Infinitesimal extensions of rank two vector bundles on small codimensional submanifolds in \mathbb{P}^N

Lucian Bădescu, University of Genoa (Italy)

To the 65th Anniversary of Fyodor Zak Moscow, September 7–12, 2015

(Bull. Math. Soc. Sci. Math. Roumanie 58(106) No. 3 (2015), 231-243)

CoCoA

< >

[Back]

Notation and Setup

Let X be a submanifold of dimension n of a complex projective manifold P of dimension N, with n < N. For every $i \ge 0$ denote by X(i) the *i*-th infinitesimal neighborhood of X in P, i.e. the subscheme of P defined by the sheaf of ideals \mathcal{I}_X^{i+1} , where \mathcal{I}_X is the sheaf of ideals of X in \mathcal{O}_P . Note that X(0) = X. Fix an i > 0; if E be a vector bundle of rank r on X(i), a natural problem is to give

< > [Back] 1

criteria for the extendability of E to the next infinitesimal neighborhood X(i+1). Under the above hypotheses and notation we have the following general result of Grothendieck [3, SGA1, 1960–1961]:

Theorem (Grothendieck). Under the above setup, assume that

$$H^{2}(X, E \otimes E^{\vee} \otimes \mathbf{S}^{i+1}(N_{X|P}^{\vee})) = 0, \quad (1)$$

where $\forall \ j \geq 1$, $\mathbf{S}^{j}(N_{X|P}^{\vee})) = \mathcal{I}_{X}^{j}/\mathcal{I}_{X}^{j+1}$ is the j-th symmetric power of the conormal bundle $N_{X|P}^{\vee} = \mathcal{I}_{X}/\mathcal{I}_{X}^{2}$ of X in P. Then E can be extended to a vector bundle \mathcal{E} on X(i+1). If moreover $H^{1}(X, E \otimes E^{\vee} \otimes \mathbf{S}^{i+1}(N_{X|P}^{\vee})) = 0$ then such an extension is also unique up to isomorphism.

If in Grothendieck's theorem above X is a curve and E a vector bundle on X then the vanishing (1) is automatically fulfilled, so that E can be extended to a vector bundle \mathcal{E}_i on X(i) for every $i \geq 1$. Note also that the vanishing (1) is only a sufficient condition for the extendability of the vector bundle E in Grothendieck's theorem above.

We proceed further with some historical motivation by mentioning the following very nice result:

Theorem (Griffiths-Harris 1983, Harris-Hulek 1983, Ellingsrud-Gruson-Peskine-Strømme 1985). Let X be a smooth projective complex surface embedded in \mathbb{P}^n $(n \geq 3)$ as a complete intersection. Let Y be a smooth connected curve in X such that the exact sequence of normal bundles

$$0 \longrightarrow N_{Y|X} \longrightarrow N_{Y|\mathbb{P}^n} \longrightarrow N_{X|\mathbb{P}^n}|Y \longrightarrow 0$$

splits. Then \exists a hypersurface H of \mathbb{P}^n such that $Y = X \cap H$ (scheme-theoretically).

The proofs of Griffiths-Harris and Harris-Hulek make use of the Variation of the Hodge structures. Instead, the (very elegant) proof of Ellingsrud-Gruson-Peskine-Strømme (Invent. Math. 80 (1985), 181–184) is of a completely different nature. The crucial point in their proof is to extend Y to an effective Cartier divisor Y' on the first infinitesimal neighborhood of X(1) of X in \mathbb{P}^n . As soon as they did that, some standard argument shows that Y' can be extended to a hypersurface

H of \mathbb{P}^n such that $X \cap H = Y$ (schemetheoretically).

Now let (more generally) X be a submanifold of \mathbb{P}^N of dimension n and E a vector bundle rank r on X, with $1 \leq r \leq n-1$. Then consider the following condition regarding the triple (\mathbb{P}^N, X, E) :

(*) There exists an integer $l_0>0$ such that for every $l\geq l_0$ there exists a section $s=s_l\in H^0(E(l))$ whose zero locus Y:=Z(s) is an r-codimensional submanifold of X such that the canonical exact sequence of normal bundles

$$0 \to N_{Y|X} \to N_{Y|\mathbb{P}^N} \to N_{X|\mathbb{P}^N}|Y \to 0 \tag{2}$$

splits. Note that $N_{Y|X} \cong E(l)|Y$.

First, we have the following general result:

Proposition 1. Under the above notation, let E be a vector bundle rank r, with 1 < $r \leq n-1$, on an *n*-dimensional submanifold $X \subset \mathbb{P}^N$. If there exists a vector bundle \mathcal{E} on X(1) which extends E, there exists an integer $l_0 > 0$ such that for every $l > l_0$ and for every section $s \in H^0(E(l))$ whose zero locus Y is smooth and r-codimensional in X, the exact sequence (2) splits. In particular, the condition (*) above holds true.

Proof: Consider the exact sequence

$$0 \longrightarrow F \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}|X = E \longrightarrow 0,$$

where $F:=\mathrm{Ker}(\mathcal{E}\longrightarrow E)$. By a well-known theorem of Serre, $H^1(X(1),F(l))=0$ for $l\gg 0$, the map $H^0(X(1),\mathcal{E}(l))\longrightarrow H^0(X,E(l))$ is surjective for $l\gg 0$. Moreover, enlarging l enough, we can also assume that the vector bundle E(l) is ample and generated by its global sections. Let $s\in H^0(X,E(l))$ be a general global section;

then by result of Bertini-Serre-Sommese, its zero locus Y := Z(s) is smooth, connected and (n-r)-dimensional. As s lifts to a section $s' \in H^0(X(1), \mathcal{E}(l))$, let Y' := Z(s')its zero locus of s' it follows that $Y' \cap X =$ Y (scheme-theoretic intersection in X(1)). Moreover, Y' is a local complete intersection of codimension r in X(1) (because it is easy to check that X(1) is locally Cohen-Macaulay). Then by the Key Lemma below the exact sequence (2) splits.

One of the main idea of the proof of Theorem 1 below is the following infinitesimal interpretation of the splitting of the exact sequence (2):

Key Lemma (Ellingsrud-Gruson-Peskine-Strømme, if $\operatorname{codim}_X Y = 1$, and by my former Ph.D. student F. Repetto, if $\operatorname{codim}_X Y > 1$). Let P, X and Y be three smooth projective varieties such that $Y \subsetneq X \subsetneq P$, with $\dim Y \geq 1$. Then the canonical exact sequence of normal bundles

$$0 \longrightarrow N_{Y|X} \longrightarrow N_{Y|P} \longrightarrow N_{X|P}|Y \longrightarrow 0$$

splits iff \exists a closed subscheme Y' of the first infinitesimal neighborhood X(1) of X

in P which is a local complete intersection in X(1), with $\operatorname{codim}_{X(1)} Y' = \operatorname{codim}_X Y$ and $Y' \cap X = Y$ (scheme-theoretically in X(1)).

Then our first main result is the following partial converse of Proposition 1:

Theorem 1. Let $X \subset \mathbb{P}^N$ be a smooth n-dimensional subvariety, with $n \geq \frac{N+3}{2}$ and $n \geq 4$. Let E be a vector bundle of rank 2 on X which satisfies the condition (*) above. Then E can be extended uniquely (up to isomorphism) to a vector bundle $\mathcal E$ of rank 2 on the first infinitesimal neighborhood X(1) of X in $\mathbb P^N$.

The main ingredients in the proof of Theorem 1 are: the Barth-Lefschetz theorems for small codimensional submanifolds of \mathbb{P}^N and

for the zero loci of global sections of an ample vector bundle, the Kodaira-Le Potier vanishing theorem, the above Key Lemma, and the following generalized form of a result due to Serre and Hartshorne (which allows one to construct the desired extension \mathcal{E} of E, and which may also have an interest in itself):

Theorem 2. (A general Serre–Hartshorne correspondence) Let $\mathfrak X$ be an irreducible (not necessarily reduced) algebraic scheme

over an field k, and $Y' \subset \mathcal{X}$ a local complete intersection subscheme of $\mathfrak X$ of codimension 2 such that $\det(N_{Y'|X})$ extends to a line bundle L on \mathfrak{X} such that $H^2(\mathfrak{X}, L^{\vee}) = 0$. Then there exists a vector bundle \mathcal{E} of rank two on \mathcal{X} and a section $t \in H^0(\mathfrak{X}, \mathcal{E})$ such that $\det(\mathcal{E}) = L$, and Z(t) = Y', i.e. the zero locus of t is Y'. If moreover $H^1(\mathfrak{X}, L^{\vee}) = 0$, then the pair (\mathcal{E}, t) is unique up to isomorphism.

Note. The proof of Theorem 2 was worked out together with E. Arrondo (Madrid).

Examples of submanifolds X of P^N with $\dim X = \frac{N+3}{2}$. For every $m \geq 3$ consider the Plücker embedding $i_m \colon \mathbb{G}(1,m) \hookrightarrow \mathbb{P}^{\binom{m+1}{2}-1}$ of the Grassmann variety of lines in \mathbb{P}^m , and set $X'_m := i_m(\mathbb{G}(1,m))$. As is well-known, X_m' is a 4-defective subvariety of $\mathbb{P}^{\binom{m+1}{2}-1}$, meaning that there is a linear projection $\pi_{L_m} \colon \mathbb{P}^{\binom{m+1}{2}-1} \dashrightarrow \mathbb{P}^{4m-7}$ of center a linear subspace L_m of dimension $\binom{m+1}{2} - (4m -$ (7)-2 which does not intersect X'_m such that the restriction $\pi_{L_m}|X'_m\colon X'_m\longrightarrow \pi_{L_m}(X'_m)$

is a biregular isomorphism (see J. Harris, Algebraic Geometry: A first Course, Graduate Texts in Math. 133, Springer-Verlag, 1992, Exercise 11.27, page 145). Then we get the closed embedding

$$\pi_{L_m} \circ i_m \colon \mathbb{G}(1,m) \hookrightarrow \mathbb{P}^{4m-7}.$$
 (3)

Set $X_m = \pi_L(X_m')$. Note that for m=3 and m=4 the embeddins (3) are just the Plücker embeddings $\mathbb{G}(1,3) \hookrightarrow \mathbb{P}^5$, respectively $\mathbb{G}(1,4) \hookrightarrow \mathbb{P}^9$.

It follows that if we set N:=4m-7, X_m is an n-dimensional closed submanifold of \mathbb{P}^N such that $\dim X_m = \frac{N+3}{2}$.

Note also that $\dim X_m \geq 4$ iff $m \geq 3$. In particular, Theorem 1 applies to every rank two vector bundle on X_m , with $m \geq 3$, which satisfies condition (*) above.

Now consider the Grassmann variety $\mathbb{G}(k,m)$ of k-dimensional linear subspaces of \mathbb{P}^m , with $m \geq 3$ and $1 \leq k \leq m-2$ (hence $\mathbb{G}(k,m)$ is not a projective space). Then $\dim \mathbb{G}(k,m) =$ (k+1)(m-k). Let E denote the universal quotient bundle of $\mathcal{O}_{\mathbb{G}(k,m)}^{\oplus m+1}$ (of rank m k). Fix an arbitrary projective embedding $\mathbb{G}(k,m) \hookrightarrow \mathbb{P}^N$ (for example, the Plücker embedding $i: X \hookrightarrow \mathbb{P}^{\binom{m+1}{k+1}-1}$), and denote by X the image of $\mathbb{G}(k,m)$ in \mathbb{P}^N .

Now we come up to our second main result:

Theorem 3. Under the above notation and hypotheses the universal quotient vector bundle E of $X \cong \mathbb{G}(k,m)$ (with $1 \leq k \leq m-2$) cannot be extended to a vector bundle on the first infinitesimal neighborhood X(1) of X in \mathbb{P}^N .

Sketch of the proof. Assume by way of contradiction that there would exist a vector bundle \mathcal{E} on X(1) such that $\mathcal{E}|_X \cong E$.

Tensoring by \mathcal{E} the exact sequence

$$0 \longrightarrow N_{X|\mathbb{P}^N}^{\vee} \longrightarrow \mathcal{O}_{X(1)} \longrightarrow \mathcal{O}_X \longrightarrow 0$$

and taking into account that $\mathcal{E}\otimes N_{X|\mathbb{P}^N}^\vee\cong E\otimes N_{X|\mathbb{P}^N}^\vee$ we get the exact sequence

$$0 \longrightarrow E \otimes N_{X|\mathbb{P}^N}^{\vee} \longrightarrow \mathcal{E} \longrightarrow E \longrightarrow 0.$$
 (4)

Now assume for the moment that the following condition holds true

$$H^1(X, E \otimes N_{X|\mathbb{P}^N}^{\vee}) = 0.$$
 (5)

Then (4) and (5) imply that the restriction map $H^0(X(1),\mathcal{E}) \longrightarrow H^0(X,E)$ is surjective. Considering the canonical surjection $\varphi \colon \mathcal{O}_X^{\oplus (m+1)} \twoheadrightarrow E$ given by $(s_0,s_1,\ldots,s_m)\in H^0(X,E)^{\oplus (m+1)}$, it follows that there exists an (m + 1)-uple $(s_0',s_1',\ldots,s_m')\in H^0(X(1),\mathcal{E})^{\oplus (m+1)}$ such that $s_i'|X=s_i$, $i=0,1,\ldots,m$. Since φ is surjective, the sections s_0, s_1, \ldots, s_m generate E, hence by Nakayama's Lemma the

sections s'_0, s'_1, \ldots, s'_m generate \mathcal{E} . In other words, the surjection φ lifts to a surjection $\varphi' \colon \mathcal{O}_{X(1)}^{\oplus (m+1)} \to \mathcal{E}$. Then by the universal property of the Grassmann variety X = $\mathbb{G}(k,m)$ there exists a morphism of schemes $\pi\colon X(1)\longrightarrow X$ such that $\pi^*(E)=\mathcal{E}$. Since $\mathcal{E}|_X = E$ it follows that π is a retraction of the canonical embedding $X \hookrightarrow X(1)$. By a well known result of Mustata-Popa, this latter fact is equivalent with the splitting of

the canonical tangent exact sequence

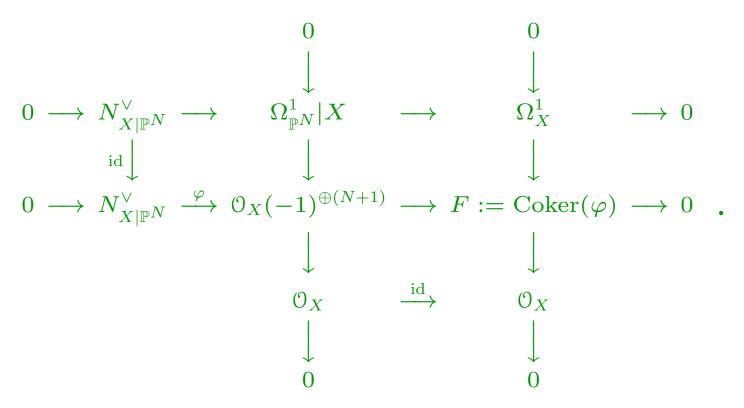
$$0 \longrightarrow T_X \longrightarrow T_{\mathbb{P}^N|_X} \longrightarrow N_{X|\mathbb{P}^N} \longrightarrow 0.$$

Then by a result of Van de Ven [9] the splitting of the above sequence implies implies that X is a linear subspace of \mathbb{P}^N , which is impossible because X is not a projective space.

To prove (5) we first claim that (5) is equivalent to the following vanishing:

$$H^0(E \otimes F) = 0, \tag{6}$$

where F is is defined in the following commutative diagram with exact rows and columns:



The first row in this diagram is the cotangent

sequence of X in \mathbb{P}^N and the second column is the Euler sequence of \mathbb{P}^N restricted to X. Note that the sheaf F coincides with $\mathcal{P}^1(\mathcal{O}_X(1))(-1)$, where $\mathcal{P}^1(\mathcal{O}_X(1))$ is the sheaf of first-order principal parts of $\mathcal{O}_X(1)$. Tensoring this diagram by E we get the following commutative diagram with exact rows and columns

The second row of this diagram yields the

cohomology sequence

$$H^0(X, E(-1)^{\oplus (N+1)}) \longrightarrow H^0(X, E \otimes F) \longrightarrow$$

$$\longrightarrow H^1(E \otimes N_{X|\mathbb{P}^N}^{\vee}) \longrightarrow H^1(E(-1)^{\oplus (N+1)}).$$

By [2, Corollary (4.11) and Theorem (4.17)] (whose proofs are based on some vanishing results for flag manifolds of Kempf) we have $H^i(E(-1)^{\oplus (N+1)}) = 0$ for i = 0, 1 (recall that $\operatorname{Pic}(X) = \mathbb{Z}$). Thus the canonical map $\delta \colon H^0(E \otimes F) \longrightarrow H^1(X, E \otimes N_{X|\mathbb{P}^N}^{\vee})$ is an isomorphism, which proves the claim.

Therefore it will be sufficient to prove (6). But, as Giorgio Ottaviani kindly explained to me, (6) is a special case of a general result of Ottaviani-Rubei (Duke Math. J. 132, (3) (2006), Theorem 6.11). Indeed, considering the coboundary map

$$\delta' \colon H^0(E) \longrightarrow H^1(E \otimes \Omega^1_X)$$

associated to the last column of diagram (7) as a quiver, it follows $\delta' \neq 0$. Since $H^0(E)$ is the standard la representation (and hence

irreducible), it follows that $H^0(E \otimes F) = 0$. Note that the fact that $H^0(E)$ is irreducible was proved directly in J. Wehler, Math. Ann. 268 (1984), 519–532.

HAPPY BIRTHDAY FYODOR! and THANK YOU!

References

- [1] G. Ellingsrud, L. Gruson, C. Peskine, S. A. Strømme, On the normal bundle of curves on smooth projective surfaces, Invent. Math. 80 (1985), 181–184.
- [2] T. Fujita, Vector bundles on ample divisors, J. Math. Soc. Japan 33 (1981), 405–414.
- [3] A. Grothendieck, Revêtements Étales et

Groupe Fondamental, Lecture Notes in Math. Vol. 224, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

- [4] J. Harris, *Algebraic Geometry: A first course*, Graduate Texts in Math. 133, Springer-Verlag, 1992.
- [5] J. Harris, K. Hulek, On the normal bundle of curves on complete intersection surfaces, Math. Ann. 264 (1983), 129–135.

- [6] G. Kempf, Vanishing theorems on flag manifolds, Amer. J. Math. 98 (1976), 325–331.
- [7] G. Ottaviani, E. Rubei, Quivers and the cohomology of homogeneous vector bundles, Duke Math. J. 132, (3) (2006), 459–508.
- [8] F. Repetto, An improvement of a theorem of Van de Ven, Adv. in Geometry 8 (2008), 171–187.

- [9] A. Van de Ven, A property of algebraic varieties in complex projective spaces, in *Colloque de Géométrie Différentielle Globale*, Bruxelles, 1958, 151–152.
- [10] J. Wehler, Deformation of varieties defined by sections in homogeneous vector bundles, Math. Ann. 268 (1984), 519–532.