (integral representations on a subgroup of G×G);
(4) Shimura’s method (the convolution integral with theta series), and
(5) Shahidi’s method.
There exist already advances for (1) to (4), and we are also trying to develop

(5).
We use the Eisenstein series on classical groups and p-adic integral of Shahidi’s

type for the reciprocal of a product of certain L-functions.

Link to Shahidi’s method in the case of SL(2) and regular
prime p

The starting point here is the Eisenstein series

E(s, P, f, g) =
∑

γ∈PrG

fs(γg),

on a reductive groupG and a maximal parabolic subgroup P =MUP (decomposition
of Levi).

This series generalizes

E(z, s) =
1

2

∑ ys

|cz + d|2s , (c, d) = 1.

Here fs is an appropriate function in the induced representation space I(s, π) =
IndGA

PA
(π ⊗ |detM (·)|sA)), see (I.2.5.1) at p. 34 of [GeSha].
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Computing a non-constant term (a Fourier coefficient)

of this Eisenstein series provides an analytic continuation and the functional equa-
tion for many Langlands L functions L(s, π, rj).

In this way the ψ-th Fourier coefficient (with ψ of type ψ(x) = exp(2πinx), n ∈
N, n 6= 0) of the series E(s, P, f, e) is determined by the Whittaker functions Wv in
the form (see [GeSha], (II.2.3.1), p.78):

Eψ(e, f, s) =
∏

v∈S
Wv(ev)

m∏

j=1

1

LS(1 + js, π, rj)
,

where rj are certains fundamental representations of the dual group LM .

Theorem 5.1 (a complex version) With the data G = SL(2), M = {
(
a
0

0
a−1

)
} ∼=

GL1, π = I, and ψ a non-trivial character of the group U(A)/U(Q), U = {
(
1
0
∗
1

)
} ∼=

Ga, let Eψ(s, f, e) =
∫
E(s, f, n)ψ(n)dn, the integration on the quotient space of

U(A) by U(Q). Then the first Fourier coefficient has the form

Eψ(s, f, e) =W∞(s)
1

ζ(1 + s)
,

for a certain Whittaker function W∞(s) (see [Kub], p.46).

Theorem 5.2 (a p-adic version, a work in progress) (with S.Gelbart, S.Miller,
F.Shahidi)

Let p be a regular prime. Then there exists an explicitly given distribution µ∗

on Z∗
p such that for all k ≥ 3 and for all primitive Dirichlet characters χ mod pv

with χ(−1) = (−1)k one has
∫

Z∗p

χykpµ
∗ =

1

(1− χ(p)pk−1)L(1− k, χ)
,

where L(s, χ) is the Dirichlet L-function. More precisely, the distribution µ∗ can
be expressed through the non-constant Fourier coefficients of a certain Eisenstein
series Φ∗.

Remark. Using Siegel’s method for the symplectic groupsGSpm, and for all primes
p, this result also follows from Main Theorem 2.1 by specializing it to the case of
regular p and m = 1.
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6 Doubling method and Ikeda’s constructions

Further applications: we only mention the proof of the p-adic
Miyawaki Modularity Lifting Conjecture

by pullback of families Siegel modular forms (jointly with Hisa-Aki Kawamura), see
[Kawa], [PaIsr11].

Ikeda’s constructions ([Ike01], [Ike06]) extend the doubling method to pullbacks
of cusp forms instead of pullbacks of Eisenstein series.

In the Fall 1999 in IAS, Ilya was much inspired by the preprint of the first
Ikeda’s lifting, and tried to interpret it representation-theoretically.

Indeed, it extends his own work [PS1] on Saito-Kurokawa lifting from genus 2
to arbitrary genus 2m.

In fact, there is a relation of Ikeda’s work to Arthur’s conjecture [Ar89].

In the same period, Ilya studied the preprint of [KMS2000] on p-adic Rankin-
Selberg L-functions in an informal seminar in his office in IAS together with me
and other participants: Jim Cogdell, Siegfried Böcherer, Reiner Schulze-Pillot, . . .

The use of the The Eisenstein family E
(n)
k

as above plays a crucial role in Ikeda’s work: the idea was to substitute the Satake
parameter αp(k) of a cusp form in place of the parameter k in the Siegel-Eisenstein
family.

Both p-adic and complex analytic L-functions are produced in this way.
Thus obtained cuspidal p-adic measures generalize the Eisenstein measure, and

produce families of cusp forms.
A version of this construction produces Klingen-Eisenstein series and Langlands

Eisenstein series, see [PaSE] (p-adic Peterson product of a cusp form with a pullback
of the constructed family), more recently used by Skinner-Urban [MC].

For genus two, my student P.Guerzhoy found in 1998 a p-adic version of the
holomorphic Maass-Saito-Kurokawa lifting [Gue], answering a question of E.Freitag.
P.Guerzhoy visited Ilya here in Yale in 1999.

22



A Appendix. On p-adic L-functions for GSp(4)

talk by Alexei Panchishkin on December 2, 1999, at Automorphic Forms and L-
functions Seminar in IAS.

A.0 Introduction.

The purpose of this talk is to describe a joint work in progress with I.I.Piatetski-
Shapiro started in February 1998 in Jerusalem during the conference "p-Adic As-
pects of the Theory of Automorphic Representations".

Let G be a semi-simple algebraic group over a number field F , and p ≥ 5 be a
fixed prime number. Recall that the Iwasawa albebra Λ is defined as Zp[[T ]] and
let L = QuotΛ denote its quotient field. Elements a(T ) ∈ L represent some Cp-
meromorphic functions with finite number of poles on the unit disc Up = {t ∈
Cp | |t|p < 1} ⊂ Cp where Cp = Q̂p the Tate field. We consider the following
problem: how to attach to a (complex valued) Langlands L-functions L(s, π, r) a
certain p-adic valued meromorphic L function Lπ,r,p with a finite number of poles
where π is an automorphic representation of the adelic groupG(AF ) and r is a finite
dimensional complex representation r : LG(C) → GLm(C) of the Langlands group
LG(C). The p-adic L-function Lπ,r,p should belong to L or to its finite extension.
The first example of a function of this type comes from the work of Kubota and
Leopoldt [Ku-Le] and Iwasawa [Iw]: there exists a unique element g(T ) ∈ L such
that for all positive integers k ≡ 0(mod(p− 1)), g((1 + p)k − 1) = ζ∗(1− k), where
ζ∗(s) = (1 − p−s)ζ(s) is the Riemann zeta function with the p-factor removed
from its Euler product. The function ζp(s) = g((1 + p)1−s − 1) is analytic for all
s ∈ Zp\1 with values in Qp and it is called the Kubota-Leopoldt p-adic zeta function.
It has the following properties: ζp(1 − k) = ζ∗(1 − k) for all positive integers k ≡
0(mod (p−1)), and Ress=1ζp(s) = 1− 1

p . In this case we have actually Tg(T ) ∈ Λ×

so that ζp(s) has no zeroes, unnike the complex zeta-function. However, one could
start from another progrssion k ≡ i(modp− 1), k > 0, i mod (p− 1) and obtain in
the same way other branches ζp,i(s) of p-adic zeta function which have interesting
zeroes important in the Iwasawa theory [Iw, Wi90].

Constructions of Lπ,r ∈ L are known in a number of cases but there exists no
general definition. For example, the standard L functions L(s, π, St2n+1) of degree
2n+1 for the groupGSp2n ⊂ GL2n over F = Q attached to the standard orthogonal
representation of LGSp2n(C) and to a cuspidal irreducible representation π = πf
coming from a holomorphic Siegel cusp eigenform f admits a p-adic analogue which
was constructed using the Rankin-Selberg method in the p-ordinary case [PaLNM]
for even n. This construction was extended by S.Böcherer and C.-G. Schmidt [Bo-
Sch] to the general case of p-ordinary forms of arbitrary genus n and weight k > n,
by using the method of doubling of variables. The critical values in the sense of
Deligne [De79] of the L-function L(s, πf⊗χ, St2n+1) are s ∈ Z such that 1−k+n ≤

s ≤ k − n satisfying the following parity condition: (−1)s =

{
χ(−1), if s ≥ 0

−χ(−1), if s < 0
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for a Dirichlet character χ mod pN . This description follow from the form of Γ-
factor

L∞(s, πf ⊗ χ, St2n+1) =

n∏

j=1

ΓC(s+ k − j)Γ(s+ δ), (A.0.1)

ΓC(s) = 2(2π)−sΓ(s),ΓR(s) = (π)−s/2Γ(s/2), δ = (1 − χ(−1))/2.

In this case the algebraic numbers Ls,χ =
L∗((s, πf ⊗ χ, St2n+1)

〈f, f〉 can be interpo-

lated to values of some Iwasawa-type series gf,i(χ(1 + p)(1 + p)k − 1) where 〈f, f〉
is the Petersson scalar product, i runs over residues mod(p − 1). In this case
LGSp2n(C) = GSpin2n+1, the universal cover of the orthogonal group GO2n+1(C),
St2n+1 : GO2n+1(C) →֒ GL2n+1(C).

In order to construct in general p-adic automorphic L-functions out of their complex
critical special values one can successfully use p-adic integration along a (many
variable) Eisenstein measure which was introduced by N.Katz [Ka78] and used by
H.Hida [Hi91] in the case of G = GL2 over a totally real field F (i.e. for the elliptic
modular forms and Hilbert modular forms). The application of such a measure to
a given p-adic family of modular forms provides a general construction of p-adic
L-functions of several variables. On the other hand, the evaluation of this measure
at certain points gives another important source of p-adic L-functions [Ka78]. In
the Siegel modular case the Eisenstein measure was constructed in [PaSE].

The goal of our work is to construct a p-adic version of the L-function L(s, πf , r4)
of degree 4 attached to a Siegel-Hilbert cusp egenform of degree 4 over a totally
real field F , i.e. for the symplectic group

GSp4 =
{
g ∈ GL4 | tgJ4g = ν(g)J4, ν(g) ∈ GL1

}
,

over F where

J4 =

(
02 −12
12 02

)

We use the Eisenstein measure and a p-adic analogue of the Petersson product for
Λ-adic automorphic forms on GL2 over a totally real field, see [Hi90, Hi94]. Instead
of p-adic interpolation of critical values we try to imitate in the p-adic case a known
complex analytic integral representation for L(s, πf , r4). Main Theorem is given in
Section 4.

A.1 Complex analytic L-functions for GSp(4).

Let F be a global field of characteristic 6= 2, and V a four dimensional vector space
over F endowed with a non-degenerate skew-symmetric form ρ : V × V → F ,

Gρ = GSp4 =
{
g ∈ GL(V ) | ρ(gu, gv) = νgρ(u, v), νg ∈ F×} ,
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the algebraic group of symplectic similitudes of ρ over F . Let π = ⊗vπv be an
irrreducible cuspidal automorphic representation of Gρ(AF ) where v runs over all
places of F , then according to Langlands’ classification of irreducible supercuspi-
dal representations πv of Gρ(Fv) for almost all v πv correspond to a semi-simple
conjugacy class of a diagonal matrix

hv = diag{α0, α0α1, α0α2, α0α1α2} ∈LGρ(C) ∼→ GSP4(C)
r4→ GL4(C)

(αj = αj(v), v 6∈ S, |S| <∞).

The Andrianov L-function (or the spinor L-function) of π is then the following
Euler product

L(s, π, r4) =
∏

v 6∈S
det (14 − r4(hv) ·Nv−s)−1 ×

(
a finite Euler product

over v ∈ S

)
(A.1.1)

This L function plays an impotant role in arithmetic, in particular it is related
to l-adic Galois representation on H3 of the corresponding Siegel threefold [Tay],
[Lau].

This L function was introduced by Andrianov [AndBud], [And74] in the classical
fashion, for F = Q, and for π = πf coming from a holomorphic Siegel cusp eigen-
form f =

∑
ξ Aξq

ξ for the Siegel modular group Γ2 = Sp4(Z) over the Siegel upper
half plane of genus two

H2 = {z = tz ∈M2(C) | Im (z) > 0},

where ξ runs over the semi-group B2 of semi-definite half integral symmetric 2× 2-
matrices ξ, Aξ ∈ C, so that qξ = exp(2πiTr(ξz)) form a multiplicative semi-group
qB2 . Consider the Hecke algebra H = 〈(Γ2gΓ2)〉 = ⊗pHp generated by all double
coset classes (Γ2gΓ2) with g ∈ GSp4(Q). Then we have that Hp = Q[x±0 , x

±
1 , x

±
2 ]
W2

(W2 the Weyl group) and one has a Q-algebras homomorphism λf : H → C given
by f |X = λf (X)f , X ∈ H, and αj are defined as λf (xj), j = 0, 1, 2. In the notation
of Andrianov,

Zf(s) = L(s− k + (3/2), πf , r4) =
∏

p

det (14 − hpp
k−(3/2))−1p−s (A.1.2)

is called the spinor L function of f , and he proved that it coincides with a linear

combination of the Dirichlet series L(s, f, ξ0) =
∞∑

m=1

Amξ0
ms

where ξ0 > 0 is a positive

definite matrix of a fixed discriminant −det ξ0. Starting from this identity, he
obtained an integral representation for Zf (s) using the group GL2,K where K =
Q(

√−det ξ0) an imaginary quadratic field. This integral representation implied
an analytic continuation of Zf(s) to the whole complex plane and the functional
equation of the type

Ψf(s) = ΓC(s)ΓC(s− k + 2)Zf(s) = (−1)kΨf (2k − 2− s). (A.1.3)
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where ΓC(s) = 2(2π)−sΓ(s) is the standard Γ-factor. Its analytic properties were
studied by A. N. Andrianov [And74] but still little is known about algebraic and
arithmetic properties of critical values of this function; however, the general Deligne
conjecture on critical values of L-functions predicts that algebraicity properties
could exist only for s = k − 1 (see [Bo86, Fu-Sh, Ko-Ku] for evidences and discus-
sions).

The work of A.N.Andrianov was extended by I.I.Piatetski-Shapiro [PShBud], [Psh-
Pac] to arbitrary F using a quadratic extensionK/F and the following construction.
Put

V = K2 =

{
x =

(
x1
x2

)
, xj ∈ K, j = 1, 2

}

then V may be viewed as a four dimensional F vector space, dimF V = 4, and
define ρ(x, y) = TrK/F (x1y2 − x2y1). Let us consider the following F -algebraic
group

G = {g ∈ GL2,K | det g ∈ GL1,F}, SL2(K) ⊂ G(F ) ⊂ GL2(K) (A.1.4)

then there is an imbedding of F -algebraic groups i : G →֒ Gρ because x1y2−x2y1 =
det (x, y) and det (gx, gy) = det g ·det (x, y), so that ρ(gx, gy) = det g ·ρ(x, y). Note
that SL2(AK) ⊂ G(AF ) ⊂ GL2(AK) and G(AF ) →֒ Gρ(AF ) = GSp4(AF ). It turns
out that there is an integral representation for L(s, π, r) of the following type:

L(s, π, r) =

∫

G(F )C(AF )\G(AF )

ϕ(i(g))E(g, s)dg := Iπ(s) (A.1.5)

where ϕ is an automorphic form on Gρ(AF ) = GSp4(AF ) from the representation
space of π, C(AF ) the center of G(AF ) ⊂ GL2(AK), EΦ(g, s) is a certain Eisenstein
series on G(AF ) ⊂ GL2(AK) attached to a Schwartz function Φ ∈ S(VA) ([PshPac],
§5).

A.2 Initial idea of a p-adic construction.

Let p ≥ 5 be a prime number. We consider the case of two totally real fields
K ⊃ F and a representation πf attached to a holomorphic Siegel-Hilbert cusp form
f(z) = ϕ̃ of scalar weight k = (k, . . . , k) on the Siegel-Hilbert half plane

H2,F = H2 × · · · ×H2 (n copies); (A.2.1)

in this case there is also a critical value s = k − 1 for L-functions of the type
L(s, πf ,⊗χ, r) where χ is a character of finite order of A×

F /F
× . According to gen-

eral conjectures on motivic L-functions there should exist p-adic L-functions which
interpolate p-adically their critical values, see [Co], [Co-PeRi], [PaIF]. However in
our present construction instead of p-adic interpolation of their special values of the
type L(k−1, πf⊗χ, r) we use directly a p-adic version of (A.1.5) using techniques of
Λ-adic modular forms (see Section 3). We hope that the resulting p-adic L-function
provide also the above p-adic interpolation.
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A.3 Λ-adic modular forms.

Let us consider the Iwasawa algebra [Iw] Λ = Zp[[T ]] ∼= Zp[[Γ]] as the completed
group ring of the profinite group Γ = 1 + pZp = 〈1 + p〉 ⊂ Z×

p . We shall view
elements of its quotient field L = QuotΛ as Cp-meromorphic functions with a finite
number of poles on the unit disc U = {t ∈ Cp| | |t|p < 1} ⊂ Cp. According to the
theorem of Kubota-Leopoldt [Ku-Le], there exists a unique element g(T ) ∈ L such
that for all k ≥ 1, k ≡ 0 mod (p− 1)

g((1 + p)k − 1) = ζ∗(1− k)

where ζ∗(1−k) denotes the special value at s = 1−k of the Riemann zeta-function
with a modified Euler p-factor: ζ∗(s) = (1 − p−s)ζ(s). One could also start from
positive values s = k, k ≡ 0 mod (p− 1), and construct a p-adic zeta function ζ+,p

which interpolate k 7→ ζ∗+(k) =
Γ(k)

(2πi)k
ζ(k)(1 − pk−1) (see [Colm98]) and satisfies

the following "functional equation" ζ+,p(s) = 2ζp(1− s).

Definition A.1 (The Serre ring) Λ[[q]] is the ring of all formal q-expansions
with coefficients in Λ:

Λ[[q]] = {f =

∞∑

n=0

an(T )q
n | an(T ) ∈ Λ};

Definition A.2 The Λ-module M(Λ) ⊂ Λ[[q]] of Λ-adic modular forms (of some
fixed level N , (N, p) = 1 is generated by all f =

∑∞
n=0 an(T )q

n ∈ Λ[[q]] such that
for each k ≥ 5, k ≫ 0 the specialisation

fk = f |T=(1+p)k−1 ∈ Zp[[q]]

is a classical modular form of weight k and level Np. In more precise terms f is
given by a p-adic measure µf on Z×

p with values in Zp[[q]] such that the integrals
∫

Z
×
p

xkpµf = fk (A.3.1)

are classical modular forms.

Example A.3 (The Λ-adic Eisenstein series) f ∈ M(Λ) (of level N = 1) is
defined by

fk =
ζ∗(1 − k)

2
+

∑

n≥1

σ∗
k−1(n)q

n, σ∗
k−1(n) =

∑

d|n,p6 |d
dk−1. (A.3.2)

Example A.4 (Hida’s families) f are elements of

Sord(Λ) = eS(Λ), e = lim
n→∞

Un!p

(Up(
∑

n≥0 anq
n) =

∑
n≥0 apnq

n is the Atkin U -operator), S(Λ) is the Λ-submodule
of Λ-adic cusp forms.
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The Hilbert modular case.

According to the classical theorem of Klingen [Kli], for a totally real field K and
for k ≥ 1 the special values ζK(1 − k) are rational numbers where ζK(s) is the
Dedekind zeta function of K.
The Deligne-Ribet p-adic zeta function [De-Ri] interpolates p-adically these spe-
cial values as an element gK ∈ L: for all positive integers k ≡ 0(mod(p − 1)),
gK((1+p)k−1) = ζ∗K(1−k), where ζ∗K(s) =

∏
p |p(1−Np−s)ζK(s) is the Dedekind

zeta function of K with all the p-factors over p removed from its Euler prod-
uct. The function ζK,p(s) = gK((1 + p)1−s − 1) is analytic for all s ∈ Zp\1
with values in Qp and it is called the Deligne-Ribet p-adic zeta function. It has
the following properties: ζK,p(1 − k) = ζ∗K(1 − k) for all positive integers k ≡
0(mod(p − 1)), and its residue Ress=1ζK,p(s) was computed by Colmez [Colm88]:

Ress=1ζK,p =
2dhKRpEp(1)

wK
√
DK

where d = [K : Q], Ep(s) =
∏

p |p(1 − Np−s), Rp the

p-adic regulator of K (which does not vanish according to the Leopoldt conjecture).
A Λ-adic Hilbert modular form could be defined as a formal Fourier expansion

f =
∑

0≪= η∈LK

aηq
η ∈ Λ[[qLF ]] (LK ⊂ K a lattice)

( η runs over totally positive elements or 0) whose appropriate specialisations are
classical Hilbert modular form. When hK > 1 one needs to consider collections
of such series {fλ} (λ = 1, 2, . . . , hK) in order to be able to use the action of the
Hecke algebra. Λ-adic Hilbert modular forms were used by Wiles in his proof of
the Iwasawa conjecture over totally real fields (see [Wi90] where a precise definition
of a Λ-adic Hilbert modular form is contained in Section 3). It is required that
for all appropriate sufficiently large k the specialization fk = f |T=(1+p)k−1 is the
Fourier expansion of a classical Hilbert modular form. As over Q, the first natural
example of a Λ-adic Hilbert modular form is given by a Λ-adic Eisenstein series
(more precisely, this series is given by the Katz-Hilbert-Eisenstein measure, see
[Ka78]). Also, Hida’s theory could be extended to the Hilbert modular case and
even to the general case of cohomological modular forms on GL2,K over an arbitrary
number field K (see [Hi94]).

The Siegel-Hilbert modular case.

A Λ-adic Siegel-Hilbert modular form could be defined as a formal Fourier expansion

f =
∑

ξ∈L2,F

Aξq
ξ ∈ Λ[[qL2,F ]] (L2,F ⊂M2,F )

(L2,F is the semi-group of all symmetric totally non-negative matrices ξ in a sub-
lattice of M2,F ) whose appropriate specialisations fk = f |T=(1+p)k−1 are classical
Siegel-Hilbert modular form. The first example of a Λ-adic Siegel-Hilbert modu-
lar form is given by an Eisenstein series (for F = Q these series are described in
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[PaSE]). It seems that Hida’s theory also could be extended to the Siegel-Hilbert
modular case [Hi98], [Til-U],[Til].

A.4 p-adic L-functions.

Recall that we consider the case of two totally real fields K ⊃ F and an irreducible
representation π = πf attached to a holomorphic Siegel-Hilbert cusp form f(z) = ϕ̃
of scalar weight k = (k, . . . , k) on the Siegel-Hilbert half plane

H2,F = H2 × · · · ×H2 (n copies);

Then we rewrite the integral representation (1.5) in the form of the Petersson scalar
product over K = F (

√
D):

Iπ(1/2) = 〈̃i∗ϕ̃, Ẽ(s, µ)〉K (4.1)

where i denotes both the imbedding i : G →֒ Gρ and the corresponding modular
imbedding

i : HF ×HF → H2,F , HF = H×· · ·×H ;H2,F = H2×· · ·×H2 (n copies); (4.2)

If we write this imbedding in coordinates it takes the form

(z1, z2) 7→ Z(z1, z2) = Cdiag{z1, z2}tC (z1, z2 ∈ HF )

(see [Shi78], [Wi90], p. 521), where we could take C = 1
2

(
1

1/
√
D

1
−1/

√
D

)
∈ M2(F )

so that i∗ϕ̃ = ϕ̃ ◦ i is a holomorphic Hilbert modular form with an explicitely
given Fourier expansion. If ϕ̃ =

∑
ξ∈L2,F

Aξq
ξ then i∗ϕ̃ =

∑
η∈LF

aηq
η where each

Fourier coefficient aη is a finite sum of certain Aξ:

aη =
∑

ξ:η= 1
4 (ξ11+ξ22+2ξ12/

√
D)

Aξ,

so that the map ϕ̃ 7→ i∗ϕ̃ could be defined in terms of their formal q-expansion. For
the Λ-adic construction let us take a Λ-adic Siegel-Hilbert cusp form ϕ̃ on GSp4,F
then i∗ϕ̃ is a Λ-adic Hilbert modular form over K which is explicitely described as
a formal Fourier expansion. Now let us take G to be the Λ-adic Hilbert-Eisenstein
series for GL2,K . In order to define the Petersson product

〈̃i∗ϕ,G〉K (4.3)

we use the Eisenstein projection 1Eis(i
∗ϕ̃) (the projection in the L-vector space

M(L) to the (finite-dimensional) L-subspace EisK(L) of Hilbert-Eisenstein series
with an explicitely given base coming from the Katz-Hilbert-Eisenstein p-adic mea-
sure). The projection 1Eis(i

∗ϕ̃) could be explicitely computed using the Fourier
expansions of i∗ϕ̃ and of the Fourier expansions of a L-basis of EisK(L).

〈̃i∗ϕ,G〉K = 〈1Eis(i
∗ϕ̃), G〉K .
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Then we are reduced to the case of 〈G1, G2〉K , where G1 and G2 are two normalized
Hilbert-Eisenstein series, and in order to define their Petersson product we use the
method of Rankin-Selberg.

Let us recall a classical formula

(f, g) =
π

3

Γ(k)

(4π)k
Ress=kLf,g(s)

for the Petersson product (f, g) =
∫

Γ\H
f(z)g(z)yk−2 dx dy (see [Ra39, Za81]) where

Lf,g(s) =
∑∞
n=1 anbnn

−s denotes the Rankin L-function of two holomorphic mod-
ular forms of weight k on SL2(Z) , with at least one of them a cusp form (i.e.
a0b0 = 0 ): f(z) =

∑∞
n=0 ane

2πinz and g(z) =
∑∞

n=0 bne
2πinz. This equality makes

it possible to define the Petersson scalar product (a renormalized value) (Gk, Gk)

where Gk = −Bk
2k

+
∞∑

n=1

σk−1(n) (k ≥ 4, k even). We have [Za81, p.435]:

LGk,Gk
(s) =

∞∑

n=1

σk−1(n)σk−1(n)n
−s =

ζ(s)ζ(s − k + 1)2ζ(s− 2k + 2)

ζ(2s− 2k + 2)

which implies

(Gk, Gk) = (−1)k/2−1Γ(k)Γ(k − 1)

23k−3π2k−1
ζ(k)ζ(k − 1)

= i3k−322−k
Γ(k)

(2πi)k
ζ(k)

Γ(k − 1)

(2πi)k−1
ζ(k − 1).

We see that if G1, G2 were two cusp forms of weight k their Petersson product
would essentially coincide with a normalized residue of the Rankin zeta function
LG1,G2(s) at s = k. In the case of normalised Eisenstein series the Rankin zeta
function LG1,G2(s) is explicitely evaluated via Rankin’s lemma as a product of
abelian Dirichlet L-functions. Let now G1 = {G1,k}, G2,k = {G2,k} denote two
p-adic families of Hilbert Eisenstein series. We may define the IG1,G2 = 〈G1, G2〉K
as an element of L such that for all k ≫ 0

(G1, G2) = Ress=kLG1,k,G2,k
(s) ∈ Qp (s ∈ Zp)

in a similar way as in [Za81] and [Ko-Za] as the normalised p-adic residue of the p-
adic Rankin convolution LG1,G2(s) (which is defined in terms of the corresponding
Deligne-Ribet p-adic zeta function).

Main Theorem A.5 Let ϕ̃ be a Λ-adic Siegel-Hilbert modular eigenform then
there exists a canonically defined element

Iϕ̃,p = 〈̃i∗ϕ,G〉K ∈ L
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i∗ϕ̃ the Λ-adic pullback of ϕ, i∗ϕ̃ is a Λ-adic Hilbert modular form over K explicitely
described by its Fourier expansion, G is a certain Λ-adic Hilbert-Eisenstein series,
such that the function Iϕ̃,p gives a p-adic interpolation of the residue of the nor-
malized p-adic Rankin L function L∗

i∗ϕ̃k,Gk
(s) (at s = k), the scalar weight of a

specialisation ϕ̃k):

Iϕ̃,p|T=(p+1)k−1 = Ress=kL
∗
i∗ϕ̃k,Gk

(s) (s ∈ Zp)

A.5 p-adic families of automorphic representations.

We use the occasion to discuss here the following general definition of a p-adic family

of automorphic representations (or of a Λ-adic automorphic form). We shall view
the Iwasawa algebra Λ as the algebra Meas(Zp,Zp) of all Zp-measures on Zp (with
the additive convolution as a multiplication). Let VQ ⊂ C(G(AF )) be a certain Q-
vector space of (complex-valued) continuous functions on the adelic group G(AF )
over a number field F . We suppose that VQ has an integral structure VZ ⊂ VQ
so that VQ = VZ ⊗ Q. Put Vp = VZ⊗̂Zp (the completed tensor product). Define
Dp(Vp) = Meas(Zp, Vp) (as a module over Λ = Dp(Zp)).

Definition A.6 A p-adic family of automorphic representations on G is a p-adic
measure ϕ ∈ Dp(Vp) such that for almost all positive integers k we have that the
integral

∫
Zp
xkϕ = ϕk ∈ Vp belongs to VZ and the function ϕk generates an auto-

morphic representation πk of G(AF ). We call such ϕ a Λ-adic automorphic form
on G(AF ).

Let AFG(Λ) denote the Λ-module generated by such elements ϕ. An element ϕ
is called an eigenform if the representations πk are all irreducible.

A natural example of such a vector space V for the group GL2 over Q comes from
holomorphic functions f =

∑∞
n=0 an exp(2πinz) having rational Fourier coefficients

an ∈ Q with bounded denominators, i.e. for which there exists a positive integer
N = N(f) such that Nan ∈ Z. However there are other ways to attach such
a vector space V to G by considering cohomology groups of the corresponding
locally-symmetric spaces and automorphic forms ϕ on G(AF ) represented by ra-
tional cohomology classes ([Ko-Za]). Put AFG(L) = AFG(Λ) ⊗ L. We hope that
one could find in this way a general construction of p-adic automorphic L functions
Lπ,r,p as certain L-linear forms l = lG,r on the L-vector space AFG(L). Such a
linear form should play a role of an integral representation for p-adic L-functions:
Lπk,r,p = lG,r(ϕ)|T=(1+p)k−1. A natural example of such a linear form comes from
the Λ-adic Petersson product of Hida which provides a construction of p-adic L-
functions for GL2 ×GL2 [Hi91].

On the other hand, there exist nice constructions of p-adic families of Galois
representations attached to automorphic forms (Λ-adic Galois representations, see
[Hi86], [Til-U]) which played an important role in the work of Wiles [Wi95]. It
would be interesting to formulate a general Λ-adic Langlands conjecture relating
Λ-adic automorphic forms and Λ-adic Galois representations.
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