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‘ Notation and Setup I

Let X be a submanifold of dimension n of a
complex projective manifold P of dimension
N, with n < N. For every © > 0 denote by
X (7) the i-th infinitesimal neighborhood of
X in P, i.e. the subscheme of P defined by
the sheaf of ideals J%{!, where Jx is the sheaf
of ideals of X in Op. Note that X (0) = X.
Fix an ¢« > 0; if E be a vector bundle of
rank r on X (2), a natural problem is to give
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criteria for the extendability of E/ to the next
infinitesimal neighborhood X (i 4+ 1). Under
the above hypotheses and notation we have
the following general result of Grothendieck

3, SGAL, 1960-1961]:
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Theorem (Grothendieck). Under the above
setup, assume that

HYX,E®E’'®S™(Nx;p) =0, (1)

where V j > 1, S/(NY ) = % /IX" is the
7-th symmetric power of the conormal bundle
Nxp = Jx/J% of X in P. Then E can be
extended to a vector bundle € on X (i+1). If
moreover H'(X, £ ® EY ® 8™ (N p)) =0
then such an extension is also unique up to
iIsomorphism.
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If in Grothendieck’'s theorem above X is a
curve and E a vector bundle on X then
the vanishing (1) is automatically fulfilled, so
that £ can be extended to a vector bundle &;
on X (i) for every i > 1. Note also that the
vanishing (1) is only a sufficient condition for
the extendability of the vector bundle FE in
Grothendieck’s theorem above.

We proceed further with some historical
motivation by mentioning the following very
nice result:
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Theorem (Griffiths-Harris 1983, Harris-
Hulek 1983, Ellingsrud-Gruson-Peskine-
Stremme 1985). Let X be a smooth
projective complex surface embedded in P"
(n > 3) as a complete intersection. Let Y
be a smooth connected curve in X such that
the exact sequence of normal bundles

0 — NY|X — Nyupm — NX|IP’”‘Y — 0

splits. Then 3 a hypersurface H of P" such
that Y = X N H (scheme-theoretically).
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The proofs of Griffiths-Harris and Harris-
Hulek make use of the Variation of the
Hodge structures. Instead, the (very elegant)
oroof of Ellingsrud-Gruson-Peskine-Strgmme
(Invent. Math. 80 (1985), 181-184) is of a
completely different nature. The crucial point
in their proof is to extend Y to an effective
Cartier divisor Y’ on the first infinitesimal
neighborhood of X (1) of X in P". As soon as
they did that, some standard argument shows
that Y’ can be extended to a hypersurface
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H of P" such that X N H = Y (scheme-
theoretically).

Now let (more generally) X be a submanifold
of PV of dimension n and E a vector bundle
rank  on X, with 1 < r <n —1. Then

consider the following condition regarding the
triple (PY, X, E):
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(*) There exists an integer [y > 0 such that
for every [ > [ there exists a section s =
s; € HY(E(l)) whose zero locus Y := Z(s)
Is an r-codimensional submanifold of X
such that the canonical exact sequence of
normal bundles

0 = Ny|x = Nypnv = Nypn|Y — 0 (2)

splits. Note that Ny x = E(I)]Y .

First, we have the following general result:
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Proposition 1. Under the above notation,
let £/ be a vector bundle rank r, with 1 <
r <n —1, on an n-dimensional submanifold
X C PV. If there exists a vector bundle &
on X (1) which extends F, there exists an
integer [y > 0 such that for every [ > [, and
for every section s € HY(E(l)) whose zero
locus Y is smooth and r-codimensional in X,
the exact sequence (2) splits. In particular,
the condition () above holds true.
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Proof: Consider the exact sequence
0 —F —E&— ¢ X=F—0,

where F' := Ker(é — FE). By a well-
known theorem of Serre, H'(X (1), F(1)) =0
for I > 0, the map HY(X(1),&(l)) —
HY(X,E(l)) is surjective for [ > 0.
Moreover, enlarging [ enough, we can also
assume that the vector bundle E(I) is ample
and generated by its global sections. Let
s € H'(X,E(l)) be a general global section;
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then by result of Bertini-Serre-Sommese, its
zero locus Y := Z(s) is smooth, connected
and (n — r)-dimensional. As s lifts to a
section s’ € HY(X(1),&(1)), let Y' := Z(s)
its zero locus of s it follows that Y/ N X =
Y (scheme-theoretic intersection in X(1)).
Moreover, Y’ is a local complete intersection
of codimension r in X(1) (because it is
easy to check that X (1) is locally Cohen-
Macaulay). Then by the Key Lemma below
the exact sequence (2) splits.
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One of the main idea of the proof of
Theorem 1 below is the following infinitesimal
interpretation of the splitting of the exact
sequence (2):
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Key Lemma (Ellingsrud-Gruson-Peskine-
Strgmme, if codimyY = 1, and by my
former Ph.D. student F. Repetto, if
codimyY > 1). Let P, X and Y be
three smooth projective varieties such that
Y € X C P, with dimY > 1. Then the
canonical exact sequence of normal bundles

0 — Ny‘X — Ny‘p — NX|p‘Y — 0

splits iff 3 a closed subscheme Y’ of the
first infinitesimal neighborhood X (1) of X
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in P which is a local complete intersection
in X (1), with codimy )Y’ = codimx Y and
Y'N X =Y (scheme-theoretically in X (1)).

Then our first main result is the following
partial converse of Proposition 1:
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Theorem 1. Let X C PV be a smooth
n-dimensional subvariety, with n > % and
n > 4. Let E be a vector bundle of rank 2
on X which satisfies the condition () above.
Then E can be extended uniquely (up to
isomorphism) to a vector bundle € of rank 2
on the first infinitesimal neighborhood X (1)

of X in PV.

The main ingredients in the proof of Theorem
1 are: the Barth-Lefschetz theorems for
small codimensional submanifolds of PV and
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for the zero loci of global sections of an
ample vector bundle, the Kodaira-Le Potier
vanishing theorem, the above Key Lemma,
and the following generalized form of a result
due to Serre and Hartshorne (which allows
one to construct the desired extension £ of
E, and which may also have an interest In
itself):

Theorem 2. (A general Serre-Hartshorne
correspondence) Let X be an irreducible
(not necessarily reduced) algebraic scheme
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over an field k, and Y’ C X a local complete
Intersection subscheme of X of codimension 2
such that det(Nyx) extends to a line bundle
L on X such that H*(X, L") = 0. Then there
exists a vector bundle € of rank two on X and
a sectiont € H°(X, &) such that det(&) = L,
and Z(t) =Y', i.e. the zero locus of t is
Y’. If moreover H'(X, L") = 0, then the

pair (&,1) is unique up to isomorphism.

Note. The proof of Theorem 2 was worked
out together with E. Arrondo (Madrid).

CoCoA < > [Back] 17



Examples of submanifolds X of PV with
dim X = &£, For every m > 3 consider the

Pliicker embeddlng im: G(1,m) — p(™2 )1
of the Grassmann variety of lines in P"*, and

set X/ = 1,,(G(1,m)). As is well-known,
m—+1
X/ is a 4-defective subvariety of p("2 )1

meaning that there Is a linear projection
: (m;l)_l Am—T '
L, " -—» P of center a linear

subspace L,, of dimension (") — (4m —
7) — 2 which does not intersect X, such that

the restriction 7wy | X @ X/ — 7wy (X))
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is a biregular isomorphism (see J. Harris,
Algebraic Geometry: A first Course, Graduate

Texts in Math. 133, Springer-Verlag, 1992,
Exercise 11.27, page 145). Then we get the
closed embedding

7L, Otm: G(1,m) — pAm—T7. (3)

Set X,, = n;(X] ). Note that for m = 3

and m = 4 the embeddins (3) are just
the Plicker embeddings G(1,3) — P°,
respectively G(1,4) — P,
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It follows that if we set N :=4m — 7, X,, Is
an n-dimensional closed submanifold of PV

such that dim X, = %

Note also that dim X,, > 4 iff m > 3. In
particular, Theorem 1 applies to every rank
two vector bundle on X,,,, with m > 3, which
satisfies condition () above.
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Now consider the Grassmann variety G(k, m)
of k-dimensional linear subspaces of P"*, with
m >3 and 1 <k <m—2 (hence G(k,m) is
not a projective space). Then dim G(k,m) =
(k+1)(m — k). Let E denote the universal
quotient bundle of O%@E> (of rank m —
k). Fix an arbitrary projective embedding
G(k,m) < PV (for example, the Pliicker
embedding i: X — P(Zlill)_l), and denote
by X the image of G(k,m) in PV

Now we come up to our second main result:
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Theorem 3. Under the above notation
and hypotheses the universal quotient vector
bundle £ of X = G(k,m) (with 1 < k <
m —2) cannot be extended to a vector bundle
on the first infinitesimal neighborhood X (1)
of X in PV.

Sketch of the proof. Assume by way of
contradiction that there would exist a vector
bundle € on X(1) such that &|x = F.
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Tensoring by € the exact sequence

0 — N)VQPN — Ox(1) — Ox — 0

and taking into account that & ® N)VQPN —
E® N)V(WN we get the exact sequence
0 — E® Nypy — € — E—0. (4)

Now assume for the moment that the
following condition holds true

H'Y(X,E & Nypn) = 0. (5)
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Then (4) and (5) imply that the
restriction map HY(X(1),&) — HY(X,E)
Is surjective.  Considering the canonical
surjection : Og'?(mﬂ) E given by
(50,51, -.,8m) € H' (X, E)2m+) it follows
that there exists an (m 4+ 1)-uple
(sh,8),...,8 ) € HOX(1),&)*m+D) sych

m
that s|X = s;, ¢+ = 0,1,...,m. Since
¢ 1s surjective, the sections sg, sy,..., Sy,

generate I/, hence by Nakayama’'s Lemma the
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sections s;, s},...,s, generate €. In other
words, the surjection ¢ lifts to a surjection
@' O??%H) — €. Then by the universal
property of the Grassmann variety X =
G(k, m) there exists a morphism of schemes
m: X (1) — X such that 7*(F) = &£. Since
E|x = FE it follows that 7 is a retraction of
the canonical embedding X — X(1). By
a well known result of Mustata—Popa, this

latter fact is equivalent with the splitting of
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the canonical tangent exact sequence
0 — Tx — Tpn|x — NXHPN — 0.

Then by a result of Van de Ven [9] the
splitting of the above sequence implies
implies that X is a linear subspace of PV,
which 1s Impossible because X Is not a
projective space.

To prove (5) we first claim that (5) is
equivalent to the following vanishing:

HY(E® F) =0, (6)
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where F is is defined in the following
commutative diagram with exact rows and
columns:

0 0
0 — N)VQPN — Qon|X — Q% — 0

| ! !

0 — NY o -2 Ox(=1)®W+) _ p .= Coker(¢) — 0

| |

Ox —_— Ox
| |
0 0

The first row in this diagram is the cotangent
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sequence of X in P and the second column
is the Euler sequence of PV restricted to
X. Note that the sheaf F' coincides with
PLOx(1))(—1), where PH(Ox(1)) is the
sheaf of first-order principal parts of Ox(1)
Tensoring this diagram by E we get the
following commutative diagram with exact
rows and columns
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0 0

! !

0 — E®Ny.y — E@qu|X — E®Qx — 0

a) | |
0 — E®Ny,n — E(-1)®WHY _y BEQF — 0 (7)

| |
]

The second row of this diagram yields the
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cohomology sequence
HY(X,B(-1)*W*)y 5 FYX E®F) —

SN Hl(E(g}N)\g‘pN) N Hl(E(—l)@(NJrl))-
By [2, Corollary (4.11) and Theorem (4.17)]
(whose proofs are based on some vanishing
results for flag manifolds of Kempf) we have
HI(E(—1)*W+)y = 0 for i = 0,1 (recall
that Pic(X) = Z ). Thus the canonical map
0: HHE®F) — HY(X,E® N)VQPN) IS an
iIsomorphism, which proves the claim.
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Therefore it will be sufficient to prove (6).
But, as Giorgio Ottaviani kindly explained to
me, (6) is a special case of a general result
of Ottaviani-Rubei (Duke Math. J. 132, (3)

(2006), Theorem 6.11). Indeed, considering
the coboundary map

§': H(E) — HY(E ® Q%)

associated to the last column of diagram (7)
as a quiver, it follows 6’ # 0. Since H'(E)
is the standard la representation (and hence
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irreducible), it follows that H'(FE ® F') = 0.
Note that the fact that H’(E) is irreducible
was proved directly in J. Wehler, Math. Ann.

268 (1984), 519-532,
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HAPPY BIRTHDAY FYODOR!

and THANK YQU!
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