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PROBLEM. To give a cohomological characterization of vector
bundles.

Horrocks (1964): Cohomological characterization of line
bundles OPn(a).

Horrocks (1980): Cohomological characterization of the
p-differential bundle Ωp

Pn .

Ottaviani (1987): Cohomological characterization of line
bundles OQn(a) and Spinor bundles on Qn ⊂ Pn+1.

Miró-Roig (1994): Cohomological characterization of syzygy
bundles syz(x i0

0 · · · x in
n ; i0 + · · ·+ in = d) on Pn.
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Miró-Roig (1994): Cohomological characterization of syzygy
bundles syz(x i0

0 · · · x in
n ; i0 + · · ·+ in = d) on Pn.
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Beilinson’s Theorem: (OPn ,OPn(1), · · · ,OPn(n)) is a full strongly
exceptional collection or, equivalently, (OPn ,OPn(1), · · · ,OPn(n))
is an orthogonal basis of Db(OPn −mod) and its left dual is
(OPn(n),TPn(n − 1),∧2TPn(n − 2), · · · ,∧nTPn).

Beilinson’s Theorem: Let F be a coherent sheaf on Pn. ∃ a spectral
sequence situated in −n ≤ p ≤ 0, 0 ≤ q ≤ n and with E1-term

Epq
1 = Hq(Pn,F (p))⊗ Ω−p(−p)

which converges to

E i
∞ =

{
F for i = 0
0 for i 6= 0.
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R.M. Miró-Roig Cohomological characterization of vector bundles



Horrocks’ Theorem.
Beilinson’s type spectral sequence.

Applications to cohomological characterization of vector bundles.
Questions/Open Problems.

Beilinson’s Theorem: (OPn ,OPn(1), · · · ,OPn(n)) is a full strongly
exceptional collection or, equivalently, (OPn ,OPn(1), · · · ,OPn(n))
is an orthogonal basis of Db(OPn −mod) and its left dual is
(OPn(n),TPn(n − 1),∧2TPn(n − 2), · · · ,∧nTPn).

Beilinson’s Theorem: Let F be a coherent sheaf on Pn. ∃ a spectral
sequence situated in −n ≤ p ≤ 0, 0 ≤ q ≤ n and with E1-term

Epq
1 = Hq(Pn,F (p))⊗ Ω−p(−p)

which converges to

E i
∞ =

{
F for i = 0
0 for i 6= 0.
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Horrocks’ Theorem: Let E be a vector bundle on Pn. The
following conditions are equivalent:

(i) E splits into a sum of line bundles.

(ii) E has no intermediate cohomology; i.e. H i (Pn,E (t)) = 0 for
1 ≤ i ≤ n − 1 and for all t ∈ Z.

Horrocks (1980): Cohomological characterization of Ωp
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Let X be a smooth projective variety of dimension n.

A coherent sheaf F on X is exceptional if Hom(F ,F ) = C and
Ext i

X (F ,F ) = 0 for i > 0.

An ordered collection (F0,F1, . . . ,Fm) of coherent sheaves on
X is an exceptional collection if each sheaf Fi is exceptional
and Ext i

X (Fk ,Fj) = 0 for j < k, i ≥ 0.

An exceptional collection (F0,F1, . . . ,Fm) is a strongly
exceptional collection if in addition Ext i

X (Fj ,Fk) = 0 for
i ≥ 1, j ≤ k.

An ordered collection (F0, . . . ,Fm) is a full (strongly)
exceptional collection if it is a (strongly) exceptional collection
and F0, . . . , Fm generate Db(OX −mod).
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EXAMPLES

(OPn , OPn(1), . . ., OPn(n)) is a full strongly exceptional
collection on a projective space Pn.

(OPn , Ω1
Pn(1), . . ., Ωn

Pn(n)) is a full strongly exceptional
collection on a projective space Pn.

Let π : P̃2(1) → P2 be the blow up of P2 at one point p ∈ P2.
Let H be the pullback of the hyperplane divisor in P2 and let
E = π−1(p) be the exceptional divisor. Then the collection of
divisors (0,E ,H, 2H) is a full strongly exceptional collection

on P̃2(1).
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EXAMPLES

(Kapranov) Let Qn ⊂ Pn+1, n > 2, be a hyperquadric. If n is
even and Σ1, Σ2 are the Spinor bundles on Qn, then

(Σ1(−n),Σ2(−n),OQn(−n + 1), · · · ,OQn(−1),OQn)

is a full strongly exceptional collection on Qn; and if n is odd
and Σ is the Spinor bundle on Qn, then

(Σ(−n),OQn(−n + 1), · · · ,OQn(−1),OQn)

is a full strongly exceptional collection of sheaves on Qn
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Horrocks’ Theorem.
Beilinson’s type spectral sequence.

Applications to cohomological characterization of vector bundles.
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EXAMPLES

(Kapranov) Take X = Gr(k, n). Denotes by S the
tautological k-dimensional bundle and ΣαS the space of the
irreducible representations of GL(S) with highest weight
α = (α1, . . . , αs). Let A(k, n) be the set of locally free
sheaves ΣαS on Gr(k, n) where α runs over Young diagrams
fitting inside a k × (n − k) rectangle. A(k, n) can be totally
ordered in such a way that we obtain a full strongly
exceptional collection (E1, . . . ,Eρ(k,n)) of sheaves on X .
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REMARKS

In all these collections the order is very important.

The length of any full strongly exceptional collection is ≥
dim(X )+1.

All full strongly exceptional collections on X have the same
length and it coincides with the rank of the Grothendieck
group K0(X ) as Z-module.

Not all full strongly exceptional collections are made up of line
bundles.

Definition

A GEOMETRIC COLLECTION of coherent sheaves (E0, · · · ,En)
on a smooth algebraic variety X is a full exceptional collection of
minimal length, dim (X )+1.
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Applications to cohomological characterization of vector bundles.
Questions/Open Problems.

PROBLEMS

Problem 1. To characterize smooth projective varieties which have
a geometric collection.

Problem 2.To characterize smooth projective varieties which have a
full strongly exceptional collection.

Remark: The existence of full strongly exceptional collection
imposes rather a strong restriction on X , namely that the
Grothendieck group K0(X ) is isomorphic to Zm+1.

Example: Since, the Grothendieck group K0(S) of a smooth cubic
3-fold S ⊂ P4 has torsion, there are no full strongly exceptional
collection on S .
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Theorem (Costa and MR)

Let X be a smooth projective variety of dim n with a geometric
collection (E0, · · · ,En) and let F be a coherent sheaf on X . ∃ two
spectral sequences with E1-term

IE
pq
1 = Extq(R(−p)En+p,F )⊗ Ep+n

IIE
pq
1 = Extq((En+p)

∗,F )⊗ (R(−p)En+p)
∗

situated in the square 0 ≤ q ≤ n, −n ≤ p ≤ 0 which converge to

IE
i
∞ =II E i

∞ =

{
F for i = 0
0 for i 6= 0.
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Let X be a smooth projective variety of dimension n.

An exceptional collection (F0,F1, · · · ,Fm) of coherent sheaves
on X is a block if Ext i (Fj ,Fk) = 0 for any i and j 6= k.

An m-block collection of type (α0, α1, · · · , αm) is an
exceptional collection
(E0, E1, · · · , Em) = (E 0

1 , · · · ,E 0
α0

, · · · ,Em
1 , · · · ,Em

αm
)

such that all the subcollections Ei = (E i
1,E

i
2, · · · ,E i

αi
) are

blocks.

REMARK: Any exceptional collection (E0,E1, · · · ,Em) of length
m + 1 is an m-block collection of type (1, · · · , 1) where each block
has one object.
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EXAMPLE

Let X = Pn1 × · · · × Pns , d = n1 + · · ·+ ns and denote

OX (a1, a2, · · · , as) := p∗1OPn1 (a1)⊗p∗2OPn2 (a2)⊗· · ·⊗p∗sOPns (as).

For any 0 ≤ j ≤ d , denote by Ej the collection of all line bundles

OX (aj
1, a

j
2, · · · , aj

s)

with −ni ≤ aj
i ≤ 0 and

∑s
i=1 aj

i = j − d . Each Ej is a block and

(E0, E1, · · · , Ed)

is a d-block collection on X .
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EXAMPLE

Consider X = P2 × P3. The collection of line bundles

(O(−2,−3),O(−2,−2),O(−1,−3),O(−2,−1),O(−1,−2)

O(−2, 0),O(−1,−1)O(−1, 0),O(0,−1)O(0, 0))

is a full strongly exceptional collection of length
10 > dim(X ) + 1 = 6 and we pack in 6 blocks:

E0 = {O(−2,−3)} E1 = {O(−2,−2),O(−1,−3)}
E2 = {O(−2,−1),O(−1,−2)}, E3 = {O(−2, 0),O(−1,−1)}
E4 = {O(−1, 0),O(0,−1)}, E5 = {O(0, 0)}
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Definition

Let σ = (E0, · · · , Em) be an m-block collection of coherent sheaves
which generates Db(X ).. The m-block H = (H0, · · · ,Hm) is
called the left dual m-block collection of σ if

Extt(H i
j ,E

k
l ) = 0

except for Extk(Hk
i ,Em−k

i ) = C.
The m-block G = (G0, · · · ,Gm) is called the right dual m-block
collection of σ if

Extt(E k
l ,G i

j ) = 0

except for Extm−k(Em−k
i ,G k

i ) = C.

Remark. Left and right dual block collections can be constructed
by means of left and right mutations.
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EXAMPLE. Let V be a C-vector space of dim n + 1 and
Pn = P(V ). We consider the n-block collection

B = (OPn ,OPn(1), · · · ,OPn(n)).
Using the exterior powers

0 −→ ∧k−1TPn −→ ∧kV ⊗OPn(k) −→ ∧kTPn −→ 0

of the Euler sequence

0 −→ OPn −→ V ⊗OPn(1) −→ TPn −→ 0

we compute the left dual n-block collection of B and we get

H = (H0,H1, · · · ,Hj , · · · ,Hn)
= (OPn(n),TPn(n − 1), · · · ,∧jTPn(n − j), · · · ,∧nTPn).
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Proposition

Let X = Pn1 × · · · × Pns be a multiprojective space of dimension
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Sketch of the proof.

For any 0 ≤ i ≤ d , we take OX (ai
1, · · · , ai

s) ∈ Ei and we apply the
Künneth formula,

Hα(X ,

−t1∧
ΩPn1 (−t1) � · · ·�

−ts∧
ΩPns (−ts)⊗OX (ai

1, · · · , ai
s))

=
⊕

α1+···+αs=α

Hα1(Pn1 ,

−t1∧
Ω(ai

1−t1))⊗· · ·⊗Hαs (Pns ,

−ts∧
Ω(ai

s−ts)).

Using Bott’s formula, it is zero unless α = k, i = d − k and
OX (ai

1, · · · , ai
s) = OX (t1, · · · , ts), which proves what we want.
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Theorem (Beilinson type spectral sequence).

Let X be a smooth projective variety of dim n with an n-block
collection (E0, E1, · · · , En), Ei = (E i

1, . . . ,E
i
αi

) of coherent sheaves
which generates Db(X ). Denote by (H0,H1, · · · ,Hn),
Hi = (H i

1, . . . ,H
i
αi

) the left dual n-block collection . ∀F coherent
sheaf , ∃ spectral sequences

IE
pq
1 =

{ ⊕αp+n

i=1 Extq(Hp
i ,F )⊗ Ep+n

i if − n ≤ p ≤ −1⊕αn
i=1 Extq(En

i ,F )⊗ En
i if p = 0

IIE
pq
1 =

{ ⊕αp+n

i=1 Extq((Ep+n
i )∗,F )⊗ (Hp

i )∗ if − n ≤ p ≤ −1⊕αn
i=1 Extq((En

i )∗,F )⊗ (En
i )∗ if p = 0

which converge to IE
i
∞ =II E i

∞ =

{
F for i = 0
0 for i 6= 0.

.

R.M. Miró-Roig Cohomological characterization of vector bundles



Horrocks’ Theorem.
Beilinson’s type spectral sequence.

Applications to cohomological characterization of vector bundles.
Questions/Open Problems.

Theorem (Beilinson type spectral sequence).

Let X be a smooth projective variety of dim n with an n-block
collection (E0, E1, · · · , En), Ei = (E i

1, . . . ,E
i
αi

) of coherent sheaves
which generates Db(X ). Denote by (H0,H1, · · · ,Hn),
Hi = (H i

1, . . . ,H
i
αi

) the left dual n-block collection . ∀F coherent
sheaf , ∃ spectral sequences

IE
pq
1 =

{ ⊕αp+n

i=1 Extq(Hp
i ,F )⊗ Ep+n

i if − n ≤ p ≤ −1⊕αn
i=1 Extq(En

i ,F )⊗ En
i if p = 0

IIE
pq
1 =

{ ⊕αp+n

i=1 Extq((Ep+n
i )∗,F )⊗ (Hp

i )∗ if − n ≤ p ≤ −1⊕αn
i=1 Extq((En

i )∗,F )⊗ (En
i )∗ if p = 0

which converge to IE
i
∞ =II E i

∞ =

{
F for i = 0
0 for i 6= 0.

.
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Theorem

Let X = Pn1 × · · · × Pns , d = n1 + · · ·+ ns and (E0, · · · , Ed) the
d-block collection described before. Assume ∃F a rank

(d
j

)
,

0 < j < d, vector bundle on X s.t.
H−p−1(X ,F ⊗ Ep+d

i ) = 0 for −d ≤ p ≤ −j − 1 and 1 ≤ i ≤ αp,

H−p+1(X ,F ⊗ Ep+d
i ) = 0 for − j + 1 ≤ p ≤ 0 and 1 ≤ i ≤ αp,

H j(F ⊗ Ed−j
i ) = C for 1 ≤ i ≤ αd−j . Then

F ∼=
⊕

t1+···+ts=j−d

−t1∧
ΩPn1 (−t1) � · · ·�

−ts∧
ΩPns (−ts)

∼=
d−j∧

(ΩPn1×···×Pns (1, · · · , 1)) with − ni ≤ ti ≤ 0

.
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Sketch of the proof. We apply to F the spectral sequence with
E1-term

IIE
pq
1 =

{ ⊕αp+d

i=1 Extq((Ep+d
i )∗,F )⊗ (Hp

i )∗ if − d ≤ p ≤ −1⊕αd
i=1 Extq(Ed∗

i ,F )⊗ Ed∗
i if p = 0

By assumption, there is an integer j , 0 < j < d , such that

IIE
p,−p−1
1 = 0 for any −n ≤ p ≤ −j − 1 and IIE

p,−p+1
1 = 0 for any

−j + 1 ≤ p ≤ 0.
So, F contains IIE

jj
1 , i.e. F contains

((
⊕

t1+···+ts=j−d

−t1∧
TPn1 (−t1) � · · ·�

−ts∧
TPns (−ts))

∗)αi

with αi = hj(F ⊗ En−j
i ) as a direct summand.
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Sketch of the proof. Since rankF =
(d

j

)
, we get

F ∼= (
⊕

t1+···+ts=j−d

∧−t1 TPn1 (−t1) � · · ·�
∧−ts TPns (−ts))

∗

∼=
⊕

t1+···+ts=j−d

∧−t1 ΩPn1 (−t1) � · · ·�
∧−ts ΩPns (−ts)

∼=
∧d−j(ΩPn1×···×Pns (1, · · · , 1)).
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STEINER BUNDLES were first defined by Dolgachev and
Kapranov as vector bundles E on Pn defined by an exact sequence
of the form (Schwarzenberger: t = s + n)

(∗) 0 → OPn(−1)s → Ot
Pn → E → 0.

They used Steiner bundles to study logarithmic bundles
Ω(logH) of meromorphic forms on Pn having at most
logarithmic poles on a finite union H of hyperplanes with
normal crossing.

Dolgachev - Kapranov: A vector bundle E on Pn is a Steiner
bundle defined by an exact sequence (*) if and only if
Hq(E ⊗ Ωp

Pn(p)) = 0 for q > 0 and also for q = 0, p > 1.
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Definition

A vector bundle E on a smooth irreducible algebraic variety X is
called a Steiner bundle if it is defined by an exact sequence of the
form

0 → F s
0

ϕ−→ F t
1 → E → 0,

where s, t ≥ 1 and (F0,F1) is an ordered pair of vector bundles on
X satisfying the following two conditions:

(i) (F0,F1) is strongly exceptional;

(ii) F∨0 ⊗ F1 is generated by global sections.

When X = Pn, F0 = OPn(−1) and F1 = OPn we obtain the
classical Steiner bundles as defined by Dolgachev and
Kapranov.
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EXAMPLES OF STEINER BUNDLES.

Vector bundles E on Pn given by

0 → OPn(a)s → OPn(b)t → E → 0,

where 1 ≤ b − a ≤ n, are Steiner bundles on Pn.

The exact sequences define Steiner bundles on Pn:

0 → Ωp

Pn(p)s → Ot
Pn → E → 0, 1 ≤ p ≤ n,

0 → OPn(−1)s → Ωp

Pn(p)t → F → 0, 0 ≤ p ≤ n − 1.
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EXAMPLES OF STEINER BUNDLES.

Let Qn ⊂ P+1, n ≥ 2, be the smooth hyperquadric. Let Σ∗
denote the Spinor bundle Σ on Qn if n is odd, and one of the
Spinor bundles Σ1 or Σ2 on Qn if n is even.
The short exact sequences

0 → OQn(a)
s → Σ∗(n − 1)t → E → 0,

where 0 ≤ a ≤ n − 1, and

0 → Σ∗(−n)s → OQn(a)
t → F → 0,

where −n + 1 ≤ a ≤ 0, define Steiner bundles on Qn.
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Theorem (MR - Soares)

Let X be a smooth projective variety of dim n with an n-block
collection B = (E0, E1, . . . , En), Ei = (E i

1, . . . ,E
i
αi

), of vector
bundles on X which generate Db(X ) . Let E a

i0
∈ Ea, Eb

j0
∈ Eb,

where 0 ≤ a < b ≤ n and 1 ≤ i0 ≤ αa, 1 ≤ j0 ≤ αb, and let E be a
vector bundle on X . Then E is a Steiner bundle of type (E a

i0
,Eb

j0
)

defined by
0 → (E a

i0)
s → (Eb

j0)
t → E → 0,

iff (E a
i0
)∨ ⊗ Eb

j0
is globally generated and all hk(E ⊗ (R(m)En−m

i )∨)
vanish, with the only exceptions of

hn−a−1(E ⊗ (R(n−a)E a
i0)
∨) = s and hn−b(E ⊗ (R(n−b)Eb

j0)
∨) = t.
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Corollary

Let X be a smooth projective variety X with an n-block collection
B = (E0, E1, . . . , En), Ei = (E i

1, . . . ,E
i
αi

), of locally free sheaves on
X which generate D. Let E a

i0
∈ Ea, Eb

j0
∈ Eb, where 0 ≤ a < b ≤ n

and 1 ≤ i0 ≤ αa, 1 ≤ j0 ≤ αb.

If E and F are Steiner bundles of type (E a
i0
,Eb

j0
) on X then any

extension G of E by F ,

0 → F → G → E → 0,

is a Steiner bundle of type (E a
i0
,Eb

j0
) on X .
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OPEN PROBLEM:
To characterize smooth projective varieties of dimension n with an
n-block collection which generates the derived category D.
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THANK YOU!
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