Комплексные аналитические пространства
(НМУ, весна 2017; место: матфак ВШЭ, ул. Усачева 6, 
комната 306; время: суббота, 17:00)

Теория комплексно-аналитических пространств
параллельна комплексной алгебраической
геометрии: почти все понятия алгебраической
геометрии имеют комплексно-аналитические аналоги,
но их доказательства существенно отличаются.
Венцом этой науки является теорема Чжоу,
утверждающая, что комплексные подмногообразия
проективного пространства алгебраичны.
Я расскажу введение в многомерный комплексный
анализ для студентов, освоивших ТФКП, основы
топологии и анализа на многообразиях, остановлюсь
на локальной параметризации комплексных многообразий
(комплексно-аналитический аналог леммы Нетер о
нормализации) и закончу теоремой Чжоу. Если
хватит времени, я расскажу про когерентные
пучки и конструкцию нормализации по Ока.

Основные факты я напомню, но без знакомства
с основами комплексного анализа, анализа на
многообразиях и алгебры (в том числе и
коммутативной) будет непонятно.

0. Пучки, многообразия, комплексные многообразия,
голоморфные функции, многомерная формула Коши.

1. Подготовительная теорема Вейерштрасса.
Теорема Вейерштрасса о делимости.
Теорема Ласкера о нетеровости кольца ростков
голоморфных функций.

2. Комплексно-аналитические множества и комплексно-аналитические
пространства. Локальная параметризация комплексно-аналитических
многообразий (лемма Нетер о нормализации).

3. Теорема Реммерта о собственном отображении
и теорема Реммерта-Штейна о продолжении. Теорема Чжоу.

4* Когерентные пучки в аналитической категории. Теорема Ока.

5* Нормальные комплексно-аналитические пространства.
Нормализация.

6* Пучки Монтеля. Конечномерность когомологий когеретных
пучков на компакте по Гротендику.

Подробности можно найти в учебнике
Демайи "Complex analytic and differential geometry".

Также:
A. Grothendieck,  Theoremes de finitude pour la
cohomologie des faisceaux, Bull. Soc. Math. France 84
(1956), 1-7.

Gunning, R.C., Rossi, H. [1965]  Analytic functions of
several complex variables.

Grauert, H., Remmert, R. [1984]  Coherent analytic
sheaves.

Реммерт Р., Петернел Т., Грауэрт Г. Комплексный анализ -
многие переменные - 7 (1996, ВИНИТИ)

Грауэрт Г., Реммерт Р. - Теория пространств Штейна