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Notation and Setup

Let X be a submanifold of dimension n of a

complex projective manifold P of dimension

N , with n < N . For every i ≥ 0 denote by

X(i) the i-th infinitesimal neighborhood of

X in P , i.e. the subscheme of P defined by

the sheaf of ideals Ii+1
X , where IX is the sheaf

of ideals of X in OP . Note that X(0) = X.

Fix an i ≥ 0; if E be a vector bundle of

rank r on X(i), a natural problem is to give
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criteria for the extendability of E to the next

infinitesimal neighborhood X(i + 1). Under

the above hypotheses and notation we have

the following general result of Grothendieck

[3, SGA1, 1960–1961]:
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Theorem (Grothendieck). Under the above

setup, assume that

H2(X,E ⊗ E∨ ⊗ Si+1(N∨X|P)) = 0, (1)

where ∀ j ≥ 1, Sj(N∨X|P)) = I
j
X/I

j+1
X is the

j-th symmetric power of the conormal bundle

N∨X|P = IX/I
2
X of X in P . Then E can be

extended to a vector bundle E on X(i+1). If

moreover H1(X,E ⊗ E∨ ⊗ Si+1(N∨X|P)) = 0

then such an extension is also unique up to

isomorphism.
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If in Grothendieck’s theorem above X is a

curve and E a vector bundle on X then

the vanishing (1) is automatically fulfilled, so

that E can be extended to a vector bundle Ei
on X(i) for every i ≥ 1. Note also that the

vanishing (1) is only a sufficient condition for

the extendability of the vector bundle E in

Grothendieck’s theorem above.

We proceed further with some historical

motivation by mentioning the following very

nice result:
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Theorem (Griffiths-Harris 1983, Harris-
Hulek 1983, Ellingsrud-Gruson-Peskine-
Strømme 1985). Let X be a smooth

projective complex surface embedded in Pn
(n ≥ 3) as a complete intersection. Let Y

be a smooth connected curve in X such that

the exact sequence of normal bundles

0 −→ NY |X −→ NY |Pn −→ NX|Pn|Y −→ 0

splits. Then ∃ a hypersurface H of Pn such

that Y = X ∩H (scheme-theoretically).
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The proofs of Griffiths-Harris and Harris-

Hulek make use of the Variation of the

Hodge structures. Instead, the (very elegant)

proof of Ellingsrud-Gruson-Peskine-Strømme

(Invent. Math. 80 (1985), 181–184) is of a

completely different nature. The crucial point

in their proof is to extend Y to an effective

Cartier divisor Y ′ on the first infinitesimal

neighborhood of X(1) of X in Pn. As soon as

they did that, some standard argument shows

that Y ′ can be extended to a hypersurface
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H of Pn such that X ∩ H = Y (scheme-

theoretically).

Now let (more generally) X be a submanifold

of PN of dimension n and E a vector bundle

rank r on X, with 1 ≤ r ≤ n − 1. Then

consider the following condition regarding the

triple (PN , X,E):

CoCoA < > [Back] 7



(∗) There exists an integer l0 > 0 such that

for every l ≥ l0 there exists a section s =

sl ∈ H0(E(l)) whose zero locus Y := Z(s)

is an r-codimensional submanifold of X

such that the canonical exact sequence of

normal bundles

0→ NY |X → NY |PN → NX|PN |Y → 0 (2)

splits. Note that NY |X
∼= E(l)|Y .

First, we have the following general result:
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Proposition 1. Under the above notation,

let E be a vector bundle rank r, with 1 ≤
r ≤ n− 1, on an n-dimensional submanifold

X ⊂ PN . If there exists a vector bundle E

on X(1) which extends E, there exists an

integer l0 > 0 such that for every l ≥ l0 and

for every section s ∈ H0(E(l)) whose zero

locus Y is smooth and r-codimensional in X,

the exact sequence (2) splits. In particular,

the condition (∗) above holds true.
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Proof: Consider the exact sequence

0 −→ F −→ E −→ E|X = E −→ 0,

where F := Ker(E −→ E). By a well-

known theorem of Serre, H1(X(1), F (l)) = 0

for l � 0, the map H0(X(1),E(l)) −→
H0(X,E(l)) is surjective for l � 0.

Moreover, enlarging l enough, we can also

assume that the vector bundle E(l) is ample

and generated by its global sections. Let

s ∈ H0(X,E(l)) be a general global section;
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then by result of Bertini-Serre-Sommese, its

zero locus Y := Z(s) is smooth, connected

and (n − r)-dimensional. As s lifts to a

section s′ ∈ H0(X(1),E(l)), let Y ′ := Z(s′)

its zero locus of s′ it follows that Y ′ ∩X =

Y (scheme-theoretic intersection in X(1)).

Moreover, Y ′ is a local complete intersection

of codimension r in X(1) (because it is

easy to check that X(1) is locally Cohen-

Macaulay). Then by the Key Lemma below

the exact sequence (2) splits. �
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One of the main idea of the proof of

Theorem 1 below is the following infinitesimal

interpretation of the splitting of the exact

sequence (2):
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Key Lemma (Ellingsrud-Gruson-Peskine-
Strømme, if codimX Y = 1, and by my
former Ph.D. student F. Repetto, if
codimX Y > 1). Let P , X and Y be

three smooth projective varieties such that

Y ( X ( P , with dimY ≥ 1. Then the

canonical exact sequence of normal bundles

0 −→ NY |X −→ NY |P −→ NX|P |Y −→ 0

splits iff ∃ a closed subscheme Y ′ of the

first infinitesimal neighborhood X(1) of X
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in P which is a local complete intersection

in X(1), with codimX(1) Y
′ = codimX Y and

Y ′ ∩X = Y (scheme-theoretically in X(1)).

Then our first main result is the following

partial converse of Proposition 1:
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Theorem 1. Let X ⊂ PN be a smooth

n-dimensional subvariety, with n ≥ N+3
2 and

n ≥ 4. Let E be a vector bundle of rank 2

on X which satisfies the condition (∗) above.

Then E can be extended uniquely (up to

isomorphism) to a vector bundle E of rank 2

on the first infinitesimal neighborhood X(1)

of X in PN .

The main ingredients in the proof of Theorem

1 are: the Barth-Lefschetz theorems for

small codimensional submanifolds of PN and
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for the zero loci of global sections of an

ample vector bundle, the Kodaira-Le Potier

vanishing theorem, the above Key Lemma,

and the following generalized form of a result

due to Serre and Hartshorne (which allows

one to construct the desired extension E of

E, and which may also have an interest in

itself):

Theorem 2. (A general Serre–Hartshorne
correspondence) Let X be an irreducible

(not necessarily reduced) algebraic scheme
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over an field k, and Y ′ ⊂ X a local complete

intersection subscheme of X of codimension 2

such that det(NY ′|X) extends to a line bundle

L on X such that H2(X, L∨) = 0. Then there

exists a vector bundle E of rank two on X and

a section t ∈ H0(X,E) such that det(E) = L,

and Z(t) = Y ′, i.e. the zero locus of t is

Y ′. If moreover H1(X, L∨) = 0, then the

pair (E, t) is unique up to isomorphism.

Note. The proof of Theorem 2 was worked

out together with E. Arrondo (Madrid).
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Examples of submanifolds X of PN with
dimX = N+3

2 . For every m ≥ 3 consider the

Plücker embedding im : G(1,m) ↪→ P(m+1
2 )−1

of the Grassmann variety of lines in Pm, and

set X ′m := im(G(1,m)). As is well-known,

X ′m is a 4-defective subvariety of P(m+1
2 )−1,

meaning that there is a linear projection

πLm : P(m+1
2 )−1 99K P4m−7 of center a linear

subspace Lm of dimension
(
m+1

2

)
− (4m −

7)−2 which does not intersect X ′m such that

the restriction πLm|X ′m : X ′m −→ πLm(X ′m)
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is a biregular isomorphism (see J. Harris,

Algebraic Geometry: A first Course, Graduate

Texts in Math. 133, Springer-Verlag, 1992,

Exercise 11.27, page 145). Then we get the

closed embedding

πLm ◦ im : G(1,m) ↪→ P4m−7. (3)

Set Xm = πL(X ′m). Note that for m = 3

and m = 4 the embeddins (3) are just

the Plücker embeddings G(1, 3) ↪→ P5,

respectively G(1, 4) ↪→ P9.
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It follows that if we set N := 4m− 7, Xm is

an n-dimensional closed submanifold of PN
such that dimXm = N+3

2 .

Note also that dimXm ≥ 4 iff m ≥ 3. In

particular, Theorem 1 applies to every rank

two vector bundle on Xm, with m ≥ 3, which

satisfies condition (∗) above.
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Now consider the Grassmann variety G(k,m)

of k-dimensional linear subspaces of Pm, with

m ≥ 3 and 1 ≤ k ≤ m−2 (hence G(k,m) is

not a projective space). Then dimG(k,m) =

(k + 1)(m− k). Let E denote the universal

quotient bundle of O⊕m+1
G(k,m) (of rank m −

k). Fix an arbitrary projective embedding

G(k,m) ↪→ PN (for example, the Plücker

embedding i : X ↪→ P(m+1
k+1)−1), and denote

by X the image of G(k,m) in PN .

Now we come up to our second main result:
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Theorem 3. Under the above notation

and hypotheses the universal quotient vector

bundle E of X ∼= G(k,m) (with 1 ≤ k ≤
m−2) cannot be extended to a vector bundle

on the first infinitesimal neighborhood X(1)

of X in PN .

Sketch of the proof. Assume by way of

contradiction that there would exist a vector

bundle E on X(1) such that E|X ∼= E.
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Tensoring by E the exact sequence

0 −→ N∨X|PN −→ OX(1) −→ OX −→ 0

and taking into account that E ⊗ N∨
X|PN

∼=
E ⊗N∨

X|PN we get the exact sequence

0 −→ E ⊗N∨X|PN −→ E −→ E −→ 0. (4)

Now assume for the moment that the

following condition holds true

H1(X,E ⊗N∨X|PN) = 0. (5)
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Then (4) and (5) imply that the

restriction map H0(X(1),E) −→ H0(X,E)

is surjective. Considering the canonical

surjection ϕ : O
⊕(m+1)
X � E given by

(s0, s1, . . . , sm) ∈ H0(X,E)⊕(m+1), it follows

that there exists an (m + 1)-uple

(s′0, s
′
1, . . . , s

′
m) ∈ H0(X(1),E)⊕(m+1) such

that s′i|X = si, i = 0, 1, . . . ,m. Since

ϕ is surjective, the sections s0, s1, . . . , sm
generate E, hence by Nakayama’s Lemma the
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sections s′0, s
′
1, . . . , s

′
m generate E. In other

words, the surjection ϕ lifts to a surjection

ϕ′ : O
⊕(m+1)
X(1) � E. Then by the universal

property of the Grassmann variety X =

G(k,m) there exists a morphism of schemes

π : X(1) −→ X such that π∗(E) = E. Since

E|X = E it follows that π is a retraction of

the canonical embedding X ↪→ X(1). By

a well known result of Mustata–Popa, this

latter fact is equivalent with the splitting of
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the canonical tangent exact sequence

0 −→ TX −→ TPN |X −→ NX|PN −→ 0.

Then by a result of Van de Ven [9] the

splitting of the above sequence implies

implies that X is a linear subspace of PN ,

which is impossible because X is not a

projective space.

To prove (5) we first claim that (5) is

equivalent to the following vanishing:

H0(E ⊗ F ) = 0, (6)
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where F is is defined in the following

commutative diagram with exact rows and

columns:
0 0y y

0 −→ N∨
X|PN −→ Ω1

PN |X −→ Ω1
X −→ 0

id

y y y
0 −→ N∨

X|PN
ϕ−→ OX(−1)⊕(N+1) −→ F := Coker(ϕ) −→ 0y y

OX
id−→ OXy y

0 0

.

The first row in this diagram is the cotangent
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sequence of X in PN and the second column

is the Euler sequence of PN restricted to

X. Note that the sheaf F coincides with

P1(OX(1))(−1), where P1(OX(1)) is the

sheaf of first-order principal parts of OX(1)

Tensoring this diagram by E we get the

following commutative diagram with exact

rows and columns
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0 0y y
0 −→ E ⊗N∨

X|PN −→ E ⊗ Ω1
PN |X −→ E ⊗ Ω1

X −→ 0

id

y y y
0 −→ E ⊗N∨

X|PN −→ E(−1)⊕(N+1) −→ E ⊗ F −→ 0y y
E

id−→ Ey y
0 0

(7)

The second row of this diagram yields the
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cohomology sequence

H0(X,E(−1)⊕(N+1)) −→ H0(X,E⊗F ) −→

−→ H1(E ⊗N∨X|PN) −→ H1(E(−1)⊕(N+1)).

By [2, Corollary (4.11) and Theorem (4.17)]

(whose proofs are based on some vanishing

results for flag manifolds of Kempf) we have

H i(E(−1)⊕(N+1)) = 0 for i = 0, 1 (recall

that Pic(X) = Z ). Thus the canonical map

δ : H0(E ⊗ F ) −→ H1(X,E ⊗N∨
X|PN) is an

isomorphism, which proves the claim.

CoCoA < > [Back] 30



Therefore it will be sufficient to prove (6).

But, as Giorgio Ottaviani kindly explained to

me, (6) is a special case of a general result

of Ottaviani-Rubei (Duke Math. J. 132, (3)

(2006), Theorem 6.11). Indeed, considering

the coboundary map

δ′ : H0(E) −→ H1(E ⊗ Ω1
X)

associated to the last column of diagram (7)

as a quiver, it follows δ′ 6= 0. Since H0(E)

is the standard la representation (and hence
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irreducible), it follows that H0(E ⊗ F ) = 0.

Note that the fact that H0(E) is irreducible

was proved directly in J. Wehler, Math. Ann.

268 (1984), 519–532. �
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HAPPY BIRTHDAY FYODOR!

and THANK YOU!
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