Топология 8: Лемма Урысона и метризация.

Правила: Зачеты по листкам бывают двух типов: когда сданы все (или 1/3, или 2/3) задачи со звездочками, либо все (или 1/3, или 2/3) задачи без звездочек. Задачи с двумя звездочками можно не сдавать. Сдавшим k задач с двумя звездочками разрешается не сдавать 2k задач со звездочками из того же листочка. Задачи, обозначенные (!), следует сдавать всем.

Если сдана 1/3 задач с (*) и (!), студент получает 2t баллов, если 2/3 задач, 6t баллов, если все, кроме (максимум) двух – 10t баллов.

Если сдана 1/3 задач без звездочек и с (!), студент получает 2t баллов, если 2/3 задач, студент получает 6t баллов, если все, кроме (максимум) трех -10t баллов.

Эти виды оценок не складываются, то есть больше 10t за листочек получить нельзя.

Коэффициент t равен 1.5, если задачи сданы не позже, чем через 20 дней после выдачи, 1, если между 20 и 35 днями, и 0.7, если позже.

Результаты сдачи записываются на листке ведомости, которая выдается студенту, и ее надо хранить до получения окончательных оценок по курсу.

Лемма Урысона

Определение 8.1. Пусть даны непересекающиеся замкнутые подмножества $A, B \subset M$ топологического пространства M. Непрерывная функция $f: M \longrightarrow [0,1]$ называется функцией Урысона, если f(A) = 0, f(B) = 1.

Определение 8.2. Напомним, что топологическое пространство **нормально**, если оно хаусдорфово, и для любых непересекающихся замкнутых подмножеств $A, B \subset M$ наидутся непересекающиеся окрестности.

Задача 8.1. Пусть для любых непересекающихся замкнутых подмножеств $A, B \subset M$ существует функция Урысона, и верно условие Т1 (все точки замкнуты). Докажите, что M нормально.

Задача 8.2. Пусть — метрическое пространство, $A \subset M$ — замкнутое подмножество, а $\phi_A(x) = \frac{d(x,A)}{d(x,A)+1}$. Докажите, что ϕ_A непрерывно, принимает значения в [0,1[, и $\phi_A(z)=0 \Leftrightarrow z \in A$.

Задача 8.3. Пусть f, g – непрерывные функции на топологическом пространстве M. Докажите, что $\max(f, g)$ непрерывно.

Указание. Докажите, что $f \times g: M \longrightarrow \mathbb{R} \times \mathbb{R}$ непрерывно, и функция $\max: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ тоже непрерывна. Тогда $\max(f,g)$ задается как композиция непрерывных отображений.

Задача 8.4. Пусть — метрическое пространство, $A,B\subset M$ — непересекающиеся замкнутые подмножества, $\phi_A,\,\phi_B$ — функции, определенные выше, а $\psi_{AB}:=\frac{\phi_A}{\max(\phi_A,\phi_B)}$. Докажите, что $0\leqslant\psi_{AB}\leqslant 1,\,\psi_{AB}\big|_A=0,\,\psi_{AB}\big|_B=1,$ причем $\psi_{AB}(z)=0\Leftrightarrow z\in A.$

Задача 8.5. В условиях предыдущей задачи, докажите, что $\frac{1}{2}(\psi_{AB}+(1-\psi_{BA}))$ есть функция Урысона.

Задача 8.6. Докажите, что любое метрическое пространство нормально.

Задача 8.7 (!). Пусть M нормально, а $A, B \subset M$ – непересекающиеся замкнутые подмножества. Докажите, что можно найти последовательность окрестностей $U_{p/2^q} \supset A$, индексированную рациональными числами вида $0 < p/2^q < 1$, и удовлетворяющую следующим условиям:

- (i) для всех p, q, B не пересекается с $U_{p/2^q}$.
- (ii) Если $p_1/2^{q_1} < p_2/2^{q_2},$ то замыкание $U_{p_1/2^{q_1}}$ содержится в $U_{p_2/2^{q_2}}.$

Указание. Воспользуйтесь индукцией.

Задача 8.8 (!). В условиях предыдущей задачи, определим функцию $f: M \longrightarrow [0,1]$ формулой

$$f(m) = \sup \left\{ p/2^q \mid m \notin U_{p/2^q} \right\}$$

вне A и положим f равной нулю на A. Докажите, что f непрерывна и является функцией Урысона.

Указание. Докажите, что отрезки вида $]p_1/2^{q_1}, p_2/2^{q_2}[$ задают предбазу топологии в [0,1]. Докажите, что

$$f^{-1}(]p_1/2^{q_1}, p_2/2^{q_2}[) = U_{p_2/2^{q_2}} \setminus \overline{U_{p_1/2^{q_1}}}.$$

Выведите из этого, что f непрерывна.

Замечание. Мы получили следующую "лемму Урысона": если топологическое пространство M нормально, то для любых двух непересекающихся замкнутых подмножеств M существует функция Урысона.

Задача 8.9 (*). Докажите "лемму Титце": пусть f – непрерывная функция на замкнутом подмножестве $Z \subset M$ метрического пространства M. Докажите, что f продолжается до непрерывной функции на M.

Задача 8.10 (**). Постройте хаусдорфово топологическое пространство, которое не допускает никаких непостоянных непрерывных функций со значениями в \mathbb{R} .

Компакты и гомеоморфизмы

Определение 8.3. Отображение называется **замкнутым**, если оно переводит замкнутые множества в замкнутые.

Определение 8.4. Неперывное отображение называется **гомеоморфизмом**, если оно биективно, и обратное к нему тоже непрерывно.

Задача 8.11. Пусть ϕ – замкнутое, непрерывное, биективное отображение. Докажите, что это гомеоморфизм.

Задача 8.12. Докажите, что замкнутое подмножество компакта компактно. Докажите, что компактное подмножество хаусдорфова топологического пространства замкнуто.

Задача 8.13. Пусть $\phi: X \longrightarrow Y$ – непрерывное отображение, причем X компактен. Докажите, что $\phi(X)$ компактен.

Задача 8.14. Пусть $\phi: X \longrightarrow Y$ – непрерывное отображение, причем X компактно, а Y хаусдорфово. Докажите, что ϕ замкнуто.

Задача 8.15 (!). Пусть $\phi: X \longrightarrow Y$ – инъективное, непрерывное отображение, причем X компактно, а Y хаусдорфово. Докажите, что ϕ осуществляет гомеоморфизм между X и множеством $\phi(X)$ с топологией, индуцированной с Y.

Метризация топологических пространств

Определение 8.5. Топологическое пространство M называется метризуемым, если оно допускает метрику, которая индуцирует топологию на M.

Задача 8.16. Пусть X компакт, Y метризуемо, а $\phi: X \longrightarrow Y$ – непрерывное вложение. Докажите, что X тоже метризуемо.

Задача 8.17 (*). Докажите, что любой хаусдорфов компакт нормален.

Определение 8.6. Пусть X – топологическое пространство. Говорится, что непрерывные функции на X разделяют точки, если для любых $x \neq y$ в X, найдется непрерывная функция $f: X \longrightarrow \mathbb{R}$ такая, что $f(x) \neq f(y)$.

Задача 8.18. Докажите, что на метризуемом пространстве непрерывноые функции разделяют точки.

Задача 8.19. Пусть X – нормальное топологическое пространство. Докажите, что непрерывные функции на X разделяют точки.

Указание. Леммой Урысона воспользуйтесь.

Задача 8.20 (*). Пусть X — компактное, хаусдорфово топологическое пространство, которое сепарабельно (содержит плотное, счетное подмножество). Докажите, что оно метризуемо.

Указание. Найдите счетную последовательность функций $\{f_i\}$, разделяющую точки на X, и используйте ее, чтобы построить вложение X в гильбертов куб. Воспользуйтесь компактностью, чтобы доказать, что X гомеоморфно своему образу.

Задача 8.21 (*). Пусть M — нормальное пространство со счетной базой B, I — множество всех пар $U_1, U_2 \in B$, таких, что замыкания U_1 , U_2 не пересекаются, F_{U_1,U_2} — соответствующие функции Урысона, а $F: M \longrightarrow [0,1]^I$ — отображение в тихоновский куб, заданное как $F(m) = \prod F_{U_1,U_2}$. Докажите, что F непрерывно и инъективно.

Задача 8.22 (*). В условиях предыдущей задачи, обозначим за G: $F(M) \longrightarrow M$ отображение, обратное F. Пусть дана последовательность точек $\{x_i\}$ такая, что $F_{U_1,U_2}(x_i)$ сходится для любой пары (U_1,U_2) в I. Выведите из этого, что последовательность $\{x_i\}$ сходится. Докажите, что G непрерывно.

Задача 8.23 (*). Докажите, что любое нормальное топологическое пространство M с счетной базой, (такое пространство называется польским) можно реализовать как топологическое подпространство в гильбертовом кубе.

Замечание. Мы получили следующую теорему о метризации. Всякое польское топологическое пространство метризуемо.

Задача 8.24. Докажите, что любое подмножество гильбертова куба - польское.