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1. Introduction

Informally speaking, the essential dimension of an algebraic object is the minimal
number of algebraically independent parameters one needs to define the object. To
motivate this notion, let us consider an example where the object is a quadratic
extension of a field. Let F be a base field, K/F a field extension and L/K a
quadratic extension. Then L is generated over K by an element α with the minimal
polynomial t2 + at + b with a, b ∈ K, so L can be given by the two parameters a
and b. But we can do better: by scaling α, we can achieve a = b, i.e., just one
parameter a is needed. Equivalently, we can say that the quadratic extension L/K
is defined over the smaller field K0 = F (a), namely, if L0 = K0[t]/(t

2+at+a), then
L ≃ L0 ⊗K0 K, i.e., L/K is defined over the field K0 of transcendence degree at
most 1 over F . We say that the essential dimension of L/K is at most 1.

The notion of the essential dimension was defined by J. Buhler and Z. Reichstein
in [12] for the class of finite Galois field extensions with a given Galois group and
later in [80] was extended to the class of G-torsors for an arbitrary algebraic group
G. Many classical objects such as simple algebras, quadratic and hermitian forms,
algebras with involutions, etc. can be viewed as torsors under classical algebraic
groups. The only property of a class of algebraic objects needed to define the
essential dimension is that for every field extension K/F we must have a set F(K)
of isomorphism classes of objects, and for every field homomorphism K → L over
F - a change of field map F(K) → F(L). In other words, F is a functor from
the category FieldsF of field extensions of F to the category of sets. The essential
dimension for an arbitrary functor FieldsF → Sets was defined in [7].

The essential dimension of a functor F (of a class of algebraic objects) is an
integer that measures the complexity of the functor F . One of the applications
of the essential dimension is as follows: Suppose we would like to check whether
a classification conjecture for the class of objects given by F holds. Usually, a
classification conjecture assumes another functor L (a classification list) together
with a morphism of functors L → F , and the conjecture asserts that this morphism
is surjective. Suppose we can compute the essential dimensions of L and F , and it
turns out that ed(L) < ed(F), i.e., the functor F is “more complex” than L. This
means that no morphism between L and F can be surjective and the classification
conjecture fails. Thus, knowing the essential dimension allows us to predict the
complexity of the structure. We have examples in quadratic form theory (Theorem
9.5 and Section 9c) and in the theory of simple algebras (Corollaries 10.7 and 10.8).

Typically, the problem of computing the essential dimension of a functor splits
into two problems of finding upper and lower bounds. To obtain an upper bound,
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2 A. MERKURJEV

one usually finds a classifying scheme of the smallest possible dimension. Finding
lower bounds is more complicated.

Let p be a prime integer. The essential p-dimension is the version of the essential
dimension that ignores “prime to p effects”. Usually, the essential p-dimension is
easier to compute than the ordinary essential dimension.

If the algebraic structures given by a functor F are classified (parameterized),
then the essential dimension of F can be computed by counting the number of
algebraically independent parameters. But the essential dimension can be computed
in some cases where the classification theorem is not available. The most impressive
example is the structure given by the Spinn-torsors (equivalently, nondegenerate
quadratic forms of dimension n with trivial discriminant and Clifford invariant).
The classification theorem is available for n ≤ 14 only, but the exact value of the
essential dimension was computed for every n and the value is exponential in n.

The canonical dimension is a special case of the essential dimension. The canonical
dimension of varieties measures their incompressibility. This can be studied by
means of the theory of Chow motives.

The notion of the essential dimension of a functor can be naturally extended to
the categories fibered in groupoids. This allows us to unite the essential dimension
of schemes and algebraic groups. We study the essential dimension of special types
of the categories fibered in groupoids such as stacks and gerbes.

Essential dimension, which is defined in elementary terms, has surprising connec-
tions to many problems in algebra and algebraic geometry. Below is the list of some
areas of algebra related to the essential dimension:

• Birational algebraic geometry
• Intersection algebraic cycles
• Equivariant compressions of varieties
• Incompressible varieties
• Chow motives
• Chern classes
• Equivariant algebraic K-theory
• Galois cohomology
• Representation theory of algebraic groups
• Fibered categories, algebraic stacks
• Valuation theory

The goal of this paper is to survey some of the research on the essential dimension.
The highlights of the survey are the computations of the essential dimensions of
finite groups, groups of multiplicative type and the spinor groups. We present the
self-contained proofs of these cases.

We use the following notation. The base field is always denoted by F . Write
Fsep for a separable closure of F . A variety over F is an integral separated scheme
X of finite type over F . If K/F is a field extension, we write XK for the scheme
X ×SpecF SpecK.

Acknowledgements. The author thanks Alex Duncan, Nikita Karpenko and
Mark MacDonald for useful comments and suggestions.
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2. Definition and simple properties of the essential dimension

2a. Definition of the essential dimension. The essential dimension of a functor
was defined in [7]. Let F be a field and write FieldsF for the category of field
extensions of F . The objects of FieldsF are arbitrary field extensions of F and
morphisms are field homomorphisms over F .

Let F : FieldsF → Sets be a functor, K/F a field extension, x ∈ F(K) and
α : K0 → K a morphism in FieldsF (i.e., K is a field extension of K0 over F ).
We say that x is defined over K0 (or K0 is a field of definition of x) if there is an
element x0 ∈ F(K0) such that F(α)(x0) = x, i.e., x belongs to the image of the map
F(α) : F(K0)→ F(K). Abusing notation, we write x = (x0)K .

We define the essential dimension of x:

ed(x) := min tr. degF (K0),

where the minimum is taken over all fields of definition K0 of x and the essential
dimension of the functor F :

ed(F) := max ed(x),

where the maximum runs over all field extensions K/F and all x ∈ F(K).

2b. Definition of the essential p-dimension. Let p be a prime integer. The idea
of the essential p-dimension is to “ignore field extensions of degree prime to p”. We
say that a field extension K ′/K is a prime to p extension if K ′/K is finite and the
degree [K ′ : K] is prime to p.

Let F : FieldsF → Sets be a functor, K/F a field extension, x ∈ F(K) and K0

a field extension of F . We say that x is p-defined over K0 (or that K0 is a field of
p-definition of x) if there are morphisms K0 → K ′ and K → K ′ in FieldsF for some
field K ′/F and an element x0 ∈ F(K0) such that K ′/K is a prime to p extension
and (x0)K′ = xK′ in F(K ′).

We define the essential p-dimension of x:

edp(x) := min tr. degF (K0),

where the minimum is taken over all fields of p-definition K0 of x and the essential
p-dimension of the functor F :

edp(F) := max edp(x),

where the maximum runs over all field extensions K/F and all x ∈ F(K).
It follows from the definition that

edp(x) := min ed(xL),

where L runs over all prime to p extensions of K.
We have the inequality edp(F) ≤ ed(F) for every p.
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The definition of the essential p-dimension formally works for p = 0 if a prime
to p = 0 field extension K ′/K is defined as trivial, i.e., K ′ = K. The essential
0-dimension coincides then with the essential dimension, i.e., ed0(F) = ed(F). This
allows us to study simultaneously both the essential dimension and the essential
p-dimension. We will write “p ≥ 0”, meaning p is either a prime integer or p = 0.

2c. Simple properties and examples. Let X be a scheme over F . We can view
X as a functor from FieldsF to Sets taking a field extension K/F to the set of
K-points X(K) := MorF (SpecK,X).

Proposition 2.1. [68, Corollary 1.4] For any scheme X of finite type over F , we
have edp(X) = dim(X) for all p ≥ 0.

Proof. Let α : SpecK → X be a point of X over a field K ∈ Fields/F with image
{x}. Every field of p-definition of α contains a subfield isomorphic to the residue
field F (x). Moreover, α is defined over F (x) hence edp(α) = tr. degF F (x) = dim(x).
It follows that edp(X) = dim(X). �

The following proposition of a straightforward consequence of the definition.

Proposition 2.2. [7, Lemma 1.11] Let F and F ′ be two functors from FieldsF to
Sets. Then

edp(F × F ′) ≤ edp(F) + edp(F ′)

for every p ≥ 0.

Let p ≥ 0. A morphism of functors α : F → F ′ from FieldsF to Sets is called
p-surjective if for every field K/F and every element x ∈ F ′(K), there is a prime to
p extension K ′/K such that xK′ belongs to the image of the map αK′ : F(K ′) →
F ′(K ′). If p = 0, the 0-surjectivity is the usual surjectivity of F(K) → F ′(K) for
all K.

Similarly, the morphism α is p-injective if for every field K/F and every two
elements x, y ∈ F(K) such that αK(x) = αK(y), there is a prime to p extension
K ′/K such that xK′ = yK′ in F(K ′). The morphism α is p-bijective if it is p-injective
and p-surjective.

Proposition 2.3. [68, Proposition 1.3] Let p ≥ 0 and α : F → F ′ a morphism of
functors from FieldsF to Sets.

(1) If α is p-surjective, then edp(F) ≥ edp(F ′).
(2) If α is p-bijective, then edp(F) = edp(F ′).

For a field extension L/F , there is an obvious functor rL/F : FieldsL → FieldsF .
We will write FL for the composition of a functor F : FieldsF → Sets with rL/F and
call it the restriction of F to L.

Proposition 2.4. [68, Proposition 1.5] For any functor F : FieldsF → Sets and a
field extension L/F , we have:

(1) edp(F) ≥ edp(FL) for every p ≥ 0.
(2) If L/F is a prime to p extension, then edp(F) = edp(FL).
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2d. Classifying schemes. Let F : FieldsF → Sets be a functor. A scheme X of
finite type over F is called p-classifying for F if there is p-surjective morphism of
functors X → F . A classifying scheme is a 0-classifying scheme.

Classifying schemes are used to obtain upper bounds for the essential dimension.
Propositions 2.1 and 2.3 yield:

Corollary 2.5. Let F : FieldsF → Sets be a functor and X a p-classifying scheme
for F . Then dim(X) ≥ edp(F).

Example 2.6. For an integer n > 0 and a field extension K/F , let F(K) be the
set of similarity classes of all n × n matrices over K, or, equivalently, the set of
isomorphism classes of linear operators in an n-dimensional vector space over K.
The rational canonical form shows that it suffices to give n parameters to define an
operator, so ed(F) ≤ n. On the other hand, the coefficients of the characteristic
polynomial of an operator yield a surjective morphism of functors F → AnF , hence
ed(F) ≥ ed(AnF ) = n, therefore, ed(F) = n.

The problem of computing the essential p-dimension of a functor F very often
splits into the two problem of finding a lower and an upper bound for edp(F), and
in certain cases the bounds match.

3. Essential dimension of algebraic groups

3a. Torsors. We will write “algebraic group over F” for a group scheme of finite
type over F .

Let G be an algebraic group over F . A G-scheme is a scheme X of finite type
over F together with a (left) G-action on X. We write mX : G × X → X for the
action morphism.

Let E be aG-scheme and Y aG-scheme with the trivialG-action. AG-equivariant
morphism f : E → Y is called a G-torsor (or we say that E is a G-torsor over Y )
if f is faithfully flat and the morphism

(mE , pE) : G× E → E ×Y E
is an isomorphism (here pE : G×E → E is the projection). The latter condition is
equivalent to the following: For any commutative F -algebra R and for any R-point
y ∈ Y (R), either the fiber of the map E(R) → Y (R) over y is empty or the group
G(R) acts simply transitively on the fiber.

For every scheme Y over F , the projection G×Y → Y has a natural structure of
a G-torsor, called the trivial G-torsor over Y .

Isomorphism classes of G-torsor over X are in a bijective correspondence with the
first flat cohomology pointed set H1

fppf (X,G) (see [75, Ch. III, §4]). If G is smooth,

this set coincides with the first étale cohomology pointed set H1
ét(X,G). If F is a

field, we write H1(F,G) for H1
ét

(
Spec(F ), G

)
= H1

ét

(
Gal(Fsep/F ), G(Fsep)

)
.

Example 3.1. Let G be a finite (constant) group over F . A G-torsor over F is of
the form Spec(L)→ Spec(F ), where L is a Galois G-algebra.

Example 3.2. Let A be an “algebraic object” over F such as algebra, quadratic
form, etc. Suppose that the automorphism group G = Aut(A) has the structure
of an algebraic group, in particular, G(K) = AutK(AK) for every field extension
K/F . We say that an object B is a twisted form of A if B is isomorphic to A over
Fsep. If E is a G-torsor over F , then the “diagonal” action of G on E ×A descends
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to a twisted form B of A. The G-torsor E can be reconstructed from B via the
isomorphism E ≃ Iso(B,A).

Thus, for any G-object A over F , we have a bijection

G-torsors over F ←→ Twisted forms of A

In the list of examples below we have twisted forms of the

• Matrix algebra Mn(F ) with Aut
(
Mn(F )

)
= PGLn, the projective linear group,

• Algebra Fn = F × F × · · · × F with Aut(Fn) = Sn, the symmetric group,
• Split nondegenerate quadratic form qn of dimension n with Aut(qn) = On, the
orthogonal group,
• Split Cayley algebra C with Aut(C) = G2:

PGLn -torsors ←→ Central simple algebras of degree n

Sn-torsors ←→ Étale algebras of degree n

On -torsors ←→ Nonsingular quadratic forms of dimension n

G2-torsors ←→ Cayley-Dickson algebras

3b. Definition of the essential dimension of algebraic groups. Let G be an
algebraic group over F . Consider the functor

G-torsors : FieldsF → Sets,

taking a field K/F to the set G-torsors(K) of isomorphism classes of G-torsors over
Spec(K). The essential p-dimension edp(G) of G is defined in [81] as the essential
dimension of the functor G-torsors:

edp(G) := edp(G-torsors).

Thus, the essential p-dimension of G measures the complexity of the class of G-
torsors over field extensions of F .

Proposition 2.2 yields:

Proposition 3.3. For algebraic groups G1 and G2, we have

(G1 ×G2)-torsors ≃
(
G1-torsors

)
×
(
G2-torsors

)
and

edp(G1 ×G2) ≤ edp(G1) + edp(G2)

for every p ≥ 0.

We consider only linear algebraic group except in the last Section 11.

3c. Cohomological invariants. Cohomological invariants provide lower bounds
for the essential dimension (see [81]). Let M be a Galois module over F , i.e., M is
a (discrete) abelian group equipped with a continuous action of the absolute Galois
group Gal(Fsep/F ) of F . For a field extension K/F , M can be viewed as a Galois
module over K and therefore, for every d ≥ 0, we have a degree d cohomological
functor

H : FieldsF → AbelianGroups

K 7→ Hd(K,M).
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A degree d cohomological invariant u with values in M of a functor F : FieldsF →
Sets is a morphism of functors u : F → H, where we view H as a functor to Sets.
An invariant u is called nontrivial if there is a field extension K/F containing an
algebraic closure of F and an element x ∈ F(K) such that uK(x) ̸= 0 in H(K).

The following statement provides a lower bound for the essential p-dimension of
a functor.

Theorem 3.4. Let F : FieldsF → Sets be a functor, M a torsion Galois module
over F and p ≥ 0. If p > 0 we assume that the order of every element of M is a
power of p. If F admits a nontrivial degree d cohomological invariant with values in
M , then edp(F) ≥ d.

Proof. By Proposition 2.4, we may assume that F is algebraically closed. Choose a
field extension K/F and an element x ∈ F(K) such that uK(x) ̸= 0 in H(K). It
suffices to show that edp(x) ≥ d. Suppose the opposite. Then there are field homo-
morphisms K → K ′ and K0 → K ′ over F with K ′/K a prime to p extension and
tr. degF (K0) < d, and an element x0 ∈ F(K0) such that (x0)K′ = xK′ . The com-
position Hd(K,M) → Hd(K ′,M) → Hd(K,M) of the restriction and corestriction
homomorphisms is multiplication by [K ′ : K] and hence is an isomorphism due to the
assumption onM . It follows that uK(x)K′ ̸= 0 in H(K ′). As uK0(x0)K′ = uK(x)K′ ,
we have uK0(x0) ̸= 0 in Hd(K0). Since K0 is an extension of the algebraically closed
field F of transcendence degree less than d, by a theorem of Serre [91, Ch. II, §4,
Proposition 11], H(K0) = Hd(K0,M) = 0, a contradiction. �

Example 3.5. Write µn for the group of n-th roots of unity over a field F such
that n is not divisible by char(F ). For a field extension K/F , we have the Kummer
isomorphism

K×/K×n ∼→ H1(K,µn), aKn 7→ (a).

It follows that
(
Gm

)s
is a classifying variety for (µn)

s, where Gm := SpecF [t, t−1]
is the multiplicative group, hence ed(µn)

s ≤ s. On the other hand, if p is a prime
divisor of n, then the cohomological degree s invariant

(a1, a2, . . . , as) 7→ (a1) ∪ (a2) ∪ · · · ∪ (as) ∈ Hs
(
K,µ⊗s

p

)
is not trivial [7, Corollary 4.9], hence edp(µn)

s = ed(µn)
s = s.

Example 3.6. Let On be the orthogonal group of a nondegenerate quadratic form
of dimension n over a field F with char(F ) ̸= 2. For a field extension K/F , the set
H1(K,On) is bijective to the set of isomorphism classes of nondegenerate quadratic
forms of dimension n. Every such form q is diagonalizable, i.e, q ≃ ⟨a1, a2, . . . , an⟩
with ai ∈ K×. It follows that

(
Gm

)n
is a classifying variety for On, hence ed(On) ≤

n. On the other hand, the cohomological degree n invariant

⟨a1, a2, . . . , an⟩ 7→ (a1) ∪ (a2) ∪ · · · ∪ (an) ∈ Hn(K,Z/2Z)

is well defined and nontrivial [26, §17], hence ed2(On) = ed(On) = n.

Example 3.7. Let p be a prime integer and F a field containing a primitive p-th
root of unity. If p = 2 we assume that F contains a primitive 4-th root of unity.
Write CSA pn, p(K) for the set of isomorphism classes of central simple algebras
of degree pn and exponent dividing p over a field extension K/F . By [71], every
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algebra A in CSA pn, p(K) is Brauer equivalent to the tensor product of cyclic algebras
C1 ⊗ C2 ⊗ . . .⊗ Cm, each of degree p. The k-th divided power of A is

sk(A) :=
∑

[Ci1 ] ∪ [Ci2 ] ∪ · · · ∪ [Cik ] ∈ H
2k(K,Z/pZ),

where the sum is taken over all k-tuples i1 < i2 < · · · < ik and [Cj ] ∈ H2(K,Z/pZ).
The class sk(A) is well defined by [32]. For example, if A is the tensor prod-
uct of n cyclic algebras (ai, bi) of degree p, i = 1, . . . , n, over the field K =
F (a1, . . . , an, b1, . . . , bn) of rational functions, then sn(A) is nonzero inH

2n(K,Z/pZ),
i.e., sn is a nontrivial cohomological invariant of CSA pn,p. It follows that edp

(
CSA pn,p

)
≥

2n (cf., [82, Example 2.8]). For better lower bounds on edp
(
CSA pn,p

)
see Theorem

10.6.

3d. Generically free and versal G-schemes. Let G be an algebraic group over
a field F . A G-scheme X is called generically free if there is a nonempty dense
subscheme U ⊂ X and a G-torsor U → Y with Y a variety over F . A G-invariant
open subscheme of a generically free G-scheme is also a generically free G-scheme.

The generic fiber E → SpecF (Y ) of U → Y is the G-torsor that is independent
of the choice of the open set U . We call this torsor the G-torsor associated to the
G-scheme X and write F (X)G for the field F (Y ).

Conversely, every G-torsor E → SpecK for a finitely generated field extension
K/F extends to a G-torsor X → Y for a variety Y over F with F (Y ) ≃ K.

By [19, Exposé V, Théorème 8.1], a G-scheme X is generically free if and only
if there is a dense open subset U ⊂ X such that the scheme-theoretic stabilizer of
every point in U is trivial.

Remark 3.8. An action of a finite group on a variety is generically free if and only
if it is faithful.

Let X be a generically free G-scheme. A G-compression of X is a G-equivariant
dominant rational morphism X 99K X ′ to a generically free G-scheme X ′. Following
[81], we write ed(X,G) for the smallest integer

tr. degF
(
F (X ′)G

)
= dim(X ′)− dim(G)

over all generically free G-varieties X ′ such that there is G-compression X 99K X ′.
A G-compression X 99K X ′ yields an embedding of fields F (X ′)G ↪→ F (X)G,

moreover, the G-torsor E → SpecF (X)G associated to X is defined over F (X ′)G.
The following lemma compares the number ed(X,G) with the essential dimension

of the associated torsor E as defined in Section 3b.

Lemma 3.9. [7, §4] Let X be a generically free G-scheme and E → Spec
(
F (X)G

)
the associated G-torsor. Then ed(X,G) = ed(E) and

ed(G) = max ed(X,G),

where the maximum is taken over all generically free G-schemes X.

We say that a generically freeG-scheme isG-incompressible if for anyG-compression
X 99K X ′ we have dim(X) = dim(X ′), or equivalently, ed(X,G) = dim(X)−dim(G).
Every generically free G-scheme admits a G-compression to a G-incompressible
scheme.

A (linear) representation V of G is called generically free if V is generically free
as a variety. Generically free G-representations exist: embed G into U := GLn,F for



10 A. MERKURJEV

some n as a closed subgroup. Then U is an open subset in the affine space Mn(F )
on which G acts linearly with trivial stabilizers.

Following [20], we call a G-scheme X versal if for every generically free G-scheme
X ′ with the field F (X ′)G infinite and every dense open G-invariant set U ⊂ X, there
is a G-equivariant rational morphism X ′ 99K U .

By definition, a dense open G-invariant subset of a versal G-scheme is also versal.

Proposition 3.10. [26, §5] Every G-representation V , viewed as a G-scheme, is
versal.

Proof. LetX be a generically free G-scheme with the field F (X)G infinite and U ⊂ V
a nonempty open G-invariant subscheme. We need to prove that there is a G-
equivariant rational morphism X 99K U .

Replacing X be a G-invariant dense subset, we may assume that X is a G-torsor
over a variety Y . The diagonal G-action on V × X yields a G-torsor V × X → Z
for a variety Z. The projection f : V ×X → X descents to a morphism g : Z → Y .
The image Z ′ of U ×X in Z is a dense open subscheme.

As f is a vector bundle, so is g. The generic fiber W of g is a vector space over
the infinite field F (Y ) = F (X)G. As the F (Y )-points are dense in W , there is
a vector in W that belongs to the open subset Z ′. This vector yields a rational
splitting h : Y 99K Z ′ of g. Then the pull-back of the G-torsor U × X → Z ′

under h is isomorphic to X → Y , hence h yields a G-equivariant rational morphism
X 99K U ×X. The composition of this morphism with the projection U ×X → U
is the desired rational morphism. �
Proposition 3.11. Let X be a versal generically free G-scheme (for example, a
generically free representation of G). Then ed(X,G) = ed(G).

Proof. By Lemma 3.9, it suffices to show that ed(X,G) ≥ ed(Z,G) for every gener-
ically free G-scheme Z. We may assume that ed(Z,G) > 0, i.e. the field F (Z)G is
infinite.

Let f : X 99K X ′ be a G-compression with X ′ a generically free G-scheme and
tr. degF

(
F (X ′)G

)
= ed(X,G). ShrinkingX andX ′, we may assume that f is regular

and X ′ is a G-torsor over some variety. As X is versal, there is a G-equivariant
morphism Z 99K X. Composing with f , we get a G-compression of Z onto a
subvariety of X ′, hence

ed(Z,G) ≤ dim(X ′)− dim(G) = tr. degF
(
F (X ′)G

)
= ed(X,G). �

Let X be a versal generically free G-scheme. The G-torsor E → SpecF (X)G

associated to X is called a generic G-torsor. Lemma 3.9 and Proposition 3.11 yield:

Corollary 3.12. Let E be a generic G-torsor. Then ed(E) = ed(G).

Proposition 3.11 also gives:

Proposition 3.13. (Upper bound) For an algebraic group G, we have

ed(G) = min dim(X)− dim(G),

where the minimum is taken over all versal generically free G-varieties X. In par-
ticular, if V is a generically free representation of G, then

ed(G) ≤ dim(V )− dim(G).
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If a G-scheme X is versal and generically free, and X 99K X ′ is a G-compression,
then the G-scheme X ′ is also versal and generically free. Every versal G-scheme
X admits a G-equivariant rational morphism V 99K X for every generically free G-
representation V , and this morphism is dominant (and therefore, is aG-compression)
if X is G-incompressible, hence F (X) is a subfield of the purely transcendental
extension F (V )/F .

We have proved:

Proposition 3.14. Every versal G-incompressible G-scheme X is a unirational
variety with dim(X) = ed(G) + dim(G).

Let H be a subgroup of an algebraic group G. Then every generically free G-
representation is also a generically free H-representation. This yields:

Proposition 3.15. [9, Lemma 2.2] Let H be a subgroup of an algebraic group G.
Then

edp(G) + dim(G) ≥ edp(H) + dim(H)

for every p ≥ 0.

3e. Special groups. For a scheme X over F we let nX denote the gcd deg(x) over
all closed points x ∈ X.

Let G be an algebraic group over F . The torsion index tG of G is the least
common multiple of the numbers nE over all G-torsors E over all field extension of
F . Prime divisors of tG are called torsion primes for G [88, Sec. 2.3].

An algebraic group G over F is called universally special if for any field exten-
sion K/F , every G-torsor over SpecK is trivial. Clearly, universally special group
schemes have no torsion primes. Examples of universally special groups are GLn,
SLn, Sp2n.

The last statement of the following proposition was proven in [81, Proposition
5.3] in the case when F is algebraically closed.

Proposition 3.16. [68, Proposition 4.4] Let G be an algebraic group over F . Then

(1) A prime integer p is a torsion prime for G if and only if edp(G) > 0.
(2) An algebraic group scheme G is universally special if and only if ed(G) = 0.

3f. The valuation method. Valuation theory provides lower bounds for the es-
sential dimension. Let K/F be a field extension and v a valuation on K over F , i.e.,
v is trivial on F . Let F (v) be the residue field of v, it is an extension of F . The
method is based on the inequality [101, Ch. VI, Th. 3, Cor. 1]

(3.1) tr. degF (K) ≥ tr.degF
(
F (v)

)
+ rank(v),

where rank(v) is the rank of the valuation v.

Proposition 3.17. [12], [33, Theorem 1.2] Let G be a finite group, F a field such
that char(F ) does not divide |G|, and m > 1 an integer. If G has no nontrivial
central cyclic subgroup of order prime to m, then ed(G× µm) = ed(G) + 1.

Proof. Recall that H1(K,µm) = K×/K×m. Therefore, we have a surjection of
functors (

G-torsors
)
×Gm → (G× µm)-torsors.

By Proposition 3.3 and Example 3.5, ed(G× µm) ≤ ed(G) + 1.
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Let V be a faithful G-representation and Spec(L) → Spec(K) the associated
generic G-torsor, where L = F (V ) and K = F (V )G. Note that as L/F is purely
transcendental, the fields F and L have the same roots of unity: µ(L) = µ(F ).

The pair α :=
(
L((t))/K((t)), t

)
, where t is a variable, represents a (G×µm)-torsor

over the Laurent power series field K((t)). Let L0/K0 be a G-Galois subextension
of L((t))/K((t)) over F and t0 ∈ K×

0 an element such that tr.degF (K0) = ed(α) and
the image of t0 in K((t))× is equal to the class of t modulo K((t))×m, i.e., t = t0 · sm
for some s ∈ K((t))×.

Consider the valuation v on L((t)) over L with t a prime element. We have
v(t0) = 1−mv(s). It follows that v(t0) ̸= 0 and hence the restriction v0 of v on L0

is a nontrivial discrete valuation (of rank 1). We can view the completions L̂0 and

K̂0 with respect to v0 as subfields of L((t)) and K((t)) respectively, and the extension

L̂0/K̂0 is G-Galois.

Moreover, the ramification index of the extension K((t))/K̂0 is relatively prime to
m as it divides v(t0). Since the extension L((t))/K((t)) is unramified, the ramification

index of L̂0/K̂0 is relatively prime to m. It follows that the order of the inertia

subgroup H ⊂ G for the extension L̂0/K̂0 is prime to m. By [90, Ch. IV, §2], H
is normal in G and there is a G-equivariant embedding H ↪→ µ(L̂0). As µ(L̂0) ⊂
µ(L((t))) = µ(F ), the G-action (by conjugation) on H is trivial, hence H is a central
cyclic subgroup of G. By assumption, H is trivial, i.e., the extension L0/K0 is
unramified. Therefore, the extension L0/K0 of residue fields is G-Galois and it is
a subextension of L/K, i.e., L/K is defined over K0. By definition of the essential
dimension, Corollary 3.12 and (3.1),

ed(G) + 1 = ed(L/K) + 1 ≤ tr. degF (K0) + 1 ≤
tr.degF (K0) = ed(α) ≤ ed(G× µm). �

Corollary 3.18. [12, Corollary 5.5] Let p be a prime integer and F a field containing
a primitive p-th root of unity such that char(F ) does not divide |G|. Assume that
the center of G is a p-group (possibly trivial). Then ed

(
G× Z/pZ

)
= ed(G) + 1.

Another example of the valuation method are given in Theorem 5.11 and in Sec-
tion 10b.

3g. The fixed point method.

Theorem 3.19. [28, Theorem 1.2] If G is connected algebraic group, A is a finite
abelian subgroup of G and char(F ) does not divide |A|, then

ed(G) ≥ rank(A)− rankC0
G(A),

where C0
G(A) is the connected component of the centralizer of A in G. Moreover, if

A is a p-groups, then

edp(G) ≥ rank(A)− rankC0
G(A),

This inequality, conjectured by J.-P. Serre, generalizes previous results in [84]
(where char(F ) is assumed to be 0 and CG(A) to be finite) and [16] (where A is
assumed to be a 2-group).

The proof is based on the following theorem.
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Theorem 3.20. [81, Appendix] Let A be an abelian group and let F have primitive
root of unity of order the exponent of A. Let f : Y 99K X be an A-equivariant rational
morphism of A-schemes. If Y has a smooth A-fixed F -point and X is complete then
X has an A-fixed F -point.

Proof. Induction on n = dim(Y ). The case n = 0 is obvious. In general, let y ∈ Y be

a smooth A-fixed F -point and g : Ỹ → Y the blowing-up of Y at y. The exceptional
divisor E is isomorphic to P(V ) ≃ Pn−1, where V is the tangent space of Y at y.
As A is abelian, by the assumption on the roots of unity, A has an eigenvector in V
and hence P(V ) has an A-fixed F -point. Since X is complete, the composition f ◦ g
restricts to an A-equivariant rational morphism P(V ) 99K X. By induction, X has
an A-fixed F -point. �

The following corollary gives a necessary condition for a G-scheme to be versal.

Corollary 3.21. Let X be a complete versal G-scheme and A ⊂ G a finite abelian
subgroup such that F has a primitive root of unity of order the exponent of A. Then
X has an A-fixed F -point.

Proof. Let V be a generically free G-scheme. As X is versal, there is G-equivariant
rational morphism V 99K X. The zero vector in V is an A-fixed point. By the
theorem, X has an A-fixed point. �

3h. Exceptional groups. In the table one finds the bounds for the essential p-
dimension of split semisimple algebraic groups of exceptional types. Regarding
bounds for edp(G), p prime, we assume that the characteristic of the base field
is different from p. It is sufficient to consider the torsion primes for each group (see
Proposition 3.16).

p G2 F4 Ead6 Esc
6 Ead

7 Esc7 E8

0 3 5 ≤ 7 4 ≤ 65 4 ≤ 8 8 ≤ 118 7 ≤ 29 9 ≤ 231
2 3 5 3 3 8 ≤ 57 7 ≤ 27 9 ≤ 120
3 − 3 4 ≤ 21 4 3 3 5 ≤ 73
5 − − − − − − 3

We have the following lower bounds for edp(G):

The lower bounds for edp(G) with p > 0 in the table are valid over an arbitrary
field of characteristic different from p. The lower bound for ed(G) is the maximum
of the lower bounds for edp(G) over all p > 0.

Case p = 2: All lower bounds are listed in [16] or given by the Rost invariant (see
[26]).

Case p > 2: All lower bounds follow from [28] over an arbitrary field of charac-
teristic different from p. They all come from finite abelian elementary p-subgroups
with finite centralizer (see Theorem 3.19), except for E7, p = 3. In the case Esc7 ,
p = 3, the lower bound is given by the Rost invariant and ed3(E

ad
7 ) = ed3(E

sc
7 ).

Now consider the upper bounds for edp(G):

Case G2: Every Cayley-Dickson algebra can be given by 3 parameters, hence
ed(G2) = ed3(G2) = 3.
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Case Ead6 , Ead7 , E8 and p = 0: see [54, Corollary 1.4] (over an algebraically closed
field of characteristic 0).

Case F4 and Esc
6 and p = 0: due to MacDonald, unpublished; char(F ) ̸= 2 or 3.

It follows that ed(Esc6 ) ≤ ed(F4) + 1 by [27, 9.12].

Case Esc7 and p = 0: In [60], char(F ) ̸= 2 or 3.

Case p ̸= 0:

(F4, 2), (F4, 3), (E6, 2), (Esc6 , 3), (E8, 5): follow from [26, 22.10]. A finite ele-
mentary abelian subgroup H ⊂ G was found such that the morphism H-torsors →
G-torsors is surjective.

(E7, 3): see [28, 9.6].
(Esc7 , 2): see [60].
(Ead6 , 3), (Ead7 , 2), (E8, 2), (E8, 3): see [59].

3i. Symmetric and alternating groups. Let F be a field of characteristic zero.
The study of the essential dimension of the symmetric group Sn and the alternat-

ing group An has begun in [12, Theorem 6.5]. An Sn-torsor over a field extension
K/F is given by a Sn-Galois K-algebra or, equivalently, a degree n étale K-algebra.
The group An is a subgroup of Sn, hence ed(An) ≤ ed(Sn) by Proposition 3.15.

The group Sn×Z/2Z (respectively, An×Z/2Z×Z/2Z) is isomorphic to a subgroup
of Sn+2 (respectively, An+4). By Corollary 3.18,

ed(Sn+2) ≥ ed(Sn) + 1, ed(An+4) ≥ ed(An) + 2 if n ≥ 4.

The standard Sn-action on the product X of n copies of the projective line P1
F

commutes element-wise with the diagonal action of the automorphism group H :=
PGL2 of P1

F . The variety X is birationally Sn-isomorphic to the affine space AnF
with the standard linear action of Sn. By Proposition 3.10, the Sn-variety X is
versal. If n ≥ 5, the induced action of Sn on X/H is faithful and therefore, is versal
as X/H is an Sn-compression of X. Hence

ed(Sn) ≤ dim(X/H) = dim(X)− dim(H) = n− 3.

As A4 contains a subgroup H ≃ Z/2Z × Z/2Z, hence ed(A4) ≥ ed(H) = 2 by
Example 3.5 and Proposition 3.15.

The lower bound ed(A6) ≥ 3 was obtained in [92, Theorem 3.6]. By Proposition
2.4, we may assume that F is algebraically closed. Suppose that ed(A6) = 2. By
Proposition 3.14, there is a unirational surface X with a faithful versal A6-action.
In view of the equivariant resolution of singularities (see [92, Theorem 2.1]) we may
assume that X is smooth projective. By a theorem of Castelnuovo, X is a rational
surface. In view of Enriques-Manin-Iskovskikh classification of minimal rational
G-surfaces (see [61] and [31]), X is either a conic bundle over P1 or a del Pezzo
surface. The classification of minimal rational G-surfaces reduces the problem to an
A6-action on the projective plane P2. It is then shown that the (abelian) 3-Sylow
subgroup of A6 acts on P2 without fixed points contradicting Corollary 3.21.

The lower bound ed(A7) ≥ 4 was proved in [22] along similar lines. Suppose
ed(A7) = 3. By Proposition 3.14, there exists a unirational smooth projective 3-fold
X with a faithful versal A7-action. As X is unirational, it is rationally connected.
Rationally connected 3-folds with a faithful A7-action were classified in [78, Theorem
1.5]. For each such an X one finds an abelian subgroup of A7 without fixed points
contradicting Corollary 3.21.
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We collect all the facts in the following theorem.

Theorem 3.22. All known values of the essential dimension of An and Sn are
collected in the following table:

n 1 2 3 4 5 6 7

ed(An) 0 0 1 2 2 3 4
ed(Sn) 0 1 1 2 2 3 4

Moreover, we have the following inequalities:

n− 3 ≥ ed(Sn) ≥
[n+ 1

2

]
n− 3 ≥ ed(An) ≥


n
2 , if n is even;
n−1
2 , if n ≡ 1 mod 4;

n+1
2 , if n ≡ 3 mod 4.

The values of the essential p-dimension for p > 0 were computed in [72, Corollary
4.2]:

edp(Sn) =
[n
p

]
.

3j. Finite groups of low essential dimension. LetG be a nontrivial finite group.
Since there is a field extension with Galois group G, the group G has nontrivial G-
torsors and hence G is not universally special, hence ed(G) ≥ 1 by Proposition 3.16.
If ed(G) = 1, every faithful G-representation compresses to a curve C with a faithful
G-action. As C is unirational, by Lüroth Theorem, we may assume that C = P1

F ,
hence G ⊂ Aut

(
P1
F

)
= PGL2. It turns out that the G-action on P1

F is versal if and
only if G can be lifted to GL2 (see [21, Corollary 3.4]).

Theorem 3.23. [53, Theorem 1] A nontrivial finite group G has essential dimension
1 over an infinite field F if and only if there exists an embedding G ↪→ GL2 over F
such that the image of G contains no scalar matrices other than the identity.

In [17] the authors give a complete classification of finite groups of essential di-
mension 1 over an arbitrary field. Over an algebraically closed field, ed(G) = 1 if
and only if G is nontrivial cyclic or odd dihedral [12, Theorem 6.2].

Finite groups of essential dimension 2 were classified in [21]. Suppose that ed(G) =
2 for a finite groupG. By Proposition 3.14, there is a unirational (and hence rational)
smooth projective surface X with a faithful versal G-action. Using the Enriques-
Manin-Iskovskikh classification of minimal rational G-surfaces, for each G-action on
X it was decided in [21] whether X is versal.

Theorem 3.24. [21, Theorem 1.1] Let F be an algebraically closed field of charac-
teristic 0 and T = (Gm)

2 a 2-dimensional torus. If G is a finite group of essential
dimension 2 then G is isomorphic to a subgroup of one of the following groups:

(1) GL2,
(2) PSL2(F7), the simple group of order 168,
(3) S5, the symmetric group,
(4) T oG1, where |G ∩ T | is coprime to 2 and 3 and

G1 =
⟨(

1 −1
1 0

)
,

(
0 1
1 0

)⟩
≃ D12,
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(5) T oG2, where |G ∩ T | is coprime to 2 and

G2 =
⟨(
−1 0
0 1

)
,

(
0 1
1 0

)⟩
≃ D8,

(6) T oG3, where |G ∩ T | is coprime to 3 and

G3 =
⟨(

0 −1
1 −1

)
,

(
0 −1
−1 0

)⟩
≃ S3,

(7) T oG4, where |G ∩ T | is coprime to 3 and

G4 =
⟨(

0 −1
1 −1

)
,

(
0 1
1 0

)⟩
≃ S3,

Furthermore, any finite subgroup of these groups has essential dimension ≤ 2.

Finite simple groups of essential dimension 3 were classified in [5]. Let G be a
finite simple group with ed(G) = 3. By Proposition 3.14, there exists a unirational
(and hence rationally connected) smooth projective 3-fold X with a faithful versal
G-action. Rationally connected 3-folds with a faithful action of a finite simple group
were classified in [78, Theorem 1.5]. One can rule out most of the groups thanks to
Corollary 3.21. Unfortunately this criterion does not apply to PSL2(F11).

Theorem 3.25. [5] The simple groups of essential dimension 3 are A6 and possibly
PSL2(F11).

3k. Essential p-dimension over fields of characteristic p. (See [51] and [52].)
Let F be a field of characteristic p > 0 and G = Z/pnZ. By [90, Ch. II, §5], for

a field extension K/F , the group H1(K,G) is isomorphic to a factor group of the
group of Witt vectors Wn(K). Thus, the affine space AnF is a classifying variety for
G and hence ed(G) ≤ n.

Conjecture 3.26. Over a field of characteristic p > 0,

edp(Z/pnZ) = ed(Z/pnZ) = n.

The conjecture holds for n = 1 and 2 by Theorem 3.23.

Theorem 3.27. Let F be a field of characteristic p > 0 and |F | ≥ pn for some
n > 0. Then ed

(
Z/pZ

)n
= 1.

Proof. By assumption, the group (Z/pZ)n can be embedded into GL2 as a unipotent
subgroup of upper triangular matrices. The induced action on the projective line P1

is faithful and versal, hence ed
(
Z/pZ

)n ≤ 1. �

4. Canonical dimension

4a. Definition of the canonical dimension. The notion of canonical dimen-
sion of G-schemes was introduced in [6]. In this section we define the canonical
p-dimension of a functor (see [46, §2] and [68, §1.6]).

Let F : FieldsF → Sets be a functor and x ∈ F(K) for a field extension K/F . A
subfield K0 ⊂ K over F is called a detection field of x (or K0 is a detection field of
x) if F(K0) ̸= ∅. Define the canonical dimension of x:

cdim(x) := min tr. degF (K0),
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where the minimum is taken over all detection fields K0 of x. For p ≥ 0 we define

cdimp(x) := min cdim(xL),

where L runs over all prime to p extensions of K. We set

cdimp(F) := max cdimp(x),

where the maximum runs over all field extensions K/F and all x ∈ F(K).

Define the functor F̂ by

F̂(K) =

{
{K}, if F(K) ̸= ∅;
∅, otherwise.

It follows from the definitions of the canonical and the essential dimension that

cdimp(F) = edp(F̂),

i.e., the canonical dimension is a special case of the essential dimension. Since there

is a natural surjection F → F̂ , we have

cdimp(F) ≤ edp(F)

by Proposition 2.3.
A functor F : FieldsF → Sets is called a detection functor if |F(K)| ≤ 1 for every

field extension K/F . For example, F̂ is a detection functor for every functor F .
A class C of fields in FieldsF closed under extensions determines the detection

functor FC : FieldsF → Sets defined by

FC(K) =

{
{K}, if K ∈ C;
∅, otherwise.

We define the essential p-dimension of the class C by

edp(C) := edp(FC) = cdimp(FC).

Every functor F : FieldsF → Sets determines the class CF of field extensions
K/F such that F(K) ̸= ∅. The class CF is closed under extensions. In particular,
we get mutually inverse bijections C 7→ FC and F 7→ CF between the classes of
field extensions in FieldsF closed under extensions and the (isomorphism classes of)
detection functors, moreover,

cdimp(F) = edp(CF ).

4b. Canonical p-dimension of a variety. Let X be a scheme of finite type over
F . Viewing X as a functor from FieldsF to Sets, we have the canonical p-dimension
cdimp(X) of X defined. In other words, cdimp(X) is the essential p-dimension of
the class

CX = {K ∈ FieldsF such that X(K) ̸= ∅}.
By Proposition 2.1, cdimp(X) ≤ edp(X) = dim(X).

Recall that nX denotes the gcd deg(x) over all closed points x ∈ X.

Lemma 4.1. Let X be a variety over F and p ≥ 0. Then

(1) If (nX , p) = 1 (this means nX = 1 if p = 0), then cdimp(X) = 0.
(2) If cdimp(X) = 0 and X is geometrically irreducible, then (nX , p) = 1.
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Proof. (1) By assumption, there is prime to p extension L/F such that X(L) ̸= ∅.
Let x ∈ X(K) for a field extension K/F . By [68, Lemma 6.1], there is a prime to
p extension K ′/K that admits an F -homomorphism L→ K ′. It follows that L is a
detection field of xK′ , hence cdimp(x) ≤ tr. degF (L) = 0.

(2) Let xgen ∈ X
(
F (X)

)
be the generic point. By assumption, cdimp(xgen) = 0,

hence there is a prime to p extension K ′/F (X) and a subfield K0 ⊂ K ′ such that
X(K0) ̸= ∅ and tr. degF (K0) = 0, i.e., [K0 : F ] < ∞. As X is geometrically
irreducible, XK0 is a variety and [K0(X) : F (X)] = [K0 : F ]. Since K0(X) is a
subfield of K ′, the finite extensions K0(X)/F (X) and K0/F have degree prime to
p. The variety X has a point over K0, hence (nX , p) = 1. �
Proposition 4.2. [45, Corollary 4.11] Let X be a smooth complete variety over F .
Then cdimp(X) is the least dimension of the image of a morphism X ′ → X, where
X ′ is a variety over F admitting a dominant morphism X ′ → X of degree prime to
p (of degree 1 if p = 0). In particular, cdim(X) is the least dimension of the image
of a rational morphism X 99K X.

Proof. Let Z ⊂ X be a closed subvariety andX ′ → X, X ′ → Z dominant morphisms
with the first one of degree prime to p. Replacing X ′ by the closure of the graph of
the diagonal morphism X ′ → X × Z we may assume that X ′ is complete.

Let x ∈ X(K) for a field extension K/F , i.e., x : SpecK → X is a morphism
over F . Write {x̄} ⊂ X for the image of x. As x̄ is a non-singular point of X, there
is a geometric valuation v of F (X) over F with center x̄ and F (v) = F (x̄) ⊂ K by
[68, Lemma 6.6]. We view F (X) as a subfield of F (X ′). As F (X ′)/F (X) is a finite
extension of degree prime to p, by [68, Lemma 6.4], there is an extension v′ of v on
F (X ′) such that F (v′)/F (v) is a finite extension of degree prime to p. Since X ′ is
complete, v′ has center x′ ∈ X ′. Let z be the image of x′ in Z. As F (x′) ⊂ F (v′),
the extension F (x′)/F (x̄) is finite of degree prime to p.

By [68, Lemma 6.1], there is a prime to p extension K ′/K that admits an F -
homomorphism F (x′)→ K ′. Thus, F (z) is a subfield ofK ′, hence F (z) is a detection
field of xK′ , therefore,

cdimp(x) ≤ tr. degF F (z) ≤ dim(Z),

and cdimp(X) ≤ dim(Z).
Conversely, let xgen be the generic point in X

(
F (X)

)
. Choose a prime to p

extensionK ′/F (X) and a subfieldK0 ⊂ K ′ such thatX(K0) ̸= ∅ and tr. degF (K0) =
cdimp(xgen). Let Z be the closure of the image of a point x0 : SpecK0 → X. We
have dim(Z) ≤ tr. degF (K0). The compositions

SpecK ′ → SpecF (X)
xgen−−−→ X and SpecK ′ → SpecK0

x0−→ Z

yield a model X ′ of K ′ and two dominant morphisms X ′ → X of degree prime to p
and X ′ → Z (cf. [68, §6]). We have

cdimp(X) ≥ cdimp(xgen) = tr. degF (K0) ≥ dim(Z). �
We say that a scheme X over F is p-incompressible if cdimp(X) = dim(X). A

scheme X is incompressible if it is 0-incompressible. Every p-incompressible scheme
is incompressible.

Proposition 4.2 then yields:

Corollary 4.3. Let X be a smooth complete variety over F . Then
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(1) X is p-incompressible if and only if for any variety X ′ over F admitting a
surjective morphism X ′ → X of degree prime to p, every morphism X ′ → X
is dominant.

(2) X is incompressible if and only if every rational morphism X 99K X is
dominant.

Let X and Y be varieties over F and d = dim(X). A correspondence from X to
Y , denoted α : X  Y , is an element α ∈ CHd(X ×Y ) of the Chow group of classes
of algebraic cycles of dimension d on X × Y . If dim(Y ) = d, we write αt : Y  X
for the image of α under the exchange isomorphism CHd(X × Y ) ≃ CHd(Y ×X).

Let α : X  Y be a correspondence. Assume that Y is complete. The projection
morphism p : X × Y → X is proper and hence the push-forward homomorphism

p∗ : CHd(X × Y )→ CHd(X) = Z · [X]

is defined [25, § 1.4]. The integer mult(α) ∈ Z such that p∗(α) = mult(α) · [X] is
called the multiplicity of α. For example, if α is the the class of the closure of the
graph of a rational morphism X 99K Y of varieties of the same dimension, then
mult(α) = 1 and mult(αt) := deg(f) the degree of f .

Proposition 4.4. [41, Lemma 2.7] Let p be a prime integer and X a variety. Sup-
pose that for every correspondence α : X  X such that mult(α) is not divisible by
p, the integer mult(αt) is also not divisible by p. Then X is p-incompressible.

Proof. Let f, g : X ′ → X be two morphisms such that f is dominant of degree prime
to p. Let α ∈ CHd(X × X), where d = dim(X), be the class of the closure of the
graph of the morphism (f, g) : X ′ → X ×X. Then mult(α) = deg(f) is prime to p.
By assumption, deg(g) = mult(αt) is also prime to p. In particular, deg(g) ̸= 0 and
g is dominant. By Proposition 4.2, X is p-incompressible. �

4c. Chow motives. Let Λ be a commutative ring. Write CM(F,Λ) for the additive
category of Chow motives with coefficients in Λ over F (see [23, §64]). If X is a
smooth complete scheme, we let M(X) denote its motive in CM(F,Λ). We write
Λ(i), i ≥ 0, for the Tate motives. For example, the motive of the projective space
Pn is isomorphic to Λ⊕ Λ(1)⊕ · · · ⊕ Λ(n) in CM(F,Λ).

Let X be a smooth complete variety over F and M a motive in CM(F,Z). We
call M split, if it is a (finite) direct sum of Tate motives. We call X split, if its
motive M(X) is split. For example, Pn is split. We call M or X geometrically split,
if it splits over a field extension of F .

By [67, Proposition 1.5], X is split if and only the integral bilinear form (u, v) 7→
deg(uv) on CH(X) is unimodular and the natural homomorphism CH(X)→ CH(XL)
is an isomorphism for any field extension L/F . An isomorphism betweenM(X) and
a sum of Tate motives is given by a Z-basis u1, . . . , un and the dual basis v1, . . . , vn
of CH(X). In particular, the Chow group CH(X) is free abelian of finite rank.

Let M be a geometrically split motive. Over an extension L/F , the motive M
is isomorphic to a finite sum of Tate motives. The rank rank(M) of M is defined
as the number of the summands in this decomposition. For example, rank

(
M(X)

)
coincides with the rank of the free abelian group CH(XL) for a splitting field L/F .

For any integer n, we write vp(n) for the value on n of the p-adic valuation. Recall
that nX is the greatest common divisor of the degrees of closed points of a variety
X.
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Proposition 4.5. [36, Lemma 2.21] Let M be a direct summand of the motive
of a geometrically split variety X (with coefficients Λ = Z/pZ). Then vp(nX) ≤
vp
(
rank(M)

)
.

Proof. Let M = (X,π) for a projector π. Write Λ′ = Z/pnZ for some n and
M ′ := (X,π′) a lift of M in CM(X,Λ′) with respect to the ring homomorphism
Λ′ → Λ. The rank of the motive M ′ coincides with m := rank(M). Let L/F be a
splitting field of the motive M ′. Mutually inverse isomorphisms between M ′

L and a
direct sum of m Tate motives are given by two sequences of homogeneous elements
a1, . . . , am and b1, . . . , bm in CH(XL)⊗ Λ′, satisfying π′L = a1 × b1 + · · ·+ am × bm
and such that for any i, j = 1, . . . ,m the degree deg(aibj) in Λ′ is 0 for i ̸= j and 1
for i = j. The pull-back of π′ via the diagonal morphism X → X ×X is therefore a
0-cycle class on X of degree m+ pnZ ∈ Λ′. It follows that m ∈ nXZ+ pnZ for every
n, hence vp(nX) ≤ vp(m). �
Corollary 4.6. Assume that for a splitting field L the rank of the group CH(XL) is
equal to nX . If nX is a power of a prime p, then the motive M(X) with coefficients
in Z/pZ is indecomposable.

We say that X satisfies the nilpotence principle, if for any field extension L/F , the
kernel of the change of field homomorphism End(M(X)) → End(M(XL)) consists
of nilpotents. Every projective homogeneous variety under an action of a semisimple
algebraic group is geometrically split and satisfies the nilpotence principle (see [13]).

A motive M is called indecomposable if M is not isomorphic to the direct sum
of two nonzero objects in CM(F,Λ). A relation between indecomposability of the
motive of a variety X and p-incompressibility of X is given in the following propo-
sition.

Proposition 4.7. [36, Lemma 2.23] If the motive M(X) with coefficients in Z/pZ
of a smooth complete geometrically split variety X satisfying the nilpotence principle
is indecomposable, then the variety X is p-incompressible.

Proof. Suppose X is not p-incompressible. By Proposition 4.2, there are morphisms
f, g : X ′ → X such that f is dominant of degree prime to p and g is not dominant.
Let α ∈ CHd(X ×X)/p, where d = dim(X), be the class of the closure of the graph
of the morphism (f, g) : X ′ → X × X. Then mult(α) ̸= 0 and mult(αt) = 0. As
X is geometrically split and satisfies the nilpotence principle, by [36, Corollary 2.2],
a power of the correspondence α is a projector that determines a nontrivial direct
summand of M(X), a contradiction. �
Example 4.8. (see [34] or [35]) Let A be a central division F -algebra of degree
d + 1 = pn, where p is a prime integer. Let X = SB(A) be the Severi-Brauer
variety of right ideals in A of dimension d + 1. The variety X has a point over a
filed extension L/F if and only if the algebra AL is split. Over such an L we have
XL ≃

(
Pd

)
L
. It follows that nX = d + 1 and rank

(
CH(XL)

)
= d + 1. In view of

Corollary 4.6, X is indecomposable in CM(F,Z/pZ) and hence is p-incompressible
by Proposition 4.7. In particular, cdim(X) = cdimp(X) = d = pn − 1.

Example 4.9. Let q be a nondegenerate quadratic form over F . We will consider
the following cases:

(i) dim(q) = 2m+ 1,
(ii) dim(q) = 2m and the discriminant of q is not trivial,
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(iii) dim(q) = 2m and the discriminant of q is trivial.
Let A be the even Clifford algebra of q in the case (i), the Clifford algebra in

the case (ii) and a simple component of the even Clifford algebra in the case (iii).
Write X for the variety of maximal totally isotropic subspaces Xmax in (i) and
(ii) and a connected component of Xmax in the case (iii). Assume that the value
nX is the largest possible, i.e., nX = 2m in (i) and (ii), and nX = 2m−1 in the
case (iii). This condition holds if A is a division algebra. By [23, Theorem 86.12],
we have rank

(
CH(Xsep)

)
= nX . In view of Corollary 4.6, X is indecomposable

in CM(F,Z/2Z) and hence is 2-incompressible by Proposition 4.7. In particular,
cdim(X) = cdim2(X) = dim(X).

Remark 4.10. We give some other examples of p-incompressible projective homo-
geneous varieties.

A generalization of Example 4.8 (see [36]): Let D be a central division algebra of
degree pn, m an integer with 0 ≤ m ≤ n − 1. Then the generalized Severi-Brauer
variety SBpm(D) of right ideals in D of reduced dimension pm is p-incompressible.
The case p = 2 and m = n− 1 was proved earlier in [62] and [64].

Let F be a field, L/F a quadratic separable field extension andD a central division
L-algebra of degree 2n such that the norm algebra NL/F (D) is split. For any integer
i = 0, . . . , n, the Weil corestriction RL/F SB2i(D) is 2-incompressible [43, Theorem
1.1].

Let q be a non-degenerate quadratic form over F . Let i be an integer satisfying
1 ≤ i ≤ (dim q)/2, Qi the Grassmannian of i-dimensional totally isotropic subspaces.
If the degree of every closed point on Qi is divisible by 2i and the Witt index of the
quadratic form qF (Qi) equals i, then the variety Qi is 2-incompressible [42, Theorem
7]. The case of i = 1 was known before by [44] (the proof is essentially contained in
[98]; the characteristic 2 case has been treated later on in [23]). For i = 2 and odd-
dimensional q, it has been proved in [63]. The case of maximal i, i.e., of i = [n/2],
was also known before (see [38, Theorem 1.1] and [97]).

Let K/F be a separable quadratic field extension. Let h be a generic K/F -
hermitian form of an arbitrary dimension n ≥ 0. For r = 0, 1, . . . , [n/2], the unitary
grassmannian of r-dimensional totally isotropic subspaces is 2-incompressible [37,
Theorem 8.1].

4d. Strongly p-incompressible varieties. Let p be a prime integer and R =
(r1, r2, . . . ) a sequence of non-negative integers, almost all zero. Consider the “small-
est” symmetric polynomial QR in the variables X1, X2, . . . containing the monomial

(X1 . . . Xr1)
p−1(Xr1+1 . . . Xr1+r2)

p2−1(Xr1+r2+1 . . . Xr1+r2+r3)
p3−1 . . .

and write QR as a polynomial on the standard symmetric functions:

QR = PR(σ1, σ2, . . . ).

For any smooth projective variety X of dimension |R|, we define the characteristic
number

R(X) := deg cR(−TX) ∈ Z,
where cR is the characteristic class cR := PR(c1, c2, . . . ) and TX is the tangent bundle
of X.

By definition, nX divides R(X), hence vp
(
R(X)

)
≥ vp(nX) for any R. A smooth

projective variety X is caller p-rigid, if vp
(
R(X)

)
= vp(nX) for some R.
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A smooth projective variety X is called strongly p-incompressible, if for any pro-
jective variety Y with vp(nY ) ≥ vp(nX), dimY ≤ dimX, and a multiplicity 1
correspondence X  Y , one has dimY = dimX and there also exists a multiplicity
1 correspondence Y  X. In particular, any strongly p-incompressible variety is
p-incompressible.

Proposition 4.11. [66, Theorem 7.2] Assume that char(F ) ̸= p. Then any p-rigid
variety over F is strongly p-incompressible.

Example 4.12. Let p be a prime integer and α = {a1, a2, . . . , an} ∈ Kn(F )/pKn(F )
a symbol in the Milnor K-group of F modulo p (see [76]). We write αL for the image
of α in Kn(L)/pKn(L) for a field extension L/F . A smooth projective variety X is
called a p-generic splitting variety of α if αF (X) = 0 and X has a closed point of
degree prime to p over every field extension K/F such that αK = 0. In view of [93],
p-generic splitting varieties exist for every symbol over a field of characteristic 0 and
by [93, Proposition 2.6], every p-generic splitting variety X of a nontrivial symbol
with dim(X) = pn−1 − 1 is p-rigid (for the sequence R with rn−1 = 1 and ri = 0 for
all i ̸= n− 1). It follows from Proposition 4.11 that X is strongly p-incompressible.

Example 4.13. Let q be a nondegenerate quadratic form over a field F and X the
projective quadric hypersurface over F given by q. The first Witt index i1(X) is the
Witt index of q over the function field F (X). It is shown in [44] (if char(F ) ̸= 2) and
in [96] (if char(F ) = 2) that X is strongly 2-incompressible if and only if i1(X) = 1.

An example with hermitian quadric of dimension 2r − 1 is considered in [87,
Theorem A].

4e. Products of Severi-Brauer varieties. Let F be an arbitrary field, p a prime
integer and D ⊂ Brp(F ) a subgroup, where Br(F ) is the Brauer group of F . We
write edp(D) for the essential p-dimension of the class of splitting field extensions
for D and ind(d) for the index of d in Br(F ).

The goal of this section is to prove the following theorem.

Theorem 4.14. Let p be a prime integer, F a field of characteristic different from
p and D a finite elementary p-subgroup of the Brauer group Br(F ). Then

ed
(
D) = edp

(
D) = min

∑
d∈A

(
ind(d)− 1

)
,

where the minimum is taken over all bases A of D over Z/pZ.

Let A = {d1, . . . , dr} be a basis of D. For every i, Ai a central division F -algebra
(of degree ind(di)) representing di and Pi = SB(Ai) the Severi-Brauer variety of Ai.
Set PA := P1 × P2 × · · · × Pr. Note that PA depends on the choice of the basis A.

The classes of splitting fields of PA and D coincide for every basis A. Hence

(4.1) edp(D) ≤ ed(D) = cdim(PA) ≤ dim(PA) =
r∑
i=1

(
ind(di)− 1

)
.

We will produce a basis A of D such that cdimp(PA) = dim(PA). The latter is
equivalent to the fact that PA is p-incompressible.

We say that a basis A = {d1, . . . , dr} of D is minimal if for every i = 1, . . . , r and
any element d ∈ D \ span(d1, . . . , di−1), we have ind(d) ≥ ind(di).
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Remark 4.15. One can construct a minimal basis of D by induction as follows:
Let d1 be a nonzero element of D of the minimal index. If the elements d1, . . . , di−1

are already chosen for some i ≤ r, we take for the di an element of D of the minimal
index among the elements in D \ span(d1, . . . , di−1).

Thus, it is suffices to prove the following proposition.

Proposition 4.16. Let D ⊂ Brp(F ) be a subgroup of dimension r and A = {d1, d2, . . . , dr}
a minimal basis of D. Then the variety PA constructed above is p-incompressible.

Fix a minimal basis A of D. In view of Proposition 4.4 it suffices to prove the
following proposition.

Proposition 4.17. Let D ⊂ Brp(F ) be a finite subgroup and A a minimal basis of
D. Then for every correspondence α : PA  PA, we have

mult(α) ≡ mult(αt) (mod p).

Let A be a central simple algebra in Brp(F ) and P := SB(A). We will study the
Grothendieck group K0(P ) (see [79]). In the split case, P is a projective space of
dimension deg(A)− 1, hence

K0(P ) =
⨿

0≤j<deg(A)

Z ξj ,

where ξ ∈ K0(P ) is the class of the invertible sheaf O(−1). Then 1− ξ is the class
of a hyperplane and (1 − ξ)degA = 0. Consider the polynomial ring Z[x]. We have
a ring isomorphism

K0(P ) ≃ Z[x]/
(
(1− x)degA

)
,

taking ξ to the class of x. On the other hand, we can embed the group K0(P ) into
Z[x], ξi 7→ xi, as the subgroup generated by the monomials xj with j < degA.

In the general case, by a theorem of Quillen (see [79, §9]),

K0(P ) ≃
⨿

0≤j<deg(A)

K0(A
⊗j).

The image of the natural map K0(A
⊗j) → K0(A

⊗j
) = Z, (where ”bar” denotes

objects over a splitting field) is equal to ind(A⊗j)Z. The image of the injective
homomorphism K0(P ) → K0(P ) identifies K0(P ) with the subgroup generated by
ind(A⊗j) Z ξj for all j ≥ 0. More precisely,

K0(P ) =
⨿

0≤j<deg(A)

ind(A⊗j) Z ξj ⊂
⨿

0≤j<deg(A)

Z ξj = K0(P ).

Let ind(A) = pn. For any j ≥ 0, write:

e(j) =

{
0, if j is divisible by p;
n, otherwise.

Thus, ind(A⊗j) = pe(j) and the ring K0(P ) depends only on n.

Denote by K(n) the subgroup of Z[x] generated by the monomials pe(j)xj for
j ≥ 0. Clearly, K(n) is a subring of Z[x].

There is a natural surjective ring homomorphism K(n) → K0(P ). Write h :=
1 − x. We have hdegA ∈ K(n). Since the image of h in K0(P ) is the class of a
hyperplane, the image of hdegA in K0(P ) is zero.
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Proposition 4.18. The induced homomorphism K(n)/(hdegA)→ K0(P ) is an iso-
morphism.

Proof. Set m = degA. It suffices to show that the quotient ring K(n)/(hm) is

additively generated by pe(j)xj with j < m. Note that the polynomial xm−(−h)m =

xm− (x−1)m is a linear combination with integer coefficients of pe(j)xj with j < m:

xm − (−h)m =
m−1∑
j=0

aj p
e(j)xj .

For any k ≥ m, multiplying both sides of this equality by pe(k−m)xk−m = pe(k)xk−m,
we see that the polynomial pe(k)xk modulo the ideal (hm) is a linear combination with

integer coefficients of the pe(j)xj with j < k, and the proof concludes by induction
on k. �

Corollary 4.19. Let g be a polynomial in the variable h = 1− x lying in K(n) for
some n ≥ 0. Let bhi−1 be a monomial of g such that i is divisible by pn. Then b is
divisible by pn.

Proof. By Proposition 4.18, the factor ring K(n)/(hi) is isomorphic to K0(P ), where
P is the Severi-Brauer variety of an algebra of index pn and degree i. Thus,
K(n)/(hi) is additively generated by pe(j)xj = pe(j)(1 − h)j with j < i. Only

the generator pe(i−1)(1 − h)i−1 = pn(1 − h)i−1 has a nonzero hi−1-coefficient and
that coefficient is divisible by pn. �

Note that we also have a canonical embedding of groups K0(P ) ⊂ K(n).

Now consider the following more general situation. Let A1, A2, . . . , Ar be central
simple algebras in Brp(F ), Pi = SB(Ai) and P = P1 × · · · × Pr. We will consider
the Grothendieck group K0(P ). In the split case (when all the algebras Ai split),
P is the product of r projective spaces of dimensions deg(A1) − 1, . . . , deg(Ar) − 1
respectively. Write ξi ∈ K0(P ) for the pullback of the class of O(−1) on the i-th
component of the product and set

ξj := ξj11 · · · ξ
jr
r

for a multi-index j = (j1, . . . , jr). We also write 0 ≤ j < degA for a multi-index j
such that 0 ≤ ji < degAi for all i = 1, . . . , r.

We have

K0(P ) =
⨿

0≤j<degA

Z ξj ,

Then 1 − ξi ∈ K0(P ) is the pull-back of the class of a hyperplane on the i-th
component. We have (1− ξi)degAi = 0.

Consider an r-tuple of variables x = (x1, . . . , xr) and the polynomial ring Z[x].
We have

K0(P ) = Z[x]/
(
hdegA1
1 , . . . , hdegAr

r

)
,

where hi := 1− xi.
In the general case, by Quillen’s theorem,

K0(P ) ≃
⨿

0≤j<degA

K0(A
⊗j),
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where A⊗j := A⊗j1
1 ⊗· · ·⊗A⊗jr

r . The image of the injective homomorphismK0(P )→
K0(P ) identifies K0(P ) with the subgroup

K0(P ) =
⨿

0≤j<degA

ind(A⊗j) Z ξj ,

of K0(P ).
Suppose now that the algebras Ai are division algebras representing a minimal

basis A = {d1, . . . , dr} of the subgroup D. Set pni := ind(di) = deg(di) and dj :=

dj11 · · · d
jr
r ∈ Brp(F ) for a multi-index j = (j1, . . . , jr) ≥ 0. Recall that by the

definition of a minimal basis, 0 ≤ n1 ≤ n2 ≤ · · · ≤ nr and logp ind(a
j) ≥ nk with

the largest k such that jk is not divisible by p.
We introduce the following notation. Let r ≥ 1 and 0 ≤ n1 ≤ n2 ≤ · · · ≤ nr be

integers. For all j = (j1, . . . , jr) ≥ 0, we define the number e(j) as follows:

e(j) =

{
0, if all j1, . . . , jr are divisible by p;
nk, with the largest k such that jk is not divisible by p.

Thus, we have

logp ind(a
j) ≥ e(j).

Let K := K(n1, . . . , nr) be the subgroup of the polynomial ring Z[x] in r variables
x = (x1, . . . , xr) generated by the monomials pe(j)xj for all j ≥ 0. In fact, K is a
subring of Z[x]. By construction, we have canonical embeddings of groups

K0(P ) ⊂ K ⊂ Z[x].

We set h = (h1, . . . , hr) with hi = 1− xi ∈ Z[x], thus, Z[x] = Z[h].

Proposition 4.20. Let f = f(h) ∈ K be a nonzero polynomial and chi, for a multi-
index i ≥ 0 and c ∈ Z, a nonzero monomial of the least degree of f . Assume that
the integer c is not divisible by p. Then pn1 | i1, . . . , pnr | ir.

Proof. We proceed by induction on m = r + n1 + · · · + nr ≥ 1. The case m = 1 is
trivial. If m > 1 and n1 = 0, then for any j = (j1, . . . , jr), we have

e(j) = e(j′),

where j′ = (j2, . . . , jr). It follows that

K = K(n2, . . . , nr)[x1] = K(n2, . . . , nr)[h1].

Write f in the form

f =
∑
i≥0

hi1 · gi

with gi = gi(h2, . . . , hr) ∈ K(n2, . . . , nr). Then chi22 . . . h
ir
r is the monomial of the

least degree of gi1 . We can apply the induction hypothesis to gi1 ∈ K(n2, . . . , nr).
In what follows we assume that n1 ≥ 1.
Since K(n1, n2, . . . , nr) ⊂ K(n1 − 1, n2, . . . , nr), by the induction hypothesis,

pn1−1 | i1, pn2 | i2, . . . , pnr | ir. It remains to show that i1 is divisible by pn1 .
Consider the additive operation φ : Z[x]→ Q[x] defined by

φ(g) =
1

p
x1 ·

∂g

∂x1
.
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We have

φ(xj) =
j1
p
xj

for any j. It follows that

(4.2) φ(K) ⊂ K(n1 − 1)[x2, . . . , xr] = K(n1 − 1)[h2, . . . , hr]

and

φ(hj) = −1

p
x1 ·

∂(hj)

∂h1
= −j1

p
hj1−1
1 hj22 · · ·h

jr
r +

j1
p
hj11 h

j2
2 · · ·h

jr
r .

Since chi11 · · ·hirr is a monomial of the lowest total degree of the polynomial f , it

follows that − ci1
p hi1−1

1 hi22 · · ·hirr is a monomial of φ(f) considered as a polynomial

in h. By (4.2), − ci1
p hi1−1

1 is a monomial of a polynomial from K(n1− 1). Since c is

not divisible by p, it follows that i1
p is an integer and by Corollary 4.19, this integer

is divisible by pn1−1. Therefore pn1 divides i1. �

Let A be a minimal basis of D and set P := PA. We write P for P over a splitting
field.

Proposition 4.21. For any j > 0, we have

Im
(
CHj(P )→ CHj(P )

)
⊂ pCHj(P ).

Proof. Each of the groups K0(P ) and K0(P ) is endowed with the topological fil-

tration (see [79]). The subsequent factor groups K0(P )
(j/j+1) and K0(P )

(j/j+1) of
these filtrations fit into the commutative square

CHj(P ) −−−−→ K0(P )
(j/j+1)y y

CHj(P ) −−−−→ K0(P )
(j/j+1)

where the bottom map is an isomorphism as P is split. Therefore it suffices to show
that the image of the homomorphism K0(P )

(j/j+1) → K0(P )
(j/j+1) is divisible by p

for any j > 0.
The ring K0(P ) is identified with the quotient of the polynomial ring Z[h] by the

ideal generated by hind d11 , . . . , hind drr . Under this identification, the element hi is
the pull-back to P of the class of a hyperplane in Pi over a splitting field and the
j-th term K0(P )

(j) of the filtration is generated by the classes of monomials in h of

degree at least j. The group K0(P )
(j/j+1) is then identified with the group of all

homogeneous polynomials of degree j.
Recall that

K0(P ) ⊂ K(n1, . . . , nr) ⊂ Z[x],

where ni = logp
(
ind(di)

)
.

An element of K0(P )
(j) with j > 0 is a polynomial f in h of degree at least j.

The image of f in K0(P )
(j/j+1) is the j-th homogeneous part fj of f . As the degree

of f with respect to hi is less than ind di, it follows from Proposition 4.20 that all
the coefficients of fj are divisible by p. �
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Now we prove Proposition 4.17. Note that any projection Pi × Pi → Pi is a pro-
jective bundle for every i. By the Projective Bundle Theorem [23, Theorem 57.14],
the Chow group CHn(P × P ) is naturally isomorphic to a direct some of several
copies of CHj(X) for some j’s and the value j = 0 appears once. By Proposition
4.21, the image of the composition

f : CHn(P × P )→ CHn(P × P )→ (Z/pZ)2,

where n = dim(P ), taking a correspondence α ∈ CHn(P×P ) to
(
mult(α),mult(αt)

)
modulo p is cyclic generated by the image of the direct summand of CHn(P × P )
isomorphic to CH0(P ) ≃ Z. Since the image of the diagonal class under f is (1̄, 1̄),
the image of f is generated by (1̄, 1̄).

4f. A conjecture. Let A be a central division F -algebra of degree n. Write n =
q1q2 · · · qr where the qi are powers of distinct primes. Then A is a tensor product
A1⊗A2⊗ . . .⊗Ar, where Ai is a central division F -algebra of degree qi [29, Theorem
4.4.6]. A field extension K/F splits A if and only if K splits Ai for all i. In
other words, the variety SB(A) has an K-point if and only if the variety Y :=
SB(A1)× SB(A2)× · · · × SB(Ar) has an K-point. Hence

cdim
(
SB(A)

)
= cdim(Y ) ≤ dim(Y ) =

r∑
i=1

(qi − 1).

It was conjectured in [18] that the inequality is actually an equality:

Conjecture 4.22. Let A = A1 ⊗ A2 ⊗ . . . ⊗ Ar be the tensor product of central
division F -algebras of degree q1, q2, . . . , qr, where qi are powers of distinct primes.
Then

cdim
(
SB(A)

)
=

r∑
i=1

(qi − 1).

This conjecture was proved in the case when r = 1, i.e., when deg(A) is power of a
prime integer (Example 4.8) and in the case n = 6 if char(F ) = 0 (see [18, Theorem
1.3]). The proof uses classification of rational surfaces, especially, del Pezzo surfaces
of degree 6.

4g. Canonical p-dimension of algebraic groups. Let G be an algebraic group
over F and p ≥ 0. The canonical p-dimension of G is the maximum of the canonical
p-dimension of all G-torsors over all field extensions of F .

The following statements follow from Lemma 4.1.

Lemma 4.23. Let G be an algebraic group over F and p a prime integer. Then

(1) If cdimp(G) ̸= 0, then p is a torsion prime for G.
(2) If p is a torsion prime for G and G is connected, then cdimp(G) ̸= 0.

Lemma 4.24. A connected group G is universally special if and only if cdim(G) = 0.

Let p be a prime integer. The canonical p-dimension of split semisimple groups
was computed in [45] (classical groups) and [100] (exceptional groups).

Type An−1: If d divides n,

cdimp

(
SLn /µd

)
=

{
pm − 1, if p divides d;
0, otherwise.
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where pm is the largest power of p dividing n.

Type Bn:
cdim2 SO2n+1 =

n(n+ 1)

2
,

cdim2 Spin2n+1 =
n(n+ 1)

2
− 2k + 1,

where k is the smallest integer such that 2k > n.

Type Cn: cdim2 Sp2n = 0,

cdim2PGSp2n = 2m − 1,

where 2m is the largest power of 2 dividing 2n.

Type Dn: Let 2
m be the largest power of 2 dividing n and k the smallest integer

such that 2k ≥ n.

cdim2 Spin2n =
n(n− 1)

2
− 2k + 1,

cdim2 SO2n =
n(n− 1)

2
,

cdim2PGO+
2n =

n(n− 1)

2
+ 2m − 1,

cdim2 Spin
+
2n =

n(n− 1)

2
+ 2m − 2k,

if n is even for the last two group.

Type G2: cdim2(G) = 3.

Type F4: cdim2(F4) = 3, cdim3(F4) = 8.

Type E6: cdim2(E6) = 3, cdim3(E
sc
6 ) = 8, cdim3(E

ad
6 ) = 16.

Type E7: cdim2(E
sc
7 ) = 17, cdim2(E

ad
7 ) = 18, cdim3(E7) = 8.

Type E8: cdim2(E8) = 60, cdim3(E8) = 28, cdim5(E8) = 24.

Example 4.25. Let G = GLn /µd (we don’t assume that d divides n). The con-
necting map

H1(K,G)→ H2(K,µd) = Brd(K)

for the exact sequence 1 → µd → GLn → G → 1 yields a bijection between
G-torsors(K) and the set CSAn,d(K) of isomorphism classes of central simple alge-
bras of degree n and exponent dividing d. Note that if p a prime divisor of d, then
there is a division algebra A over a field extension of F of degree the largest power
pm of p dividing n and exponent dividing d. The classes of splitting fields of A and
the corresponding Severi-Brauer variety coincide. It follows from Example 4.8 that

cdimp(GLn /µd) = cdimp(CSAn, d) = pm − 1.

The computation of the canonical dimension of an algebraic groups is a much
harder problem. Conjecture 4.22 would imply that if n = q1q2 · · · qr, where qi are
powers of distinct primes, then

cdim(PGLn) =
r∑
i=1

(qi − 1).
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It is shown in [18] that cdim(PGL6) = 3 over a field of characteristic 0. This is
the only group having more than one torsion primes with the known value of the
canonical dimension.

It is proved in [39] that cdim(Spin2n+1) = cdim(Spin2n+2) ≤ n(n − 1)/2 and
this is equality if n is a power of 2. The value of cdim(Spinn) for all n ≤ 16 was
determined in [40].

5. Fiber Dimension Theorem

The essential dimension of fibered categories was defined in [10].

5a. Categories fibered in groupoids. In many examples of functors F : FieldsF →
Sets, the sets F(K) are isomorphism classes of objects in certain categories. It
turned out that it is convenient to consider these categories which usually form
what is called the categories fibered in groupoids.

Let SchemesF be the category of schemes over F , π : X → SchemesF a functor, a
an object of X and X = π(a). We say that a is an object over X. For every scheme
X over F , all objects over X form the fiber category X (X) with the morphisms f
satisfying π(f) = 1X .

Let f : a→ b be a morphism in X and α := π(f) : X → Y , so that a is an object
over X and b is over Y . We say that the morphism f is over α.

The category X equipped with a functor π is called a category fibered in groupoids
over F (CFG) if the following two conditions hold:

(1) For every morphism α : X → Y in SchemesF and every object b in X over Y ,
there is an object a in X over X and a morphism a→ b over α.

(2) For every pair of morphisms α : X → Y and β : Y → Z in SchemesF and
morphisms g : b → c and h : a → c in X over β and β ◦ α respectively, there is a
unique morphism f : a→ b over α such that h = g ◦ f .

It follows from the definition that the object a in (1) is uniquely determined by
b and α up to canonical isomorphism. We will write bL for a. The fiber categories
X (X) are groupoids for every X, i.e., every morphism in X (X) is an isomorphism.

If X (X) is a small category for every X, i.e., objects in X (X) form a set. We have
a functor FX : FieldsF → Sets, taking a field K to the set of isomorphism classes in
F(K) := F(SpecK) and a field extension α : K → L to the map [a] 7→ [aL], where
[a] denotes the isomorphism class of a.

Example 5.1. Every scheme X over F can be viewed as a CFG as follows: An
object of X (as a CFG) is a scheme Y over X, i.e., a morphism Y → X over F .
A morphism between two objects is a morphism of schemes over X. The functor
π : X → SchemesF takes a scheme Y over X to Y and a morphism between two
schemes over X to itself. Note that the fiber groupoids X(Y ) = Mor(Y,X) are sets,
i.e., every morphism in X(Y ) is the identity.

Example 5.2. Let an algebraic group G act on a scheme X over F . We define the
CFG X/G as follows: An object of X/G is a diagram

E

ρ

��

φ // X

Y

,
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where ρ is a G-torsor and φ is a G-equivariant morphism. A morphism between two
such diagrams is a morphism between the G-torsors satisfying obvious compatibility
condition. The functor π : X/G→ SchemesF takes the diagram to Y .

If E → Y is a G-torsor, then E/G ≃ Y .
If X = Spec(F ), we write BG for X/G. This is a category of G-torsors E → Y

over a scheme Y .

Example 5.3. Let K/F be a finite Galois field extension with Galois group H and
f : G → H a surjective homomorphism of finite groups with kernel N . Then G
acts on Spec(K) via f . An object of the fiber of the category X := Spec(K)/G over

Spec(F ) is a G-torsor E → Spec(F ) together with an isomorphism E/N
∼→ Spec(K)

of H-torsors. By Example 3.1, E ≃ Spec(L), where L/F is a Galois extension with
Galois group G such that LN ≃ K. In other words, L/F is a solution of the
embedding problem in Galois theory given by K/F and f (see [30]).

All CFG’s over F form a 2-category, in which morphisms (X , π) → (X ′, π′)
are functors φ : X → X ′ such that π′ ◦ φ = π, and 2-morphisms φ1 → φ2 for
morphisms φ1, φ2 : (X , π) → (X ′, π′) are natural transformations t : φ1 → φ2 such
that π′(ta) = 1π(a) for all objects a of X . For a scheme X over F and a CFG X
over F , the morphisms MorCFG(X,X ) have a structure of a category. By a variant
of the Yoneda Lemma, the functor

MorCFG
(
X,X

)
→ X (X),

taking a morphism f : X → X to f(1X), is an equivalence of categories.
We will use the notion of 2-fiber product in the 2-category of CFG’s over F . If

φ : X → Z and ψ : Y → Z are two morphisms of CFG’s over F a 2-fiber product
X ×Z Y is a CFG over F whose objects are triples (x, y, f), where x and y are
objects of X and Y over a scheme X and f : φ(x) → ψ(y) is an isomorphism in Z
lying over the identity of X. The diagram

X ×Z Y
α
��

β // Y
ψ
��

X
φ // Z

with the obvious functors α and β is 2-commutative (i.e. the two compositions
X ×Z Y → Z are 2-isomorphic).

Let f : X → Y be a morphism of CFG’s over F . An object of the fiber category
Y(Y ) for a scheme Y determines a morphism y : Y → Y of CFG’s over F . The fiber
of f over y is defined as the 2-fiber product

Xy := X ×Y Y.

Example 5.4. Let G be an algebraic group and X a G-scheme over F . We have a
natural morphism f : X/G→ (SpecF )/G = BG. A G-torsor E → Y determines a
morphism y : Y → BG. Then the scheme XE := (X ×E)/G, the twist of X by the
torsor E, is the fiber (X/G)y of f over y.

Example 5.5. Let G → H be a homomorphism of algebraic groups over F . An
H-torsor E → Y determines a morphism y : Y → BH. Then E/G is the fiber
(BG)y of the morphism BG→ BH over y.
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5b. Essential and canonical dimension of categories fibered in groupoids.
Let X be a CFG over F , x : Spec(K) → X a morphism for a field extension K/F
and K0 ⊂ K a subfield over F . We say that x is defined over K0 (or that K0 is a
field of definition of x) if there exists a morphism x0 : Spec(K0)→ X such that the
diagram

Spec(K)
x //

��

X

Spec(K0)

x0

;;vvvvvvvvvv

2-commutes. We say that x is detected over K0 (or that K0 is a detection field of
x) if there exists a morphism x0 : Spec(K0)→ X .

Define

ed(x) := min tr. degF (K0), cdim(x) := min tr. degF (K
′
0),

where the minimum is taken over all fields of definition K0 of x, respectively, over
all detection fields K ′

0 of x. For p ≥ 0, we define

edp(x) := min ed(xL), cdimp(x) := min cdim(xL),

where L runs over all prime to p extensions of K. We set

edp(X ) := max edp(x), cdimp(X ) := max cdimp(x),

where the maximum runs over all field extensionsK/F and morphisms x : Spec(K)→
X .

If the fiber category X (X) is small for every X, we have the functor FX :
FieldsF → Sets (see Section 5a). It follows from the definitions that

edp(X ) = edp(FX ), cdimp(X ) = cdimp(FX ).

Note that for an algebraic group G, we have edp(BG) = edp(G) for every p ≥ 0.
The following theorem generalizes [10, Theorem 3.2].

Theorem 5.6. (Fiber Dimension Theorem, [58, Theorem 1.1]) Let f : X → Y be a
morphism of CFG’s over F . Then for every p ≥ 0,

edp(X ) ≤ edp(Y) + max edp(Xy),
cdimp(X ) ≤ edp(Y) + max cdimp(Xy),

where the maximum is taken over all field extensions K/F and all morphisms y :
Spec(K)→ Y of CFG’s over F .

Proof. We will give a proof of the first inequality. Let K/F be a field extension,
x : SpecK → X be a morphism, and set y = f ◦ x : SpecK → Y. By definition
of edp(y), there exist a prime to p extension K ′/K and a subfield K0 ⊂ K ′ over F
such that tr. degF (K0) = edp(y) together with a 2-commutative diagram

SpecK ′

��

// SpecK0

y0

��
SpecK

x // X
f // Y.
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By the universal property of 2-fiber product there exists a morphism z : SpecK ′ →
Xy0 such that the diagram

SpecK ′

��

z // Xy0 //

��

SpecK0

y0

��
SpecK

x // X
f // Y

2-commutes. By the definition of edp(z), there is a prime to p field extension K ′′/K ′

and a subfield K1 ⊂ K ′′ over K0 with tr. degK0
(K1) = edp(z) such that the above

diagram can be completed to a 2-commutative diagram

SpecK ′′

��

// SpecK1

��
SpecK ′

��

z // Xy0 //

��

SpecK0

y0

��
SpecK

x // X
f // Y.

Therefore, x is p-defined over K1. It follows that

edp(x) ≤ tr. degF (K1) = tr. degF (K0) + tr. degK0
(K1) =

edp(y) + edp(z) ≤ edp(Y) + edp(Xy0). �
Theorem 5.6 and Examples 5.4 and 5.5 give:

Corollary 5.7. [10, Corollary 3.3] Let G be an algebraic group, X a G-scheme and
E → Spec(K) a G-torsor for a field extension K/F . Then

edp(X/G) ≤ edp(G) + dim(X)

for every p ≥ 0.

Corollary 5.8. Let G→ H be a homomorphism of algebraic groups over F . Then

edp(G) ≤ edp(H) + max edp(E/G)

for every p ≥ 0, where the maximum is taken over all field extensions K/F and all
H-torsors E → SpecK.

5c. Essential and canonical dimension of a gerbe. Let G be an algebraic group
and C ⊂ G a smooth central subgroup. As C is commutative, the isomorphism
classes of C-torsors over a scheme X form an abelian group. The group operation
can be set up on the level of categories as a pairing

BC × BC → BC, (I, I ′) 7→ (I ×X I ′)/C,

where I and I ′ are C-torsors over X and an element c in C acts on I×X I ′ by (c, c−1),
making BC a “group object” in the category of CFG’s. We will write (t, t′) 7→ t+ t′

for this operation and 0 for the trivial C-torsor.
We set H = G/C and let E be an H-torsor over Spec(F ). Consider the fibered

category X := E/G. An object of X (X) over a scheme X is a “lift” of the H-torsor

E × X → X to a G-torsor J → X together with an isomorphism J/C
∼→ E × X.

The latter shows that J is a C-torsor over E ×X.
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The exactness of the sequence

H1
ét(X,G)→ H1

ét(X,H)→ H2
ét(X,C)

for a scheme X implies that X has an object over X if and only if the image of θ(X )
in H2

ét(X,C) of the class of E is trivial. We say that X is split over a field extension
K/F if X (K) ̸= ∅. Thus, the classes of splitting fields of X and θ(X ) coincide.

By [47, §28], the group H1(K,C) acts transitively (but not simply transitively in
general) on the fibers of the map H1(K,G) → H1(K,H) for every field extension
K/F . This can also be set up in the context of categories as follows: First, we have
the “action” functor

(5.1) BC ×X → X , (t, x) 7→ t+ x,

taking a pair of objects (I, J), where I → X is a C-torsor and q : J → X is a
G-torsor, to the G-torsor (I ×X J)/C.

We also have the “subtraction” functor

(5.2) X × X → BC, (x, x′) 7→ x− x′,
taking a pair of objects (J, J ′) over X to I := (J ×E×X J ′)/G. We view I as a
C-torsor via the C action on the first factor J . Thus, BC “acts simply transitively”
on X .

Note that X is split if and only if X ≃ BC. As every H-torsor E → Spec(F ) is
split over a field extension of F , the fibered category X can be viewed as a “twisted
form” of BC, or a “BC-torsor”.

The pairings satisfy the following properties:

(t+ t′) + x ≃ t+ (t′ + x)

(t+ x)− x′ ≃ t+ (x− x′)
(x− x′) + x′ ≃ x

x− x ≃ 0

0 + x ≃ x

for t, t′ ∈ BC(X) and x, x′ ∈ X (X).

Remark 5.9. Let C be a commutative group. A fibered category X equipped with
the two pairings as in (5.1) and (5.2) satisfying the conditions above is known as a
gerbe banded by C. There is an element θ(X ) ∈ H2(F,C) attached to X such that
X has an object over a scheme X if and only if θ(X ) is trivial over X. In particular,
the classes of splitting fields for X and θ(X ) coincide.

Let X be gerbe banded by C = (µp)
s (for example, X = E/G as above). Let Ĉ

denote the character group Hom(C,Gm) of C. Taking the cup-product with θ(X )
for the pairing

Ĉ ⊗H2(F,C)→ H2(F,Gm) = Br(F )

we get a homomorphism β : Ĉ(F )→ Br(F ). Let D(X ) be its image. Clearly, θ(X )
is split over a field extension K/F if and only if D(X ) is split over K. In particular,

(5.3) cdimp(X ) = edp
(
D(X )

)
= edp

(
Im(β)

)
for all p ≥ 0.

Now we connect the essential and canonical dimension of a gerbe.
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Proposition 5.10. Let X be as above. Then

edp(X ) ≤ cdimp(X ) + edp(BC)

for every p ≥ 0.

Proof. Let K/F be a field extension, x ∈ X (K), K ′/K a prime to p field extension
and a subfield K0 ⊂ K ′ such that X (K0) ̸= ∅ and cdimp(X ) = tr.degF (K0). Take
any y ∈ X (K0) and set t := xK′ − yK′ ∈ BC(K ′). Choose a prime to p field
extension K ′′/K ′, a subfield K1 ⊂ K ′′ over F and a t′ ∈ BC(K1) with t′K′′ = tK′′

and tr. degF (K1) = edp(t). Then xK′′ ≃ t′K′′ + yK′′ is defined over K0K1, hence

edp(x) ≤ tr. degF (K0K1) ≤ tr. degF (K0) + tr. degF (K1)

= cdimp(X ) + edp(t) ≤ cdimp(X ) + edp(BC). �
In the following theorem we show that the inequality is in fact the equality if

C = (µp)
s, where p is a prime integer, over a field F of characteristic different from

p. Recall that edp(BC) = s in this case by Example 3.5.
Let R be a commutative F -algebra and ri ∈ R×, i = 1, . . . , s. Then the ring

R[x1, . . . , xs]/(x
p
1 − r1, . . . , x

p
s − rs) is a Galois C-algebra over R. We simply write

(r) or (r1, . . . , rs) for the corresponding C-torsor over Spec(R), so we view (r) as an
object of BC(R). The C-torsors (r) and (r′) are isomorphic if and only if riR

×p =
r′iR

×p for all i. Moreover, if Pic(R) = 1 (for example, when R is a local ring), then
every C-torsor over Spec(R) is isomorphic to a torsor of the form (r) with ri ∈ R×.

Let X be a gerbe banded by C = (µp)
s over F . A choice of a basis of the

character group Ĉ identifies the group H2(F,C) with Brp(F )
s. The corresponding

element θ ∈ H2(F,C) ≃ Brp(F )
s can be represented by an s-tuple of central simple

algebras A1, A2, . . . , As with [Ai] ∈ Brp(F ). Let P be the product of the Severi-
Brauer varieties Pi = SB(Ai). Note that X has an object over a field extension L/F
(i.e., X is split over L) if and only if P (L) ̸= ∅.

The following theorem was proved in [10, Theorem 4.1] in the case s = 1.

Theorem 5.11. Let p be a prime integer and X a gerbe banded by C = (µp)
s over

a field F of characteristic different from p. Then

edp(X ) = cdimp(X ) + s.

Proof. In view of Proposition 5.10 and Example 3.5, it suffices to prove the inequality
edp(X ) ≥ cdimp(X ) + s.

Let x ∈ X (K) for a field extension K/F . Set L := K(t1, . . . , ts), where t1, . . . , ts
are variables and x′ := (t) + xL ∈ X (L), where (t) = (t1, . . . , ts) ∈ BC(L).

Set L′/L be a prime to p field extension, let L0 ⊂ L′ be a subfield over F and
y ∈ X (L0) such that yL′ = x′L′ and tr. degF (L0) = edp(x

′).
Let Li := K(ti, . . . , ts) and vi the discrete valuation of Li corresponding to the

variable ti for i = 1, . . . , s. We construct a sequence of prime to p field extensions
L′
i/Li and discrete valuations v′i of L

′
i for i = 1, . . . , s by induction on i as follows:

Set L′
1 = L′. Suppose the fields L′

1, . . . , L
′
i and the valuations v′1, . . . , v

′
i−1 are con-

structed. There is a valuation v′i of L
′
i with residue field L′

i+1 extending the discrete
valuation vi of L

′
i with the ramification index ei and the degree [L′

i+1 : Li+1] prime
to p.

The composition v′ of the discrete valuations v′i is a valuation on L′ with residue
field K ′ of degree over K prime to p. A choice of prime elements in all the L′

i
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identifies the group of values of v′ with Zs. Moreover, for every i = 1, . . . , s, we have

v′(ti) = eiεi +
∑
j>i

aijεj

where the εi’s denote the standard basis elements of Zs and aij ∈ Z. It follows that
the elements v′(ti) are linearly independent in Zs modulo p.

Write v0 for the restriction of v′ on L0.
Claim: rank(v0) = s.

To prove the claim let R0 ⊂ L0 be the valuation ring of v0. Since X (L0) ̸= ∅, we
have P (L0) ̸= ∅. As P is complete, the set P (R0) is not empty, hence the algebras
Ai are split over R0 and therefore, X (R0) ̸= ∅. Choose any object x0 ∈ X (R0).
Since R0 is local, the difference y − (x0)L0 in BC(L0) is isomorphic to (z) for some
zi ∈ (L0)

×. Hence

(z)L′ ≃ yL′ − (x0)L′ ≃ x′L′ − (x0)L′ ≃
(
(t)L′ + xL′

)
− (x0)L′ ≃ (t)L′ +

(
xL′ − (x0)L′

)
.

Note that the element xL′ − (x0)L′ is in the image of BC(R′) → BC(L′), where
R′ ⊂ L′ is the valuation ring of v′. Hence, we have xL′ − (x0)L′ ≃ (r) for some
ri ∈ (R′)×.

Thus, (z)L′ ≃ (t)L′ + (r)L′ ≃ (tr)L′ , hence there exist wi ∈ L′× such that

zi = tiriw
p
i

and therefore, v0(zi) ≡ v′(ti) modulo p for all i = 1, . . . , s. It follows that the
elements v0(zi) are linearly independent modulo p and hence generate a submodule
of rank s in Zs. This means that rank(v0) = s, proving the claim.

Let K0 be the residue field of v0. As P (R0) ̸= ∅, one has P (K0) ̸= ∅ and hence
X (K0) ̸= ∅. Moreover, K0 ⊂ K ′ and [K ′ : K] is prime to p, so K0 is a detection
field of xK′ and therefore,

tr. degF (K0) ≥ cdimp(x).

It follows from (3.1) that

edp(X ) ≥ edp(x
′) = tr. degF (L0) ≥ tr. degF (K0) + rank(v0) ≥ cdimp(x) + s.

Since the above inequality holds for every K/F and x ∈ X (K), we have

edp(X ) ≥ cdimp(X ) + s. �
Corollary 5.12. Let F be a field of characteristic different from p, X a gerbe banded
by C = (µp)

s. Then

ed
(
X ) = edp

(
X ) = min

∑
χ∈B

ind
(
β(χ)

)
,

where the minimum is taken over all bases B of Ĉ over Z/pZ.

Proof. Any basis of Ĉ contains a subset that maps bijectively by β onto a basis of
D. Hence by Theorems 4.14, 5.11 and (5.3),

edp(X ) = cdimp(X ) + s = edp(D) + s = min
∑
d∈A

(
ind(d)− 1

)
+ s

= min
∑
χ∈B

(
ind(χ)− 1

)
+ s = min

∑
χ∈B

ind(χ),
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where the minima are taken over all bases A and B of D and Ĉ respectively. By
Proposition 5.10 and Theorems 4.14, 5.11,

edp(X ) ≤ ed(X ) ≤ cdim(X ) + s = cdimp(X ) + s = edp(X ). �

6. Lower bounds for the essential dimension of algebraic groups

Let G be an algebraic group, C a central smooth subgroup of G and set H = G/C,
so we have an exact sequence:

(6.1) 1→ C → G→ H → 1.

Fix an H-torsor E over Spec(F ) and consider the homomorphism

(6.2) βE : Ĉ → Br(F )

taking a character χ : C → Gm to the image of the class of E under the composition

H1(F,H)
∂−→ H2(F,C)

χ∗−→ H2(F,Gm) = Br(F ),

where ∂ is the connecting map for the exact sequence (6.1).
We write Rep(G) for the category of all finite dimensional representations of G

over F . For a character χ ∈ Ĉ write Rep(χ)(G) for the full subcategory of all
G-representations V such that cv = χ(c)v any c in C and v ∈ V .

If C is a diagonalizable group, then every C-space V is the direct sum of the

eigenspaces V (χ) over all χ ∈ Ĉ [47, §22]. Since the restriction homomorphism

F [G](χ) → F [C](χ) is surjective, we have F [G](χ) ̸= 0 for every χ. A nonzero

function in F [G](χ) generates a nonzero finite dimensional G-subspace of F [G] in

Rep(χ)(G). It follows that the category Rep(χ)(G) is nontrivial for all χ ∈ Ĉ.
The following theorem was proved in [46, Theorem 4.4, Remark 4.5].

Theorem 6.1. (Index Theorem) Let C be a diagonalizable central smooth subgroup
of an algebraic group G, H = G/C, and χ : C → Gm a character. Then

(1) For every H-torsor E and every V in Rep(χ)(G), the integer indβE(χ) di-
vides dim(V ).

(2) Let E be a generic H-torsor (over a field extension of F ). Then

indβE(χ) = gcd dim(V ),

where the gcd is taken over all G-representations V in Rep(χ)(G).

Proof. (1) The natural homomorphism G → GL(V ) for a G-representation V in

Rep(χ)(G) factors through a map H → PGL(V ). By [46, Lemma 4.3], the compo-
sition

H1(F,H)→ H1
(
F,PGL(V )

)
→ Br(F )

takes the class of an H-torsor E to βE(χ). It follows that indβE(χ) divides dim(V ).

(2) Let U be a faithful representation of H, X a nonempty open subset of U and
π : X → Y an H-torsor. Let E be the H-torsor associated to π. It is a generic
H-torsor over the function field L := F (Y ).

Let χ ∈ Ĉ. Fix a nonzero G-representation W in Rep(χ)(G). The conjugation
action of G on B := End(W ) factors through an H-action. By descent (cf. [75, Ch.
1, §2]), there is (a unique up to canonical isomorphism) Azumaya algebra A over Y
and an H-equivariant algebra isomorphism π∗(A) ≃ BX := B × X. Let A be the
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generic fiber of A; it is a central simple algebra over L with βE(χ) = [A] for the

map βE : Ĉ → Br(L).
Let H act on a scheme Z over F . We also view Z as a G-scheme. WriteM(G,Z)

for the (abelian) category of left G-modules on Z that are coherent OZ-modules (see
[94, §1.2]). In particular,M(G, SpecF ) = Rep(G).

Note that C acts trivially on Z. Let M(χ)(G,Z) be the full subcategory of

M(G,Z) consisting ofG-modules on which C acts via χ. For example,M(χ)(G,SpecF ) =

Rep(χ)(G).

We make use of the equivariant K-theory. Write K0(G,Z) and K
(χ)
0 (G,Z) for

the Grothendieck groups ofM(G,Z) andM(χ)(G,Z) respectively.

EveryM inM(G,Z) is a direct sum of unique submodulesM (χ) ofM inM(χ)(G,Z)
over all characters χ of C. It follows that

K0(G,Z) =
⨿
χ∈Ĉ

K
(χ)
0 (G,Z).

The image of the map dim : K0(A) → Z given by the dimension over L is equal
to ind(A) · dim(W ) · Z. To finish the proof of the theorem it suffices to construct a
surjective homomorphism

(6.3) K0

(
Rep(χ)(G)

)
→ K0(A)

such that the compositionK0

(
Rep(χ)(G)

)
→ K0(A)

dim−−→ Z is given by the dimension
times dim(W ).

First, we have a canonical isomorphism

(6.4) K0

(
Rep(χ)(G)

)
≃ K(χ)

0 (G, SpecF ).

Recall thatX an open subscheme of U . By homotopy invariance in the equivariant
K-theory [94, Cor. 4.2],

K0(G,SpecF ) ≃ K0(G,U).

It follows that

(6.5) K
(χ)
0 (G,SpecF ) ≃ K(χ)

0 (G,U).

By localization [94, Th. 2.7], the restriction homomorphism

(6.6) K
(χ)
0 (G,U)→ K

(χ)
0 (G,X).

is surjective.
Write M(1)(G,X,BX) for the category of left G-modules M on X that are co-

herent OX -modules and right BX -modules such that C acts trivially on M and
the G-action on M and the conjugation G-action on BX agree. The corresponding

Grothendieck group is denoted byK
(1)
0 (G,X,BX). For any object N inM(χ)(G,X),

the group C acts trivially on N ⊗F W ∗ and B acts on the right on N ⊗F W ∗. We
have Morita equivalence

M(χ)(G,X)
∼→M(1)(G,X,BX)

given by N 7→ N ⊗F W ∗ (with the inverse functor M 7→M ⊗B W ). Hence

(6.7) K
(χ)
0 (G,X) ≃ K(1)

0 (G,X,BX).
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Now, as C acts trivially on X and BX , the categoryM(1)(G,X,BX) is equivalent
to the category M(H,X,BX) of left H-modules M on X that are coherent OX -
modules and right BX -modules such that the G-action on M and the conjugation
G-action on BX agree. Hence

(6.8) K
(1)
0 (G,X,BX) ≃ K0(H,X,BX).

Recall that π : X → Y is an H-torsor. By descent, the category M(H,X,BX)
is equivalent to the category M(Y,A) of coherent OY -modules that are right A-
modules. Hence

(6.9) K0(H,X,BX) ≃ K0(Y,A).
The restriction to the generic point of Y gives a surjective homomorphism

(6.10) K0(Y,A)→ K0(A).

The homomorphism (6.3) is the composition of (6.4), (6.5), (6.6), (6.7), (6.8), (6.9)
and (6.10). It takes the class of a representation V to the class inK0(A) of the generic
fiber of the vector bundle

(
(V ⊗W ∗)×X

)
/H over Y of rank dim(V ) · dim(W ). �

Suppose that the central subgroup C of a group G is isomorphic to the product

of s copies of µp. The character group Ĉ is a vector space of dimension s over Z/pZ.
For every χ ∈ Ĉ write nχ for the gcd of dim(V ) over all V ∈ Rep(χ)(G). A basis B
for Ĉ is called minimal, if the sum

∑
χ∈B nχ is the smallest possible.

Theorem 6.2. [82, Theorem 4.1] Let p is a prime integer different from char(F )
and G an algebraic group having a central subgroup C isomorphic to (µp)

s. Then

edp(G) ≥
∑
χ∈B

nχ − dim(G)

for a minimal basis B of Ĉ.

Proof. Set H = G/C, so we have an exact sequence (6.1). Let E → Spec(L) be a
generic H-torsor over a field extension L/F . Consider the gerbe X = E/GL over L
banded by CL.

By Proposition 2.4 and Corollary 5.7,

edp(G) ≥ edp(GL) ≥ edp(X )− dim(E) = edp(X )− dim(G).

The H-torsor E yields a homomorphism βE in (6.2). By Corollary 5.12,

edp
(
X ) = min

∑
χ∈B

ind
(
βE(χ)

)
,

where the minimum is taken over all bases B of Ĉ. By Theorem 6.1,

ind
(
βE(χ)

)
= nχ. �

Corollary 6.3. Assume in addition, that for every χ ∈ Ĉ, there are Vχ in Rep(χ)(G)
and a G/C-torsor E (over a field extension of F ) such that indβE(χ) = dim(Vχ).
(By Theorem 6.1, this condition holds if the dimension of every irreducible represen-
tation of G over F is a power of p.) Let V be the direct sum of the spaces Vχ with

χ in a minimal basis of Ĉ. Then

(1) V |C is a faithful representation of C,
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(2) edp(G) ≥ dim(V )− dim(G),
(3) Moreover, if V is generically free, then

edp(G) = ed(G) = dim(V )− dim(G).

7. Essential dimension of finite groups

7a. Essential p-dimension. Let G be a finite group. We view G as a constant
algebraic group over a field F . By Example 3.1, to give a G-torsor is the same as to
give a Galois G-algebra. Thus, the essential dimension of G measures the complexity
of the class of Galois extensions with Galois group G.

Theorem 7.1. [46, Theorem 4.1] Let p be a prime integer, G be a p-group and F
a field of characteristic different from p containing a primitive p-th root of unity.
Then

edp(G) = ed(G) = min dim(V ),

where the minimum is taken over all faithful representations V of G over F .

Proof. Let q be the order of G. By [89, Th. 24], every irreducible representation of
G is defined over the field F (µq). Since F contains p-th roots of unity, the degree
[F (µq) : F ] is a power of p. Hence the dimension of any irreducible representation
of G over F is a power of p.

Let C be the socle of G, i.e., the maximal elementary abelian p-group in the
center of G, and V a G-representation in Corollary 6.3 such that the restriction V |C
is faithful. It suffices to show that V is generically free. Let N be the kernel of V .
As N is normal in G and N ∩ C = {1}, by an elementary property of p-groups, N
is trivial, i.e., V is faithful and hence generically free since G is finite. �
Remark 7.2. The proof of Theorem 7.1 and Remark 4.15 show how to compute

the essential dimension of G over F . For every character χ ∈ Ĉ choose a nonzero
representation Vχ ∈ Rep(χ)(G) of the smallest dimension. It appears as an irre-

ducible component of the smallest dimension of the induced representation IndGC(χ).

We construct a basis χ1, . . . , χs of Ĉ by induction as follows: Let χ1 be a nonzero
character with the smallest dim(Vχ1). If the characters χ1, . . . , χi−1 are already
constructed for some i ≤ s, then we take for χi a character with minimal dim(Vχi)
among all the characters outside of the subgroup generated by χ1, . . . , χi−1. Then
V is a faithful representation of the least dimension and ed(G) =

∑s
i=1 dim(Vχi).

Remark 7.3. We can compute the essential p-dimension of an arbitrary finite group
G over a field F of characteristic different from p. (We don’t assume that F contains
p-th roots of unity.) Let Gp be a Sylow p-subgroup of G. By [68, Proposition 4.10],
Proposition 2.4 and Theorem 7.1, the integer edp(G) = edp(Gp) = edp

(
(Gp)Fp

)
,

where Fp = F (µp), coincides with the least dimension of a faithful representation of
Gp over Fp.

Remark 7.4. Theorem 7.1 was extended in [57, Theorem 7.1] to the class of étale
p-group schemes having a splitting field of degree a power of p. The case of a cyclic
p-group G was considered earlier in [24].

Corollary 7.5. [46, Corollary 5.2] Let F be a field as in Theorem 7.1. Then

ed
(
Z/pn1Z× Z/pn2Z× · · · × Z/pnsZ

)
=

s∑
i=1

[
F (ξpni ) : F

]
.
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One can derive from Theorem 7.1 an explicit formula for the essential p-dimension
of a finite p-group G as follows: For a finite group H, we denote the intersection of
the kernels of all multiplicative characters H → F× by H ′. For any i ≥ 0, let Ki

be the intersection of the groups H ′ for all subgroups H ⊂ G of index pi and set
Ci = Ki ∩C, where C is the socle of G. Set C−1 = C. Thus, we have a sequence of
Fp-spaces

C = C−1 ⊃ C0 ⊃ · · · ⊃ Cs

with Cs = {1} for s large enough.

Theorem 7.6. [73, Theorem 1.2] Let p be a prime integer, G be a p-group and F
a field of characteristic different from p containing a primitive p-th root of unity. If
p = 2, we assume that F contains a primitive 4-th root of unity. Then

edp(G) = ed(G) =

s∑
i=0

(
dim(Ci−1)− dim(Ci)

)
pi.

7b. Covariant dimension. Let G be a finite group. A covariant of G is a G-
equivariant morphism φ : V → W , where V and W are finite-dimensional G-
representations. We say that φ is faithful if G acts faithfully on the image φ(V ). The
covariant dimension covdim(G) of G is the minimal value of dim(φ), as φ ranges
over all possible faithful covariants of G (see [49] and [48]).

The essential and covariant dimensions of G are related as follows:

ed(G) ≤ covdim(G) ≤ ed(G) + 1.

Theorem 7.7. [48, Theorem 3.1] The equality covdim(G) = ed(G) holds if and only
if the center of G is not trivial.

This result has since been used by A. Duncan in [21] (see Theorem 3.24) as a
key ingredient in his classification of finite groups of essential dimension 2. Further
applications can be found in [56] that generalizes the approach of [24] in the case of a
cyclic group and gives another proof of the equality ed(G) = min dim(V ) in the setup
of Theorem 7.1. The approach replaces fibered categories by the homogenization
method as follows:

Choose a minimal basis B for Ĉ. By Index Theorem 6.1, for any χ ∈ B there is
a G-representations Vχ ∈ Rep(χ)(G) such that indβE(χ) = dim(Vχ) for a generic
G/C-torsor E. Let V be the direct sum of Vχ for all χ ∈ B and φ : V 99K V a
G-compression. It suffices to show that φ is dominant. It is shown in [56] that φ can
be chosen homogeneous with respect to the components Vχ. In particular, φ can
be thought of as a G/C-compression of the product of projective spaces P(Vχ) for
χ ∈ B. Therefore, twisting this compression by the generic G/C-torsor E, we get
a compression of the product X of Severi-Brauer varieties SB(Aχ), where Aχ is a
central division algebra of degree dim(Vχ). By Proposition 4.16, X is incompressible,
hence φ is dominant.

8. Essential dimension of groups of multiplicative type

The essential dimension of groups of multiplicative type was considered in [57].
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8a. Essential p-dimension. Let G be an algebraic group of multiplicative type.
Let L/F be the (finite) splitting field extension with Galois group Γ. The assignment

G 7→ Ĝ := Hom(GL,Gm)

yields an anti-equivalence between the category of groups of multiplicative type split
by L and the category of finitely generated Γ-modules (see [47, 20.17]).

Let ρ : G → GL(V ) be a representation of G. By [47, §22], over the splitting
field L of G, the L-space VL has a basis v1, . . . , vn consisting of eigenvectors of GL
in VL. Moreover, the basis can be chosen Γ-invariant (see [57, Lemma 2.3]). The
L-subalgebra B ⊂ EndL(VL) consisting of all endomorphisms b such that b(vi) ∈ Lvi
for all i is canonically isomorphic to the product of n copies of L with the group
Γ acting by permutations of the factors. It follows that the F -algebra A := BΓ is
an étale algebra of dimension n. The isomorphism of B-modules B

∼→ VL taking
a b to

∑
b(vi), is Γ-equivariant, hence it descends to an isomorphism of A-modules

A
∼→ V . It follows that the representation ρ is isomorphic to the composition

G
η−→ GL1(A) ↪→ GL(A)

for a group homomorphism η. In particular, ρ factors through a quasisplit torus
GL1(A).

Clearly, the torus GL1(A) acts generically freely on A. Therefore, if ρ is faithful,
then η is injective and therefore, G acts generically freely on A. Thus, the classes of
faithful and generically free representations of G coincide.

Note that the representation V is irreducible if and only if Γ acts transitively on
the basis if and only if A is a field (and therefore, a subfield of L). In particular,
dim(V ) divides [L : F ] = |Γ|.

A representations V of G over F is called p-faithful if the kernel of V is a finite
group of order prime to p.

Theorem 8.1. [57, Theorem 1.1] Let F be a field and p an integer different from
char(F ). Let G be a group of multiplicative type over F such that the splitting group
Γ of G and the factor group G/T by the maximal subtorus T in G are p-groups.
Then

edp(G) = ed(G) = min dim(V ),

where the minimum is taken over all p-faithful representations V of G over F .

Proof. The proof is parallel to the one of Theorem 7.1. First note that the dimension
of an irreducible representation V of G over F is a p-power as Γ is a p-group and
dim(V ) divides |Γ|.

Let C be the p-cocle of G, i.e., the maximal subgroup isomorphic to (µp)
s for some

s. The character Γ-module Ĉ is canonically isomorphism to Ĝ/(pĜ+ IĜ), where I
is the augmentation ideal in Z[Γ]. By Corollary 6.3, there exists a G-representation
V such that the restriction V |C is faithful and

edp(G) ≥ dim(V )− dim(G).

The kernel N of the G-representation V is a normal subgroup of G with N ∩ C =
{1}. By Lemma [57, Lemma 2.2], N is a finite group of order prime to p, i.e.,
the G-representation V is p-faithful. Then V is a faithful (and hence generically
free) representation of G/N , hence ed(G/N) ≤ dim(V )− dim(G/N) by Proposition
3.13. As G is split over a p-extension of F and G/T is a p-group, the groups
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H1(K,G) and H1(K,G/N) are the p-primary torsion abelian groups for every field
extension K/F . Since the order of N is prime to p, the natural homomorphism
H1(K,G) → H1(K,G/N) is an isomorphism [57, Proposition 4.2]. It follows that
ed(G) = ed(G/N). Therefore,

dim(V )− dim(G) ≤ edp(G) ≤ ed(G) = ed(G/N) ≤
dim(V )− dim(G/N) = dim(V )− dim(G). �

Theorem 8.1 can be restated in terms of Γ-modules. Recall that every represen-
tation of G factors through a quasisplit torus P , and the character Γ-module of a
quasisplit torus is permutation. The representation ρ is p-faithful if and only if the

cokernel of f : P̂ → Ĝ is finite of order prime to p. A homomorphism of Γ-modules

A → Ĝ with A a permutation Γ-module and the finite cokernel of order prime to

p is called a p-presentation of Ĝ. A p-presentation of the smallest rank is called
minimal.

Corollary 8.2. [57, Corollary 5.1] Let f : P̂ → Ĝ be a minimal p-presentation of

Ĝ. Then edp(G) = ed(G) = rank
(
Ker(f)

)
.

Remark 8.3. We can compute the essential p-dimension of an arbitrary group G
of multiplicative type over a field F of characteristic different from p. Let Gp be the
subgroup of G containing the maximal torus T of G such that Gp/T is a p-group
and [G : Gp] is relatively prime to p, and Γp a Sylow p-subgroup of Γ. Let Fp = LΓp

be the fixed field of Γp.
For any field extension K/F , every element in the kernel and cokernel of the

homomorphism

H1(K,Gp)→ H1(K,G)

are split over an extension of K of degree prime to p. It follows that the morphism
of functors Gp-torsors → G-torsors is p-bijective. By Proposition 2.3 and Theorem
8.1,

edp(G) = edp(Gp) = edp
(
(Gp)Fp

)
is the rank of the kernel of a minimal p-presentation of Ĝp (or equivalently, Ĝ)
viewed as a Γp-module.

We derive an explicit formula for the essential p-dimension of a group G of mul-
tiplicative type.

The character Γ-module Ĉ of the p-socle C is isomorphic to Ĝ/(pĜ + IĜ). For

any subgroup ∆ ⊂ Γ, consider the composition Ĝ∆ ↪→ Ĝ → Ĉ. For every k, let Vk
denote the image of the homomorphism⨿

∆⊂Γ

Ĝ∆ → Ĉ,

where the coproduct is taken over all subgroups ∆ with [Γ : ∆] ≤ pk. We have the
sequence of Fp-subspaces

(8.1) 0 = V−1 ⊂ V0 ⊂ · · · ⊂ Vr = Ĉ.
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Theorem 8.4. [70, Theorem 4.3] We have the following explicit formula for the
essential p-dimension of a group G of multiplicative type:

edp(G) =
r∑

k=0

(
dim(Vk)− dim(Vk−1)

)
pk − dim(G).

8b. A conjecture on the essential dimension. Let G be a group of multiplica-
tive type over F split over a finite Galois extension L/F with Galois group Γ. Let

1→ G
α−→ H → S → 1

be an exact sequence of groups of multiplicative type split by L. Suppose that α
factors through a quasisplit torus. Then for any field extension K/F , the map α∗

in the exact sequence

S(K)→ H1(K,G)
α∗
−→ H1(K,H)

is trivial as quasisplit tori are universally special. It follows that S is a classifying
variety for G and hence

ed(G) ≤ dim(S) = dim(H)− dim(G).

The surjective Γ-homomorphism of the character groups α̂ : Ĥ → Ĝ factors
through a permutation Γ-module. A surjective homomorphism f : A → B of Γ-
modules is called a permutation representation of B if A is a lattice and f factors

through a permutation Γ-module. Thus, if A → Ĝ is a permutation representation

of Ĝ, then ed(G) ≤ rank(A)− dim(G).
A. Ruozzi posed the following conjecture in [85]:

Conjecture 8.5. The essential dimension of a group G of multiplicative type is
equal to min

(
rank(A)− dim(G)

)
, where the minimum is taken over all permutation

representations A→ Ĝ of Ĝ.

Proposition 8.6. [85, Theorem 14] Conjecture 8.5 holds for the groups G such that
the splitting group Γ of G and the factor group G/T by the maximal subtorus T in
G are p-groups for some prime integer p.

Proof. By Theorem 8.1, there is a Γ-homomorphism f : P → Ĝ with P a permu-

tation Γ-module and the image M of f is of index m := [Ĝ : M ] prime to p such

that ed(G) = rank(P )− rank Ĝ). There is a Γ-homomorphism j : Ĝ→M such that

both compositions of j with the inclusion i :M ↪→ Ĝ are multiplications by m.

As |Ĝtors| = pk for some k, the multiple pk · Id of the identity of Ĝ factors as

the composition Ĝ→ Zr → Ĝ of group homomorphisms, where r = rank(Ĝ/Ĝtors).
Since |Γ| = pn for some n, the multiple pk+n · Id factors as the composition

Ĝ
f−→ Λr

g−→ Ĝ

of Γ-module homomorphisms, where Λ = Z[Γ].
Choose integers a and b such that am+ bpk+n = 1. Then the composition

Ĝ

(
aj
f

)
−−−−→M ⊕ Λr

(
i, bg

)
−−−−−→ Ĝ

is the identity, i.e., Ĝ is a direct summand of M ⊕ Λr.
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Let A be the inverse image of Ĝ under the homomorphism

f ⊕ 1Z[Γ] : P ⊕ Λr →M ⊕ Λr.

The surjection A→ Ĝ is a permutation representation as it factors through P ⊕Λr

and rank(A)− dim(Ĝ) = rank(P )− rank(M) = rank(P )− rank(Ĝ) = ed(G). �

Example 8.7. (see [50]) Let p be a prime integer different from char(F ). The group
G = Z/pZ is a group of multiplicative type split by F (ξp) with cyclic Galois group

Γ = ⟨γ⟩ of order m dividing p− 1. The character Γ-module Ĝ is cyclic of order p as
an abelian group. Write tm − 1 = Φm ·Ψm in the polynomial ring Z[t], where Φm is
the m-th cyclotomic polynomial. The composition

h : Z[t]/(Φm)
f−→ Z[Γ] g−→ Ĝ,

where γ acts on the first module by multiplication by t, f(ti) = γiΨm(γ) and g takes

1 to a generator of Ĝ is a permutation representation of Ĝ. Hence

ed(Z/pZ) ≤ rankZ[t]/(Φm) = φ(m) = φ
(
[F (ξp) : F ]

)
,

where φ is the Euler function. One can check that h is a minimal permutation

representation of Ĝ, hence Conjecture 8.5 asserts that ed(Z/pZ) = φ
(
[F (ξp) : F ]

)
.

This is not known for p ≥ 11 over F = Q.

Example 8.8. Let m be a positive integer and write m = pk11 p
k2
2 · · · pkrr , where

p1, p2, . . . , p
r are distinct primes. The cyclic group G := Z/mZ is the product of

cyclic groups Gi := Z/pkii Z. Let F be a field such that char(F ) ̸= pi and ξpi ∈ F
for every i. The Galois group Γ of F (ξm)/F is the product of the pi-groups Γi :=
Gal

(
F (ξ

p
ki
i

)/F
)
. Let Ii be the augmentation ideal in the group ring Z[Γi]. Write A

for the Γ-submodule of the permutation Γ-module P :=
⨿

Z[Γi] generated by
⨿
Ii

and the element (1, 1, . . . , 1). We have a surjective Γi-homomorphism Z[Γi] → Ĝi
taking 1 to a generator of Ĝi. The composition

A ↪→ P →
⨿

Ĝi = Ĝ

is a permutation representation of Ĝ. Hence

ed(Z/mZ) ≤ rank(A) =
∑

[F (ξ
p
ki
i

) : /F ]− r + 1

(see [56, Proposition 11] or [99]). One can check that this is a minimal permutation

representation of Ĝ, hence Conjecture 8.5 asserts that the equality holds. The
equality is also a consequence of Conjecture 4.22 [99, Theorem 4.4].

9. Essential dimension of spinor and even Clifford groups

9a. Essential dimension of spinor groups. The computation of the essential
dimension of the spinor groups was initiated in [9] (the case n ≥ 15 and n is not
divisible by 4) and [27] (the case n ≤ 14) and continued in [68] and [15] (the case
n ≥ 15 and n is divisible by 4). We write Spinn for the split spinor group of a
nondegenerate quadratic form of dimension n and maximal Witt index.
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If char(F ) ̸= 2, then the essential dimension of Spinn has the following values for
n ≤ 14 (see [27, §23]):

n ≤ 6 7 8 9 10 11 12 13 14
ed2(Spinn) = ed(Spinn) 0 4 5 5 4 5 6 6 7

The lower bounds for the essential dimension of Spinn for n ≤ 14 are obtained by
providing nontrivial cohomological invariants and the upper bounds - by construct-
ing classifying varieties. The lower and upper bounds match!

We write Spin+
n for the semi-spinor group. We refer to [47] for various facts about

spinor groups, their factor groups and Clifford algebras.

Lemma 9.1. [77] If n ≥ 15 then, over a field of characteristic 0, the following
representations are generically free:

(1) The spin representation of Spinn of dimension 2(n−1)/2, if n is odd,

(2) Either of the two half-spin representation of Spinn of dimension 2(n−2)/2, if
n ≡ 2 (mod 4)

(3) The half-spin representation of Spin+
n , of dimension 2(n−2)/2, if n ≡ 0 (mod 4)

and n ≥ 20.

In the following theorem we give the values of edp(Spinn) for n ≥ 15 and p = 0
and 2. Note that edp(Spinn) = 0 if p ̸= 0, 2 as 2 is the only torsion prime of Spinn.

Theorem 9.2. Let F be a field of characteristic zero. Then for every integer n ≥ 15
we have:

ed2(Spinn) = ed(Spinn) =


2(n−1)/2 − n(n−1)

2 , if n is odd;

2(n−2)/2 − n(n−1)
2 , if n ≡ 2 (mod 4);

2(n−2)/2 + 2m − n(n−1)
2 , if n ≡ 0 (mod 4),

where 2m is the largest power of 2 dividing n. Moreover,

ed2(Spin
+
n ) = ed(Spin+

n ) = 2(n−2)/2 − n(n− 1)

2
, if n ≡ 0 (mod 4) and n ≥ 20.

Proof. We start with the semi-spinor group Spin+
n when n ≡ 0 (mod 4) and n ≥ 20

(see [9, Remark 3.10]). Let C be the center of Spin+
n . The factor group H =

Spin+
n /C is the special projective orthogonal group. An H-torsor E over a field

extension K/F determines a central simple algebra A with an orthogonal involution

σ. The image of the map βE : Ĉ → Br(K) is equal to {0, [C+]}, where C+ is a
simple components of the Clifford algebra C(A, σ). By [65], there is a field extension

K/F and an H-torsor (A, σ) over K such that ind(C+) = 2(n−2)/2, i.e., C+(q) is
a division algebra. The dimension of the semi-spinor representation V of G is also
equal to 2(n−2)/2. By Lemma 9.1, V is generically free. It follows from Corollary 6.3
that

ed2(Spin
+
n ) = ed(Spin+

n ) = dim(V )− dim(Spin+
n ) = 2(n−2)/2 − n(n− 1)

2
.

Let C be the 2-socle of the center Z(G) of the group G := Spinn. Suppose
first that n is odd. The group C is equal to Z(G) and is isomorphic to µ2. The
factor group H = G/C is the special orthogonal group. An H-torsor E over a field
extension K/F is a nondegenerate quadratic form q of dimension n. The image of

the map βE : Ĉ → Br(K) is equal to {0, [C0(q)]}, where C0(q) is the even Clifford
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algebra of q. By [65], there is a field extension K/F and an H-torsor q over K such

that ind
(
C0(q)

)
= 2(n−1)/2, i.e., C0(q) is a division algebra. On the other hand, the

dimension of the spinor representation V of G is also equal to 2(n−1)/2. By Lemma
9.1, V is generically free. It follows from Corollary 6.3 that

ed2(G) = ed(G) = dim(V )− dim(G) = 2(n−1)/2 − n(n− 1)

2
.

Now suppose that n ≡ 2 (mod 4). The group C is isomorphic to µ2 (while
Z(G) ≃ µ4). As in the previous case, the factor group H = G/C is the special
orthogonal group and an H-torsor E over a field extension K/F is a nondegenerate

quadratic form q of dimension n. The image of the map βE : Ĉ → Br(K) is equal
to {0, [C(q)]}, where C(q) is the Clifford algebra of q. As the center of the even
Clifford algebra C0(q) is split, we have C0(q) ≃ C+(q)× C−(q) with central simple
K-algebras C+(q) and C−(q) Brauer equivalent to C(q). The degree of C±(q) is

equal to 2(n−2)/2. By [65], there is a field extension K/F and an H-torsor q over K

such that ind
(
C±)

)
= 2(n−2)/2, i.e., C±(q) are division algebras. The dimension of

every semi-spinor representation V of G is also equal to 2(n−2)/2. By Lemma 9.1, V
is generically free. It follows from Corollary 6.3 that

ed2(G) = ed(G) = dim(V )− dim(G) = 2(n−2)/2 − n(n− 1)

2
.

Finally suppose that n ≡ 0 (mod 4). The group C = Z(G) is isomorphic to
µ2 × µ2. The factor group H = G/C is the special projective orthogonal group.
An H-torsor E over a field extension K/F determines a central simple algebra A

with an orthogonal involution σ. The image of the map βE : Ĉ → Br(K) is equal
to {0, [A], [C+], [C−]}, where C+ and C− are simple components of the Clifford
algebra C(A, σ). By [65], there is a field extension K/F and an H-torsor (A, σ) over

K such that ind(C+) = ind(C−) = 2(n−2)/2 and ind(A) = 2m, the largest power of

2 dividing n. The image of a minimal basis of Ĉ is equal to {[A], [C+]}. It follows
from Theorem 6.2 that

ed2(Spinn) ≥ ind(C+) + ind(A)− dim(H) = 2(n−2)/2 + 2m − n(n− 1)

2
.

In order to prove the opposite inequality apply Corollary 5.8 to the group homo-
morphism G→ Spin+

n :

ed(G) ≤ ed(Spin+
n ) + max ed(E/G),

where the maximum is taken over all Spin+
n -torsors E over all field extensions K/F .

The image of the class of E under the map H1(K,Spin+
n )→ H2(K,µ2) = Br2(K) is

the class of the algebra AK , hence by Theorem 4.14 and Proposition 5.10, ed(E/G) ≤
ind(AK). As ind(AK) is a power of 2 dividing n, we have ind(AK) ≤ 2m, where 2m

is the largest power of 2 dividing n. The computation of the essential dimension of
Spin+

n in the first part of the proof yields the inequality

ed(G) ≤ 2(n−2)/2 + 2m − n(n− 1)

2
for n ≥ 20.

It remains to consider the case n = 16. Let V be the sum of the semi-spinor
representation of Spin16 and the natural representation of the special orthogonal
group O+

16, which we view as a Spin16-representation via the projection Spin16 →
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O+
16. Then V is a generically free representation of Spin16 (see [9, Theorem 3.3]).

By Proposition 3.13,

ed
(
Spin16

)
≤ dim(V )− dim

(
Spin16

)
= 24. �

9b. Essential dimension of the even Clifford group. Let F be a field of char-
acteristic different from 2 and K/F a field extension. We define:

I1n(K) :=
Set of isomorphism classes of nondegenerate

quadratic forms over K of dimension n

There is a natural bijection I1n(K) ≃ H1(K,On) (see [47, §29.E]).
Recall that the discriminant disc(q) of a form q ∈ I1n(K) is equal to

(−1)n(n−1)/2 det(q) ∈ K×/K×2. Set

I2n(K) := {q ∈ I1n(K) such that disc(q) = 1}.

There is a natural bijection I2n(K) ≃ H1(K,O+
n ) (see [47, §29.E]).

The Clifford invariant c(q) of a form q ∈ I2n(K) is the class in the Brauer group
Br(K) of the Clifford algebra of q if n is even and the class of the even Clifford
algebra if n is odd [47, §8.B]. Define

I3n(K) := {q ∈ I2n(K) such that c(q) = 0}.

Remark 9.3. Our notation of the functors Ikn for k = 1, 2, 3 is explained by the
following property: Ikn(K) consists of all classes of quadratic forms q ∈ W (K) of
dimension n such that q ∈ I(K)k if n is even and q ⊥ ⟨−1⟩ ∈ I(K)k if n is odd,
where I(K) is the fundamental ideal of classes of even dimensional forms in the Witt
ring W (K) of K.

Let Γ+
n be the split even Clifford group (see [47, §23]). We have Γ+

n -torsors ≃ I3n,
hence edp(Γ

+
n ) = edp(I

3
n) [15, §3].

The functor I3n is related to Spinn-torsors as follows: The short exact sequence

1→ µ2 → Spinn → O+
n → 1

yields an exact sequence

(9.1) K×/K×2 = H1(K,µ2)→ H1(K,Spinn)→ H1(K,O+
n )

c−→ H2(K,µ2),

where c is the Clifford invariant. Thus Ker(c) = I3n(K).
The essential dimension of I1n and I2n was computed in [80, Theorems 10.3 and

10.4]: we have ed(I1n) = n and ed(I2n) = n − 1. The Fiber Dimension Theorem 5.6
applied to (9.1) and Proposition 2.3 give the inequalities

edp(I
3
n) ≤ edp(Spinn) ≤ edp(I

3
n) + 1

for every p ≥ 0, thus either edp(I
3
n) = edp(Spinn) or edp(I

3
n) = edp(Spinn)− 1.

It turns out that in order to decide which equality occurs, one needs to study the
following problem in quadratic form theory. Note that this problem is stated entirely
in terms of quadratic forms, while in its solution we use the essential dimension. We
don’t know how to solve the problem by means of quadratic form theory.

Problem 9.4. For a field F , determine all integers n such that every form in I3n(K)
contains a nontrivial subform in I2a(K) for any field extension K/F and 0 < a < n.
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All forms in I3n(K) for n ≤ 14 are classified (see [27, Example 17.8, Theorems 17.13
and 21.3]). Inspection shows that for such n the problem has positive solution.

In general, for non-negative integers a, b and a field extension K/F set

I3a,b(K) :=
{
(qa, qb) ∈ I2a(K)× I2b (K) such that qa ⊥ qb ∈ I3n(K)

}
.

We have a morphism of functors I3a,b → I3n taking a pair (qa, qb) to qa ⊥ qb. It turns
out that in the range n ≥ 15 (with possibly two exceptions) we have the inequality
ed(I3a,b) < ed(I3n), thus, the morphism of functors is not surjective and hence the
problem has negative solution.

Theorem 9.5. [15, Theorem 4.2] Let F be a field of characteristic 0, n ≥ 15 and a
an even integer with 0 < a < n. Then there is a field extension K/F and a form in
I3n(K) that does not contain a nontrivial subform in I2a(K) (with possible exceptions:
(n, a) = (15, 8) or (16, 8)).

Theorem 9.6. [15, Theorem 7.1] Let F be a field of characteristic 0. Then for
every integer n ≥ 15 and p = 0 or 2 we have:

edp(Γ
+
n ) = edp(I

3
n) =


2(n−1)/2 − 1− n(n−1)

2 , if n is odd;

2(n−2)/2 − n(n−1)
2 , if n ≡ 2 (mod 4);

2(n−2)/2 + 2m − 1− n(n−1)
2 , if n ≡ 0 (mod 4),

where 2m is the largest power of 2 dividing n.
If char(F ) ̸= 2, then the essential dimension of I3n has the following values for

n ≤ 14:
n ≤ 6 7 8 9 10 11 12 13 14

ed2(I
3
n) = ed(I3n) 0 3 4 4 4 5 6 6 7

Note that ed(I315) = 22. A jump of the value of ed(Spinn) when n > 14 is
probably related to the fact that there is no simple classification of quadratic forms
in I3 of dimension greater than 14.

9c. Pfister numbers. Consider the following application in the algebraic theory
of quadratic forms over a field F of characteristic different from 2 (see [9, §4]).

Recall that the quadratic form a0⟨1, a1⟩ ⊗ ⟨1, a2⟩ ⊗ · · · ⊗ ⟨1, am⟩ with ai ∈ F×

is called a general m-fold Pfister form over F . Every form q in the m-th power
Im(F ) of the fundamental ideal in the Witt ring of F is the sum of several m-fold
Pfister form. The m-Pfister number of q is the smallest number of m-fold Pfister
forms appearing in a such sum. The Pfister number Pfm(n) is the supremum of the
m-Pfister number of q, taken over all field extensions K/F and all n-dimensional
forms q ∈ Im(K).

One can easily check that Pf1(n) = n/2 and Pf2(n) = n/2 − 1, i.e., these values
of the Pfister numbers are linear in n. The exponential lower bound for the essential
dimension of the spinor groups implies that the value Pf3(n) is at least exponential
in n. It is not known whether Pfm(n) is finite for m ≥ 4.

10. Essential dimension of simple algebras

Let CSAn be the functor taking a field extension K/F to the set of isomor-
phism classes CSAn(K) of central simple K-algebras of degree n. By Example 3.2,
the functors CSAn and G-torsors for G = PGLn are isomorphic, in particular,
edp(CSAn) = edp(PGLn) for every p ≥ 0.



ESSENTIAL DIMENSION 49

Let p be a prime integer and pr the highest power of p dividing n. Then edp
(
CSAn

)
=

edp
(
CSA pr

)
[84, Lemma 8.5.5]. Every central simple algebra of degree p is cyclic

over a finite field extension of degree prime to p, hence edp
(
CSAp

)
= 2 [84, Lemma

8.5.7].

10a. Upper bounds. Let G be an adjoint semisimple group over F . The adjoint
action of G on the sum of two copies of the Lie algebra of G is generically free, hence
by Proposition 3.13, ed(G) ≤ dim(G) (see [81, §4]). It follows that ed(CSAn) =
ed(PGLn) ≤ n2 − 1. This bound was improved in [54, Proposition 1.6] and [55,
Theorem 1.1]:

ed(CSAn) ≤
{
n2 − 3n+ 1, if n ≥ 4;
(n−1)(n−2)

2 , if n ≥ 5 is odd.

If p is a prime integer then edp(CSAn) = edp(CSA pr), where p
r is the largest

power of p dividing n. Upper bounds for edp(CSA pr) with p > 0 were obtained in
[72], [74] and then improved in [86]. Let N be the normalizer of a maximal torus T
of a semisimple group G. For any field extension K/F , the natural map

(10.1) N -torsors(K)→ G-torsors(K)

is surjective by [91, III.4.3, Lemma 6]. It follows that edp(G) ≤ edp(N) for any p ≥ 0.
If G = PGLpr , we have N = T oSpr , where T is the factor torus of (Gm)

pr modulo
Gm embedded diagonally. Then N -torsors(K) is the set of isomorphism classes of
pairs (A,L), where A is a central simple K-algebra of degree pr and L ⊂ A is an
étale K-algebra of dimension pr. The map (10.1) takes a pair (A,L) to A.

Structure theorems on maximal étale subalgebras of simple algebras allow us to
replace the symmetric group Spr by a subgroup.

Lemma 10.1. [86, Corollary 3.3] Let A be a central division algebra over a field F
of degree pr ≥ p. Then there is a finite extension K/F of degree prime to p such
that the K-algebra AK contains a maximal subfield of the form L1 ⊗K L2 with L1

and L2 of degree p and pr−1 over K respectively.

Using the lemma one can replace the group Spr by the subgroup Sp×Spr−1 , hence

edp(CSA pr) ≤ edp
(
T o (Sp × Spr−1)

)
. It turns out that there is generically free

representation of the semidirect product of dimension p2r−2 + pr.

Theorem 10.2. [86, Theorem 1.2] For every r ≥ 2, we have

edp(CSA pr) ≤ p2r−2 + 1.

10b. Lower bounds. In order to get a lower bound for edp
(
CSA pr

)
one can use the

valuation method. Using valuations we “degenerate” the group PGLpr to a torus
as follows:

Let F be a field and p a prime integer different from char(F ). Over a field exten-

sion L/F containing a primitive p-th root of unity, let L′ = L(a
1/p
1 , a

1/p
2 , . . . , a

1/p
r )

for some ai ∈ L× and choose a central simple L-algebra A of degree pr that is split
by L′. Over the rational function field L(t) := L(t1, t2, . . . tr), the algebra

B := AL(t) ⊗ (a1, t1)⊗ (a2, t2)⊗ · · · ⊗ (ar, tr),

where (ai, ti) are cyclic algebras of degree p, is split by L
′(t), hence there is a central

simple algebra D of degree pr over L(t) Brauer equivalent to B.
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Consider the functor F : FieldsL → Sets that takes a field extension K/L to the
factor group of the relative Brauer group Br(L′ ⊗L K/K) modulo the subgroup of
decomposable elements of the form (a1, b1) ⊗ · · · ⊗ (ar, br) with bi ∈ K×. We can

view the algebra A as an element of F(L), denoted Ã. Using the theory of simple
algebras over discrete valued fields, one obtains the key inequality

edp
(
CSA pr

)
≥ edp(D) ≥ edp(Ã) + r.

Note that the values of F are abelian groups, moreover, there is a torus T over L

such that F ≃ T -torsors. For a generic choice of A one has edp(Ã) = edp(T ). This
value can be computed using Theorem 8.4.

Theorem 10.3. [70, Theorem 6.1] Let F be a field and p a prime integer different
from char(F ). Then

edp
(
CSA pr

)
≥ (r − 1)pr + 1.

Combining with the upper bound in Theorem 10.2 we get the following corollaries.

Corollary 10.4. [69, Theorem 1.1] Let F be a field and p a prime integer different
from char(F ). Then edp

(
CSA p2

)
= p2 + 1.

Note that M. Rost proved earlier that ed
(
CSA 4

)
= 5.

Corollary 10.5. [86] Let F be a field of characteristic different from 2. Then
ed2

(
CSA8

)
= 17.

For every integers n,m ≥ 1, any field extension K/F , let CSAn,m(K) denote the
set of isomorphism classes of central simple K-algebras of degree n and exponent
dividing m. Equivalently, CSAn,m(K) is the subset of the m-torsion part Brm(K)
of the Brauer group of K consisting of all elements a such that ind(a) divides n. In
particular, CSAn, n(K) = CSAn(K). We view CSAn,m as a functor FieldsF → Sets.

Note that CSAn,m ≃ (GLn /µm)-torsors.
We give upper and lower bounds for edp(CSAn,m) for a prime integer p different

from char(F ). Let pr (respectively, ps) be the largest power of p dividing n (respec-
tively, m). Then edp(CSAn,m) = edp(CSA pr, ps) and (see [4, Section 6]). Thus, we
may assume that n and m are the p-powers pr and ps respectively with s ≤ r.

Every central simple algebra of degree 4 and exponent 2 is the tensor product
(a1, b1) ⊗ (a2, b2) of two quaternion algebras. It follows from Example 3.7 that
ed

(
CSA 4, 2

)
= ed2

(
CSA 4, 2

)
= 4.

Theorem 10.6. [4, Theorem 6.1] Let F be a field and p a prime integer different
from char(F ). Then, for any integers r ≥ 2 and s with 1 ≤ s ≤ r,

p2r−2 + pr−s ≥ edp(CSA pr, ps) ≥

{
(r − 1)2r−1 if p = 2 and s = 1,

(r − 1)pr + pr−s otherwise.

Corollary 10.7. Let p be an odd prime integer and F a field of characteristic
different from p. Then

edp(CSA p2, p) = p2 + p.

The corollary recovers a result in [95] that for p odd, there exists a central simple
algebra of degree p2 and exponent p over a field F which is not decomposable as a
tensor product of two algebras of degree p over any finite extension of F of degree
prime to p. Indeed, if every central simple algebra of degree p2 and exponent p were
decomposable, then the essential p-dimension of CSA p2, p would be at most 4.
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Corollary 10.8. Let F be a field of characteristic different from 2. Then

ed2(CSA 8, 2) = ed(CSA 8, 2) = 8.

The corollary recovers a result in [1] that there is a central simple algebra of degree
8 and exponent 2 over a field F which is not decomposable as a tensor product of
three quaternion algebras over any finite extension of F of odd degree. Indeed, if
every central simple algebra of degree 8 and exponent 2 were decomposable, then
the essential 2-dimension of CSA 8, 2 would be at most 6.

In the case p = 2 one can get a better upper bound.

Theorem 10.9. [2, Theorem 1.1] Let F be a field of characteristic different from 2.
Then, for any integer n ≥ 3,

edp(CSA 2n, 2) ≤ 22n−4 + 2n−1.

Corollary 10.10. Let F be a field of characteristic different from 2. Then

ed2(CSA 16, 2) = 24.

Some bounds for the essential p-dimension in characteristic p were obtained in [2]
and [3].

10c. Essential dimension of split simple groups of type A. A split simple
group of type An−1 is isomorphic to SLn /µm for a divisor m of n. The exact
sequence

1→ SLn /µm → GLn /µm → Gm → 1

allows us to compare the essential dimension of SLn /µm and GLn /µm.

Theorem 10.11. [14, Theorem 1.1] Let n be a natural number, m a divisor of n
and p a prime integer. Let pr and ps be the largest powers of p dividing n and m
respectively. Then over a field of characteristic not p,

edp(SLn /µm) =


0, if s = 0;
edp

(
CSA pr, pr

)
, if s = r;

edp
(
CSA pr, ps

)
+ 1, if 0 < s < r.

11. Essential dimension of other functors

11a. Essential dimension of forms and hypersurfaces. Define the functors
taking a field extension K/F to the set of isomorphism classes Forms n, d(K) of
forms (homogeneous polynomials) in n variables of degree d and to the factor set
Hypersurf n, d(K) = Forms n, d(K)/K× by the natural scalar action of the multiplica-

tive group, viewed as the set of isomorphism classes of hypersurfaces in Pn−1
K of

degree d.

Theorem 11.1. [83, Theorem 1.1] Let F be a field of characteristic 0. Assume that
n ≥ 2 and d ≥ 3 are integers and (n, d) ̸= (2, 3), (2, 4) or (3, 3). Then

(1) ed
(
Forms n, d

)
=

(
n+d−1

d

)
− n2 + cdim

(
CSAn, d

)
+ 1.

(2) ed
(
Hypersurf n, d

)
=

(
n+d−1

d

)
− n2 + cdim

(
CSAn, d

)
.
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The values of ed
(
Forms n, d

)
and ed

(
Hypersurf n, d

)
for n, d ≥ 1 not covered by

Theorem 11.1 are summarized in the following table.

n d ed
(
Forms n, d

)
ed

(
Hypersurf n, d

)
arbitrary 1 0 0

1 ≥ 2 1 0
arbitrary 2 n n− 1

2 3 2 1
3 4 3 2
4 3 4 3

Write gcd(n, d) = q1q2 · · · qt, where the qi are powers of distinct primes pi. Let

pkii be the largest power of pi dividing n. Conjecture 4.22 would imply that

cdim
(
CSAn, d

)
=

t∑
i=1

(pkii − 1).

11b. Essential dimension of abelian varieties.

Theorem 11.2. [8, Theorem 1.2], [11, Theorem 1.2] Let A be an abelian variety of
dimension g > 0 over a field F . Then

(1) If F is algebraically closed of characteristic 0, then ed(A) = 2g;
(2) If F is a number field, then ed(A) =∞.

11c. Essential dimension of moduli of curves. The essential dimension of
fibered categories (stacks) technique (see Section 5) is used in the proof of the fol-
lowing theorem.

Theorem 11.3. [10] LetMg,n be the stack of n-pointed smooth algebraic curves of
genus g over a field of characteristic 0. Then

ed
(
Mg,n

)
=


2, if (g, n) = (0, 0) or (1, 1);
0, if (g, n) = (0, 1) or (0, 2);
∞, if (g, n) = (1, 0)
5, if (g, n) = (2, 0)
3g − 3 + n, otherwise

11d. Essential dimension of some subfunctors. In this section we consider
certain subfunctors of Y for an algebraic variety Y over F . More specifically, let
f : X → Y be a dominant morphism of varieties over F . We consider the functor
If : FieldsF → Sets defined by

If (K) = Im
(
X(K)

fK−−→ Y (K)
)
⊂ Y (K)

for a field extension K/F . Thus, If is a subfunctor of Y .

Theorem 11.4. Let f : X → Y be a dominant morphism of varieties over a field
F and X ′ the generic fiber of f . Then

dim(Y ) + cdimp(X
′) ≤ edp(If ) ≤ ed(If ) ≤ dim(X)

for every p ≥ 0.
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Proof. As there is a surjection X → If , we have edp(If ) ≤ ed(If ) ≤ dim(X).
Let K = F (Y ), E/K a field extension and x′ ∈ X ′(E). Write x for the image of

x′ in X(E) and set y := fE(x) in Y (E). We view y as a point in If (E). By the
definition of the essential dimension of If (E), there is a prime to p field extension
L/E, a subfield L0 ⊂ L over F and an element y0 ∈ If (L0) such that (y0)L = yL
and tr.deg(L0/F ) ≤ edp(If ). It follows that the images of y0 and y in Y coincide
with the generic point of Y , hence K can be viewed as a subfield of L0.

As y0 ∈ If (L0), there is a point x0 ∈ X(L0) such that fL0(x0) = y0. We can view
x0 as a point in X ′(L0). Thus, x′ is detected over L0 and by the definition of the
canonical p-dimension of X ′, we have

cdimp(x
′) ≤ tr. deg(L0/K) = tr. deg(L0/F )− tr. deg(K/F ) ≤ edp(If )− dim(Y ).

It follows that cdimp(X
′) ≤ edp(If )− dim(Y ). �

Corollary 11.5. If the generic fiber X ′ is p-incompressible, then edp(If ) = ed(If ) =
dim(X).

Proof. AsX ′ is p-incompressible, we have cdimp(X
′) = dim(X ′). Note that dim(X) =

dim(Y ) + dim(X ′). �

Example 11.6. Let F be a field of characteristic zero and α ∈ Hn
(
F, µ

⊗(n−1)
p

)
a

non-zero symbol. Consider the functor

Fα(K) =
{
a ∈ K× such that (a) ∪ αK = 0 in Hn+1

(
K,µ⊗np

)}
⊂ K×.

We claim that
edp(Fα) = pn.

Let Zα be a p-generic splitting norm variety of α of dimension pn−1−1 (see Example

4.12). Write S̃p(Zα) for the symmetric p-th power of Zα with all the diagonals

removed. A geometric point of S̃p(Zα) is a zero-cycle z = z1 + · · · + zp of degree

p with all zi distinct. There is a vector bundle E → S̃p(Zα) with the fiber over a
point z as above the degree p algebra F (z) := F (z1) × · · · × F (zp) (see [93, §2]).
Leaving only invertible elements in each fiber we get an open subvariety X in E.
Note that dim(X) = pdim(Zα) + p = pn. A K-point of X is a pair (z, u), where z
is an effective zero-cycle on Zα over K of degree p and u ∈ K(z)×.

Consider the morphism f : X → Gm taking a pair (z, u) to NK(z)/K(u) and the
functor If .
Lemma 11.7. For any field extension K/F we have:

(1) If (K) ⊂ Fα(K).
(2) If K has no nontrivial field extensions of degree prime to p, then Fα(K) =
If (K).

Proof. (1) Suppose a ∈ If (K), i.e., a = NK(z)/K(u) for a point (z, u) ∈ X(K). We
have

(a) ∪ αK = NE/K

(
(u) ∪ αK(z)

)
= 0

as αK(z) = 0 since Zα is a splitting field of α. Thus, a ∈ Fα(K).

(2) Let a ∈ Fα(K), i.e., (a) ∪ αK = 0 for an element a ∈ K×. By [93], there is a
degree p field extension E/K and an element u ∈ E× such that a = NE/K(u) and
αE = 0. It follows that Z(E) ̸= ∅ and therefore, Z has a closed point z of degree p
with F (z) = E. We have (z, u) ∈ X(K) and f(z, u) = a, hence a ∈ If (K). �
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It follows from the lemma that the inclusion of functors If ↪→ Fα is a p-bijection,
hence edp(If ) = edp(Fα) by Proposition 2.3.

The generic fiber X ′ of f is a p-generic splitting variety for the (n + 1)-symbol
(t) ∪ α over the rational function field F (t) (see [93]). As the symbol (t) ∪ α is
not trivial, the variety X ′ is p-incompressible by Example 4.12. By Corollary 11.5,
edp(If ) = dim(X) = pn.

Example 11.8. Let (V, q) be a non-degenerate quadratic form over F of character-
istic different from 2 and D(q) the functor of values of q, i.e.,

D(q)(K) =
{
q(v), v ∈ VK is an anisotropic vector

}
⊂ K×.

If the form q is isotropic, then D(q)(K) = K× for all K and hence ed2
(
D(q)

)
=

ed
(
D(q)

)
= 1.

We claim that if q is anisotropic, then

ed2
(
D(q)

)
= ed

(
D(q)

)
= dim(q).

Let X ⊂ V be the open subscheme of anisotropic vectors in V . The restriction of q
on X yields a morphism f : X → Gm. The generic fiber X

′ of f is the affine quadric
given by the quadratic form h := q ⊥ ⟨−t⟩ over the rational function field F (t).

Lemma 11.9. The first Witt index of h is equal to 1.

Proof. Over the function field F (t)(h) of h, we have:

qF (t)(h) ⊥ ⟨−t⟩ = hF (t)(h) = h′ ⊥ ⟨t,−t⟩

for a quadratic form h′ over F (t)(h). Then the form h′ is a subform of qF (t)(h). As the
field extension F (t)(h)/F is purely transcendental, the form qF (t)(h) is anisotropic,
hence so is h′. �

It follows from the lemma and Example 4.13 that the generic fiber X ′ is 2-
incompressible. The claim follows from Corollary 11.5.

Corollary 11.10. Let q(x) = q(x1, . . . , xn) be an anisotropic quadratic form over
a field F with char(F ) ̸= 2. Let L be a subfield of the rational function field F (x)
containing F

(
q(x)

)
. If the generic value q(x) of q is a value of q over L, then

[F (x) : L] <∞.

Example 11.11. Let L/F be a finite separable field extension. Let f : RL/F (Gm,L)→
Gm be the norm map. Consider the functor If . The set If (K) is the group of all
non-zero norms for the extension K⊗F L/K. The generic fiber X ′ of f is the generic

torsor for the norm one torus T = R
(1)
L/F (Gm,L).

Question 11.12. When is the generic T -torsor p-incompressible?

Suppose that L/F is a cyclic extension. Then the generic fiber is an open sub-
scheme of the Severi-Brauer variety of the cyclic (division) algebra

(
L(t)/F (t), t

)
over F (t). This variety is p-incompressible if [L : F ] is a power of the prime p by
Example 4.8. In this case, edp(If ) = ed(If ) = [L : F ].
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