Moduli spaces of framed perverse instantons on \mathbb{P}^3

Adrian Langer ¹², joint work with Marcin Hauzer

¹Warsaw University, Poland

²Universität Duisburg–Essen, Essen

Instantons and Rationality of Moduli Spaces, 2011

- 2 Framed sheaves on \mathbb{P}^2 and ADHM data
- Generalized ADHM data after Frenkel–Jardim
- 4 Perverse instantons on \mathbb{P}^3
- 5 Some remarks on smoothness

Relation to moduli spaces of framed modules

- 2 Framed sheaves on \mathbb{P}^2 and ADHM data
- 3 Generalized ADHM data after Frenkel–Jardim
- 4 Perverse instantons on \mathbb{P}^3
- 5 Some remarks on smoothness

Framed modules

 $(E, \alpha : E \to F)$ a framed module *F* a torsion free sheaf on a divisor $D \subset X$

Lemma

E slope semistable, $E|_D \simeq F$ a framing Then the corresponding framed module (E, α) , where $\alpha : E \to E|_D \simeq F$, is slope δ_{n-1} -stable for any small $\delta_{n-1} > 0$. In particular, (E, α) is Gieseker δ -stable for all polynomials δ of degree n - 1 with a small positive leading coefficient.

Moduli space of framed modules

Corollary

There exists M(X; D, F, P) fine moduli scheme for

 $(E, E|_D \simeq F)$, where E slope semistable torsion free on X with fixed Hilbert polynomial P.

It is an open subscheme of the projective moduli scheme of Gieseker δ -stable framed modules

 $M^{s}_{\delta}(X; D, F, P) = M^{ss}_{\delta}(X; D, F, P)$ for any polynomial δ of degree n - 1 with a small positive leading coefficient.

Framed instantons are not semistable as framed modules

Lemma

Let \tilde{E} be an (r - 1, c)-instanton on \mathbb{P}^3 and let $E|_{l_{\infty}} \simeq \mathcal{O}_{l_{\infty}}^r$ be a framing of $E = \tilde{E} \oplus \mathcal{O}_{\mathbb{P}^3}$. If $c = c_2(E) > r(r - 1)$ then E is an (r, c)-instanton but the corresponding framed module (E, α) is not Gieseker δ -semistable for any positive polynomial δ .

Nevertheless, framed instantons are semistable as framed modules

X the blow up of \mathbb{P}^3 along a line D exceptional divisor

Theorem

There exists a quasi-projective scheme $\mathcal{M}^{f}(\mathbb{P}^{3}; r, c)$ which represents the moduli functor $\tilde{\mathcal{M}}^{f}(\mathbb{P}^{3}; r, c)$: Sch $/k \rightarrow$ Sets given by

 $S
ightarrow \left\{ egin{array}{c} \textit{Isomorphism classes of S-flat families} \ of framed (r,c)-instantons E on \mathbb{P}^3. \end{array}
ight\}$

It is isomorphic to $M(X; D, \mathcal{O}_D^r, P)$ for a suitably chosen Hilbert polynomial P and an arbitrary polarization.

- 2 Framed sheaves on \mathbb{P}^2 and ADHM data
- 3 Generalized ADHM data after Frenkel–Jardim
- 4 Perverse instantons on \mathbb{P}^3
- 5 Some remarks on smoothness

< □> < □> < □> < □> < □ < ○<

ADHM data

V vector space of dim c W vector space dim r

 $\mathbf{B} = \operatorname{Hom}(V, V) \oplus \operatorname{Hom}(V, V) \oplus \operatorname{Hom}(W, V) \oplus \operatorname{Hom}(V, W)$

Moment map $\mu : \mathbf{B} \to \operatorname{Hom}(\mathbf{V}, \mathbf{V})$:

$$\mu(B_1, B_2, i, j) = [B_1, B_2] + ij$$

Definition

 $(B_1, B_2, i, j) \in \mathbf{B}$ satisfies the ADHM equation if $[B_1, B_2] + ij = 0$. Then we say that (B_1, B_2, i, j) is an ADHM datum.

ADHM data

V vector space of dim c W vector space dim r

 $\mathbf{B} = \operatorname{Hom}(V, V) \oplus \operatorname{Hom}(V, V) \oplus \operatorname{Hom}(W, V) \oplus \operatorname{Hom}(V, W)$

Moment map $\mu : \mathbf{B} \to \operatorname{Hom}(\mathbf{V}, \mathbf{V})$:

$$\mu(B_1, B_2, i, j) = [B_1, B_2] + ij$$

Definition

 $(B_1, B_2, i, j) \in \mathbf{B}$ satisfies the ADHM equation if $[B_1, B_2] + ij = 0$. Then we say that (B_1, B_2, i, j) is an ADHM datum.

ADHM data

V vector space of dim c W vector space dim r

 $\mathbf{B} = \operatorname{Hom}(V, V) \oplus \operatorname{Hom}(V, V) \oplus \operatorname{Hom}(W, V) \oplus \operatorname{Hom}(V, W)$

Moment map $\mu : \mathbf{B} \to \operatorname{Hom}(\mathbf{V}, \mathbf{V})$:

$$\mu(B_1, B_2, i, j) = [B_1, B_2] + ij$$

Definition

 $(B_1, B_2, i, j) \in \mathbf{B}$ satisfies the *ADHM equation* if $[B_1, B_2] + ij = 0$. Then we say that (B_1, B_2, i, j) is an *ADHM datum*.

Stability of ADHM data

Definition

We say that an ADHM datum is

• stable, if for every subspace $S \subsetneq V$ (note that we allow S = 0) such that $B_k(S) \subset S$ for k = 1, 2 we have im $i \not\subset S$.

2 costable, if for every no non-zero subspace S ⊂ V such that B_k(S) ⊂ S for k = 1,2 we have S ∉ ker j,

Interprete state is stable and costable.

Stability of ADHM data

Definition

We say that an ADHM datum is

- stable, if for every subspace $S \subsetneq V$ (note that we allow S = 0) such that $B_k(S) \subset S$ for k = 1, 2 we have im $i \not\subset S$.
- ② *costable*, if for every no non-zero subspace *S* ⊂ *V* such that $B_k(S) \subset S$ for k = 1, 2 we have $S \not\subset ker j$,
 - *regular*, if it is stable and costable.

Stability of ADHM data

Definition

We say that an ADHM datum is

- stable, if for every subspace $S \subsetneq V$ (note that we allow S = 0) such that $B_k(S) \subset S$ for k = 1, 2 we have im $i \not\subset S$.
- ② *costable*, if for every no non-zero subspace *S* ⊂ *V* such that $B_k(S) \subset S$ for k = 1, 2 we have $S \not\subset ker j$,
- *regular*, if it is stable and costable.

Group action on ADHM data

G = GL(V) acts on **B**

$$g \cdot (B_1, B_2, i, j) = (gB_1g^{-1}, gB_2g^{-1}, gi, jg^{-1}).$$

 μ is *G*-equivariant (for the adjoint action of *G* on End(*V*)), so *G* acts on $\mu^{-1}(0)$

Consider stability with respect to the determinant $\chi: G \to \mathbb{G}_m$

Lemma

$$\mu^{-1}(0)^{ss}_{\chi} = \mu^{-1}(0)^{s}_{\chi} = stable ADHM data$$

Group action on ADHM data

G = GL(V) acts on **B**

$$g \cdot (B_1, B_2, i, j) = (gB_1g^{-1}, gB_2g^{-1}, gi, jg^{-1}).$$

 μ is *G*-equivariant (for the adjoint action of *G* on End(*V*)), so *G* acts on $\mu^{-1}(0)$ Consider stability with respect to the determinant $\chi : G \to \mathbb{G}_m$

Lemma

$$\mu^{-1}(0)^{ss}_{\chi} = \mu^{-1}(0)^{s}_{\chi} = stable ADHM data$$

The Donaldson-Nakajima theorem

Theorem

The moduli space $\mathcal{M}(\mathbb{P}^2; r, c)$ of rank r torsion free sheaves on \mathbb{P}^2 with $c_2 = c$, framed along a line l_{∞} is isomorphic to the GIT quotient $\mu^{-1}(0)/\!\!/_{\chi}G$.

Analogue of the Hilbert–Chow morphism

 $\mathcal{M}_0^{\text{reg}}(\mathbb{P}^2; r, c)$ rank r locally free sheaves on \mathbb{P}^2 with $c_2 = c$, framed along I_∞

We have a partial Donaldson–Uhlenbeck compactification:

$$\mathcal{M}_0(\mathbb{P}^2; r, c) = \bigsqcup_{0 \leq d \leq c} \mathcal{M}_0^{\mathrm{reg}}(\mathbb{P}^2; r, c - d) \times \mathcal{S}^d(\mathbb{A}^2),$$

where $\mathbb{A}^2 = \mathbb{P}^2 - I_\infty$.

Theorem

$$\mathcal{M}(\mathbb{P}^2; r, c) \simeq \mu^{-1}(0) /\!\!/_{\chi} G
ightarrow \mu^{-1}(0) / G \simeq \mathcal{M}_0(\mathbb{P}^2; r, c)$$

can be identified with

$(E, \Phi) \rightarrow ((E^{**}, \Phi), \operatorname{Supp}(E^{**}/E))$

Analogue of the Hilbert–Chow morphism

 $\mathcal{M}_0^{\mathrm{reg}}(\mathbb{P}^2; r, c)$ rank r locally free sheaves on \mathbb{P}^2 with $c_2 = c$, framed along I_∞

We have a partial Donaldson–Uhlenbeck compactification:

$$\mathcal{M}_0(\mathbb{P}^2; r, c) = \bigsqcup_{0 \le d \le c} \mathcal{M}_0^{\mathrm{reg}}(\mathbb{P}^2; r, c - d) \times \mathcal{S}^d(\mathbb{A}^2),$$

where $\mathbb{A}^2 = \mathbb{P}^2 - I_\infty$.

Theorem

$$\mathcal{M}(\mathbb{P}^2; \mathbf{r}, \mathbf{c}) \simeq \mu^{-1}(\mathbf{0}) /\!\!/_{\chi} \mathbf{G}
ightarrow \mu^{-1}(\mathbf{0}) / \mathbf{G} \simeq \mathcal{M}_0(\mathbb{P}^2; \mathbf{r}, \mathbf{c})$$

can be identified with

$$(E, \Phi) \rightarrow ((E^{**}, \Phi), \operatorname{Supp}(E^{**}/E))$$

- 2) Framed sheaves on \mathbb{P}^2 and ADHM data
- Generalized ADHM data after Frenkel–Jardim
- 4 Perverse instantons on \mathbb{P}^3
- 5 Some remarks on smoothness

< ■ > < ■ > < ■ > < ■ | < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■

Generalized ADHM datum $(\tilde{B}_1, \tilde{B}_2, \tilde{i}, \tilde{j}) \in \tilde{B} = B \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1))$, where

$$\begin{split} \tilde{B}_1, \tilde{B}_2 &: V \to V \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1)) \\ \tilde{i} &: W \to V \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1)) \\ \tilde{j} &: V \to W \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1)) \end{split}$$

For $p \in \mathbb{P}^1$ and $x = (\tilde{B}_1, \tilde{B}_2, \tilde{i}, \tilde{j})$ we set
 $x(p) := (\tilde{B}_1(p), \tilde{B}_2(p), \tilde{i}(p), \tilde{j}(p))$

Analogue of the moment map: $\tilde{\mu} = \tilde{\mu}_{W,V} : \tilde{\mathbf{B}} \to \operatorname{End}(V) \otimes H^{0}(\mathcal{O}_{X}(2))$

 $\tilde{\mu}(\tilde{B}_1, \tilde{B}_2, \tilde{i}, \tilde{j}) = [\tilde{B}_1, \tilde{B}_2] + \tilde{i}\tilde{j}.$

Generalized ADHM datum $(\tilde{B}_1, \tilde{B}_2, \tilde{i}, \tilde{j}) \in \tilde{B} = B \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1))$, where

$$egin{aligned} & ilde{B}_1, ilde{B}_2: V o V \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1)) \ & ilde{i}: W o V \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1)) \ & ilde{j}: V o W \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1)) \end{aligned}$$
For $p \in \mathbb{P}^1$ and $x = (ilde{B}_1, ilde{B}_2, ilde{i}, ilde{j})$ we set
 $& x(p) := (ilde{B}_1(p), ilde{B}_2(p), ilde{i}(p), ilde{j}(p)) \end{aligned}$

Analogue of the moment map: $\tilde{\mu} = \tilde{\mu}_{W,V} : \tilde{\mathbf{B}} \to \operatorname{End}(V) \otimes H^0(\mathcal{O}_X(2))$ $\tilde{\mu}(\tilde{B}_1, \tilde{B}_2, \tilde{i}, \tilde{j}) = [\tilde{B}_1, \tilde{B}_2] + \tilde{i}\tilde{j}.$

◆母 ▶ ◆ 臣 ▶ ★ 臣 ▶ 三日 → のへの

Definition of FJ-stability etc.

Definition

$x\in ilde{\mathbf{B}}$ is

- *FJ-stable* (*FJ-costable*, *FJ-regular*), if x(p) is stable (respectively: costable, regular) for all $p \in \mathbb{P}^1$,
- If *J-semistable*, if there exists a point *p* ∈ P¹ such that *x*(*p*) is stable,
- ③ *FJ-semiregular*, if it is FJ-stable and there exists a point $p \in \mathbb{P}^1$ such that x(p) is regular.

◆母 ▶ ◆ 臣 ▶ ★ 臣 ▶ 三日 → のへの

Notation

$$\begin{split} \tilde{W} &= V \oplus V \oplus W \\ x \in \tilde{\mathbf{B}} = \mathbf{B} \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1)) \text{ gives } \alpha : V \otimes \mathcal{O}_{\mathbb{P}^3}(-1) \to \tilde{W} \otimes \mathcal{O}_{\mathbb{P}^3} \text{ by} \\ \alpha &= \begin{pmatrix} \tilde{B}_1 + 1 \otimes x_2 \\ \tilde{B}_2 + 1 \otimes x_3 \\ \tilde{j} \end{pmatrix} \end{split}$$
(1)
and $\beta : \tilde{W} \otimes \mathcal{O}_{\mathbb{P}^3} \to V \otimes \mathcal{O}_{\mathbb{P}^3}(1) \text{ by}$

$$\beta : W \otimes \mathcal{O}_{\mathbb{P}^3} \to V \otimes \mathcal{O}_{\mathbb{P}^3}(1) \text{ by} \beta = \left(-\tilde{B}_2 - 1 \otimes x_3 \quad \tilde{B}_1 + 1 \otimes x_2 \quad \tilde{i} \right).$$
 (2)

_emma

$$\mathcal{C}^{\bullet}_{X} = (V \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \xrightarrow{\alpha} \tilde{W} \otimes \mathcal{O}_{\mathbb{P}^{3}} \xrightarrow{\beta} V \otimes \mathcal{O}_{\mathbb{P}^{3}}(1))$$
(3)

is a monad if and only if x is FJ-stable generalized ADHM datum

Adrian Langer, joint work with Marcin Hauzer

Moduli spaces of framed perverse instantons on \mathbb{P}^3

Notation

$$\begin{split} \tilde{W} &= V \oplus V \oplus W \\ x \in \tilde{\mathbf{B}} = \mathbf{B} \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1)) \text{ gives } \alpha : V \otimes \mathcal{O}_{\mathbb{P}^3}(-1) \to \tilde{W} \otimes \mathcal{O}_{\mathbb{P}^3} \text{ by} \\ \alpha &= \begin{pmatrix} \tilde{B}_1 + 1 \otimes x_2 \\ \tilde{B}_2 + 1 \otimes x_3 \\ \tilde{j} \end{pmatrix} \end{split}$$
(1)

and
$$\beta : W \otimes \mathcal{O}_{\mathbb{P}^3} \to V \otimes \mathcal{O}_{\mathbb{P}^3}(1)$$
 by

$$\beta = \left(\begin{array}{cc} -\tilde{B}_2 - 1 \otimes x_3 & \tilde{B}_1 + 1 \otimes x_2 & \tilde{i} \end{array} \right).$$
(2)

Lemma

$$\mathcal{C}^{\bullet}_{X} = (V \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1) \stackrel{\alpha}{\longrightarrow} \tilde{W} \otimes \mathcal{O}_{\mathbb{P}^{3}} \stackrel{\beta}{\longrightarrow} V \otimes \mathcal{O}_{\mathbb{P}^{3}}(1))$$
(3)

is a monad if and only if x is FJ-stable generalized ADHM datum.

Adrian Langer, joint work with Marcin Hauzer

Moduli spaces of framed perverse instantons on \mathbb{P}^3

The Frenkel–Jardim theorem

Theorem

We have set-theoretical bijections between

- FJ-stable ADHM data and framed torsion free instantons;
- FJ-semiregular ADHM data and framed reflexive instantons;
- FJ-regular ADHM data and framed locally free instantons.

◆□> < □> < □> < □> < □</p>

- Relation to moduli spaces of framed modules
- 2 Framed sheaves on \mathbb{P}^2 and ADHM data
- 3 Generalized ADHM data after Frenkel–Jardim
- 4 Perverse instantons on \mathbb{P}^3
- 5 Some remarks on smoothness

< □> < □> < □> < □> < □ < ○<

Definition

Rank r perverse instanton — object $C \in D^b(\mathbb{P}^3)$ such that:

- $H^{p}(\mathbb{P}^{3}, \mathcal{C} \otimes \mathcal{O}_{\mathbb{P}^{3}}(q)) = 0$ if either p = 0, 1 and p + q < 0 or p = 2, 3 and $p + q \ge 0$,
- **2** $H^{p}(\mathcal{C}) = 0$ for $p \neq 0, 1,$
- **③** ∃ *j* : *I* \hookrightarrow \mathbb{P}^3 such that $Lj^*\mathcal{C} \simeq \mathcal{O}_I^{\oplus r}$.

Framed perverse instanton — pair *C* and a framing $\Phi : Lj^*C \simeq O_1^{\oplus r}$

Definition

Rank r perverse instanton — object $C \in D^b(\mathbb{P}^3)$ such that:

- $H^{p}(\mathbb{P}^{3}, \mathcal{C} \otimes \mathcal{O}_{\mathbb{P}^{3}}(q)) = 0$ if either p = 0, 1 and p + q < 0 or p = 2, 3 and $p + q \ge 0$,
- **2** $H^{p}(\mathcal{C}) = 0$ for $p \neq 0, 1,$
- **③** ∃ *j* : *I* \hookrightarrow \mathbb{P}^3 such that $Lj^*\mathcal{C} \simeq \mathcal{O}_I^{\oplus r}$.

Framed perverse instanton — pair C and a framing $\Phi: Lj^*C \simeq \mathcal{O}_l^{\oplus r}$

Stacky approach

Analogue of Drinfeld's theorem on representability of the stack of framed perverse sheaves on \mathbb{P}^2 :

Theorem

The moduli stack $\operatorname{Perv}_r^c(\mathbb{P}^3, I_\infty)$ of framed perverse (r, c)-instantons is isomorphic to the quotient stack $[\tilde{\mu}^{-1}(0)/\operatorname{GL}(V)]$.

Corollary

We have bijection between isomorphism classes of perverse instantons (C, Φ) with $ch(C) = r - c[H]^2$ framed along l_{∞} and GL(c)-orbits of generalized ADHM (r, c)-data.

Stacky approach

Analogue of Drinfeld's theorem on representability of the stack of framed perverse sheaves on \mathbb{P}^2 :

Theorem

The moduli stack $\operatorname{Perv}_r^c(\mathbb{P}^3, I_\infty)$ of framed perverse (r, c)-instantons is isomorphic to the quotient stack $[\tilde{\mu}^{-1}(0)/\operatorname{GL}(V)]$.

Corollary

We have bijection between isomorphism classes of perverse instantons (\mathcal{C}, Φ) with $\operatorname{ch}(\mathcal{C}) = r - c[H]^2$ framed along I_{∞} and $\operatorname{GL}(c)$ -orbits of generalized ADHM (r, c)-data.

Some remarks on smoothness

GIT approach

Definition

A generalized ADHM datum is

- stable, if for every subspace $S \subsetneq V$ (note that we allow S = 0) such that $\tilde{B}_k(S) \subset S \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1))$ for k = 1, 2 we have im $\tilde{i} \not\subset S \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1))$.
- 2 *costable*, if for every no non-zero subspace $S \subset V$ such that $\tilde{B}_k(S) \subset S \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1))$ for k = 1, 2 we have $S \not\subset \ker \tilde{j}$,
- regular, if it is stable and costable.

A perverse instanton is *stable* if it comes from stable ADHM datum.

Some remarks on smoothness

GIT approach

Definition

A generalized ADHM datum is

- stable, if for every subspace $S \subsetneq V$ (note that we allow S = 0) such that $\tilde{B}_k(S) \subset S \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1))$ for k = 1, 2 we have im $\tilde{i} \not\subset S \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1))$.
- 2 *costable*, if for every no non-zero subspace $S \subset V$ such that $\tilde{B}_k(S) \subset S \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1))$ for k = 1, 2 we have $S \not\subset \ker \tilde{j}$,
- regular, if it is stable and costable.

A perverse instanton is *stable* if it comes from stable ADHM datum.

Theorem

The quotient $\mathcal{M}(\mathbb{P}^3; r, c) := \tilde{\mu}^{-1}(0) /\!\!/_{\chi} G$ is a fine moduli scheme for the moduli functor $\overline{\mathcal{M}}(\mathbb{P}^3; r, c)$ of stable framed perverse instantons.

Corollary

There is bijection between G-orbits of stable ADHM data and isomorphism classes of stable framed perverse instantons.

Adrian Langer , joint work with Marcin Hauzer Moduli spaces of framed perverse instantons on \mathbb{P}^3

Theorem

The quotient $\mathcal{M}(\mathbb{P}^3; r, c) := \tilde{\mu}^{-1}(0) /\!\!/_{\chi} G$ is a fine moduli scheme for the moduli functor $\overline{\mathcal{M}}(\mathbb{P}^3; r, c)$ of stable framed perverse instantons.

Corollary

There is bijection between G-orbits of stable ADHM data and isomorphism classes of stable framed perverse instantons.

Lemma

For every stable rank r > 0 perverse instanton C on \mathbb{P}^3 there exists a regular rank r perverse instanton C' and a rank 0 perverse instanton C'' such that we have a distinguished triangle

$$\mathcal{C}'' \to \mathcal{C} \to \mathcal{C}' \to \mathcal{C}''[1].$$

Lemma

E rank r > 0 instanton on \mathbb{P}^3 . There exists a unique regular instanton *E'* such that

 $0 \rightarrow E \rightarrow E' \rightarrow E'' \rightarrow 0,$

where E'' is a rank 0 instanton (needs definition!)

Lemma

For every stable rank r > 0 perverse instanton C on \mathbb{P}^3 there exists a regular rank r perverse instanton C' and a rank 0 perverse instanton C'' such that we have a distinguished triangle

$$\mathcal{C}'' \to \mathcal{C} \to \mathcal{C}' \to \mathcal{C}''[1].$$

Lemma

E rank r > 0 instanton on \mathbb{P}^3 .

There exists a unique regular instanton E' such that

$$0 \rightarrow E \rightarrow E' \rightarrow E'' \rightarrow 0,$$

where E" is a rank 0 instanton (needs definition!).

Some remarks on smoothness

Partial Donaldson–Uhlenbeck compactification

 $\mathcal{M}_0(\mathbb{P}^3; r, c) = \tilde{\mu}^{-1}(0)/G$ has the decomposition:

$$\mathcal{M}_0(\mathbb{P}^3; r, c) = \bigsqcup_{0 \leq d \leq c} \mathcal{M}_0^{\mathrm{reg}}(\mathbb{P}^3; r, c - d) imes \mathcal{M}_0(\mathbb{P}^3; 0, d).$$

The natural morphism

 $\mathcal{M}(\mathbb{P}^3; r, c) \simeq \tilde{\mu}^{-1}(0) /\!\!/_{\chi} G \to \tilde{\mu}^{-1}(0) / G \simeq \mathcal{M}_0(\mathbb{P}^3; r, c)$

coming from GIT can be described as

$$(\mathcal{C}, \Phi)
ightarrow ((\mathcal{C}', \Phi'), \mathcal{C}'').$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回= のへの

Some remarks on smoothness

Partial Donaldson–Uhlenbeck compactification

 $\mathcal{M}_0(\mathbb{P}^3; r, c) = \tilde{\mu}^{-1}(0)/G$ has the decomposition:

$$\mathcal{M}_0(\mathbb{P}^3; r, c) = \bigsqcup_{0 \leq d \leq c} \mathcal{M}_0^{\mathrm{reg}}(\mathbb{P}^3; r, c - d) imes \mathcal{M}_0(\mathbb{P}^3; 0, d).$$

The natural morphism

$$\mathcal{M}(\mathbb{P}^3; r, c) \simeq \tilde{\mu}^{-1}(0) /\!\!/_{\chi} G o \tilde{\mu}^{-1}(0) / G \simeq \mathcal{M}_0(\mathbb{P}^3; r, c)$$

coming from GIT can be described as

$$(\mathcal{C}, \Phi) \rightarrow ((\mathcal{C}', \Phi'), \mathcal{C}'').$$

Definition

A rank 0 instanton E on \mathbb{P}^3 is a pure sheaf of dimension 1 such that $H^0(\mathbb{P}^3, E(-2)) = 0$ and $H^1(\mathbb{P}^3, E(-2)) = 0$.

_emma

 $C \in D^b(\mathbb{P}^3)$ is a rank 0 perverse instanton if and only if C[1] is a rank 0 instanton.

Definition

A rank 0 instanton E on \mathbb{P}^3 is a pure sheaf of dimension 1 such that $H^0(\mathbb{P}^3, E(-2)) = 0$ and $H^1(\mathbb{P}^3, E(-2)) = 0$.

Lemma

 $C \in D^b(\mathbb{P}^3)$ is a rank 0 perverse instanton if and only if C[1] is a rank 0 instanton.

Some remarks on smoothness

Moduli interpretation for instantons of rank 0.

 $\mathcal{M}_0(\mathbb{P}^3; 0, c) = \tilde{\mu}^{-1}(0) / \operatorname{GL}(V)$ is isomorphic to the scheme Q_R^c of equivalence classes of *c*-dimensional *R*-modules for a non-commutative *k*-algebra

 $R = k \langle y_1, y_2, z_1, z_2 \rangle / (y_1 y_2 - y_2 y_1, z_1 z_2 - z_2 z_1, y_1 z_2 - z_2 y_1 + y_2 z_1 - z_1 y_2).$

$$I = (y_1 z_2 - z_2 y_1, y_1 z_1 - z_1 y_1, y_2 z_2 - z_2 y_2).$$

We have surjection $R \rightarrow R' = k[y_1, y_2, z_1, z_2]$ inducing

$$Q^c_{R'} o Q^c_R.$$

This is a closed embedding in char zero.

<□> → □ → ↓ □ → □ □ → ○ ○ ○

Some remarks on smoothness

Moduli interpretation for instantons of rank 0.

 $\mathcal{M}_0(\mathbb{P}^3; 0, c) = \tilde{\mu}^{-1}(0) / \operatorname{GL}(V)$ is isomorphic to the scheme Q_R^c of equivalence classes of *c*-dimensional *R*-modules for a non-commutative *k*-algebra

 $R = k \langle y_1, y_2, z_1, z_2 \rangle / (y_1 y_2 - y_2 y_1, z_1 z_2 - z_2 z_1, y_1 z_2 - z_2 y_1 + y_2 z_1 - z_1 y_2).$

$$I = (y_1 z_2 - z_2 y_1, y_1 z_1 - z_1 y_1, y_2 z_2 - z_2 y_2).$$

We have surjection $R \rightarrow R' = k[y_1, y_2, z_1, z_2]$ inducing

$$Q^c_{R'} o Q^c_R.$$

This is a closed embedding in char zero.

Some remarks on smoothness

Reducibility of the moduli space

We have a set-theoretical injection:

$arphi: \mathcal{S}^{c}\mathbb{A}^{4} ightarrow \mathcal{Q}^{c}_{R} \simeq \mathcal{M}_{0}(\mathbb{P}^{3}; \mathbf{0}, c).$

 \mathbb{A}^4 — lines I_1, \ldots, I_c in \mathbb{P}^3 not intersecting I_{∞} point in $S^c \mathbb{A}^4$ corresponds to $E = \mathcal{O}_{I_1}(1) \oplus \cdots \oplus \mathcal{O}_{I_c}(1)$

The image of φ is an irreducible component of $\mathcal{M}_0(\mathbb{P}^3; 0, c)$ of dimension 4c.

 $\mathcal{M}_0(\mathbb{P}^3; 0, 2)$ has two 8-dimensional irreducible components intersecting along a 7-dimensional variety.

Reducibility of the moduli space

We have a set-theoretical injection:

$$arphi: \mathcal{S}^{c}\mathbb{A}^{4}
ightarrow Q^{c}_{R} \simeq \mathcal{M}_{0}(\mathbb{P}^{3}; \mathbf{0}, c).$$

 \mathbb{A}^4 — lines l_1, \ldots, l_c in \mathbb{P}^3 not intersecting l_{∞} point in $S^c \mathbb{A}^4$ corresponds to $E = \mathcal{O}_{l_1}(1) \oplus \cdots \oplus \mathcal{O}_{l_c}(1)$

The image of φ is an irreducible component of $\mathcal{M}_0(\mathbb{P}^3; 0, c)$ of dimension 4c.

 $\mathcal{M}_0(\mathbb{P}^3; 0, 2)$ has two 8-dimensional irreducible components intersecting along a 7-dimensional variety.

Reducibility of the moduli space

We have a set-theoretical injection:

$$arphi: \mathcal{S}^{c}\mathbb{A}^{4}
ightarrow Q^{c}_{R} \simeq \mathcal{M}_{0}(\mathbb{P}^{3}; \mathbf{0}, c).$$

 \mathbb{A}^4 — lines l_1, \ldots, l_c in \mathbb{P}^3 not intersecting l_{∞} point in $S^c \mathbb{A}^4$ corresponds to $E = \mathcal{O}_{l_1}(1) \oplus \cdots \oplus \mathcal{O}_{l_c}(1)$

The image of φ is an irreducible component of $\mathcal{M}_0(\mathbb{P}^3; 0, c)$ of dimension 4c.

 $\mathcal{M}_0(\mathbb{P}^3; 0, 2)$ has two 8-dimensional irreducible components intersecting along a 7-dimensional variety.

Reducibility of the moduli space

We have a set-theoretical injection:

$$arphi: \mathcal{S}^{c}\mathbb{A}^{4}
ightarrow Q^{c}_{R} \simeq \mathcal{M}_{0}(\mathbb{P}^{3}; \mathbf{0}, c).$$

 \mathbb{A}^4 — lines l_1, \ldots, l_c in \mathbb{P}^3 not intersecting l_{∞} point in $S^c \mathbb{A}^4$ corresponds to $E = \mathcal{O}_{l_1}(1) \oplus \cdots \oplus \mathcal{O}_{l_c}(1)$

The image of φ is an irreducible component of $\mathcal{M}_0(\mathbb{P}^3; 0, c)$ of dimension 4c.

 $\mathcal{M}_0(\mathbb{P}^3; 0, 2)$ has two 8-dimensional irreducible components intersecting along a 7-dimensional variety.

Some remarks on smoothness

Relation between different notions of stability

Lemma

If a generalized ADHM datum is FJ-semistable then it is also stable.

Implication in the opposite direction is false starting from r = 1, c = 2

Some remarks on smoothness

Relation between different notions of stability

Lemma

If a generalized ADHM datum is FJ-semistable then it is also stable.

Implication in the opposite direction is false starting from r = 1, c = 2

- Relation to moduli spaces of framed modules
- 2 Framed sheaves on \mathbb{P}^2 and ADHM data
- 3 Generalized ADHM data after Frenkel–Jardim
- 4 Perverse instantons on \mathbb{P}^3
- 5 Some remarks on smoothness

 (\mathcal{C}, Φ) stable framed perverse instanton corresponding to $x \in \tilde{\mathbf{B}}$ $\varphi : \mathbf{G} \to \tilde{\mathbf{B}}, g \to gx$, the orbit map

$$0 \to K^0 = \mathfrak{g} \xrightarrow{d\varphi_{\mathfrak{C}}} K^1 = T_X \tilde{\mathbf{B}} \xrightarrow{d\tilde{\mu}_X} K^2 = T_0(\operatorname{End}(V) \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(2))) \to 0$$

Theorem

 $H^{i}(K) = 0 \text{ for } i \neq 1, 2$ $H^{1}(K) = \operatorname{Ext}^{1}(\mathcal{C}, J_{I_{\infty}} \otimes \mathcal{C})$ $H^{2}(K) = \operatorname{Ext}^{2}(\mathcal{C}, \mathcal{C})$

 (\mathcal{C}, Φ) stable framed perverse instanton corresponding to $x \in \tilde{\mathbf{B}}$ $\varphi : \mathbf{G} \to \tilde{\mathbf{B}}, g \to gx$, the orbit map

$$0 \to K^0 = \mathfrak{g} \xrightarrow{d\varphi_{\mathfrak{C}}} K^1 = T_X \tilde{\mathbf{B}} \xrightarrow{d\tilde{\mu}_X} K^2 = T_0(\operatorname{End}(V) \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(2))) \to 0$$

Theorem

 $\begin{aligned} H^{i}(K) &= 0 \text{ for } i \neq 1,2 \\ H^{1}(K) &= \operatorname{Ext}^{1}(\mathcal{C}, J_{l_{\infty}} \otimes \mathcal{C}) \\ H^{2}(K) &= \operatorname{Ext}^{2}(\mathcal{C}, \mathcal{C}) \end{aligned}$

Adrian Langer , joint work with Marcin Hauzer Moduli spaces of framed perverse instantons on \mathbb{P}^3

Frenkel–Jardim's conjecture

Frenkel–Jardim's conjecture: The moduli space of framed instantons is smooth and irreducible.

This is false: take E

$$0
ightarrow E \longrightarrow \mathcal{O}^4_{\mathbb{P}^3} \stackrel{ ilde{arphi}}{\longrightarrow} \mathcal{O}_m(1)^3
ightarrow 0,$$

where $m := (x_0 = x_1 = 0)$ and $\tilde{\varphi}$ comes from

$$\varphi = \left(\begin{array}{rrrrr} x_2 & x_3 & 0 & 0 \\ 0 & x_2 & x_3 & 0 \\ 0 & 0 & x_2 & x_3 \end{array}\right)$$

Then dim $Ext^2(E, E) = 3$ and E comes from FJ-stable ADHM datum.

Frenkel–Jardim's conjecture

Frenkel–Jardim's conjecture:

The moduli space of framed instantons is smooth and irreducible.

This is false: take E

$$0
ightarrow E \longrightarrow \mathcal{O}^4_{\mathbb{P}^3} \stackrel{ ilde{arphi}}{\longrightarrow} \mathcal{O}_m(1)^3
ightarrow 0,$$

where $m := (x_0 = x_1 = 0)$ and $\tilde{\varphi}$ comes from

$$arphi = \left(egin{array}{cccc} x_2 & x_3 & 0 & 0 \ 0 & x_2 & x_3 & 0 \ 0 & 0 & x_2 & x_3 \end{array}
ight).$$

Then dim $\operatorname{Ext}^2(E, E) = 3$ and *E* comes from FJ-stable ADHM datum.

Some remarks on smoothness

Smoothness

Theorem

Let E_i be a locally free (r_i, c_i) -instanton on \mathbb{P}^3 , where i = 1, 2. If $r_1, r_2 \leq 3$ and $c_1c_2 \leq 6$ then $\operatorname{Ext}^2(E_1, E_2) = 0$.

Corollary

For $r \le 3$ and $c \le 2$ the moduli space of framed locally free (r, c)-instantons is smooth of dimension 4cr.

Some remarks on smoothness

Smoothness

Theorem

Let E_i be a locally free (r_i, c_i) -instanton on \mathbb{P}^3 , where i = 1, 2. If $r_1, r_2 \leq 3$ and $c_1c_2 \leq 6$ then $\operatorname{Ext}^2(E_1, E_2) = 0$.

Corollary

For $r \le 3$ and $c \le 2$ the moduli space of framed locally free (r, c)-instantons is smooth of dimension 4cr.

▲□▶▲圖▶▲圖▶▲圖▶ ▲国▲ ろん⊙

 $M_{\mathbb{P}^3}(r,c)$ the moduli space of Gieseker stable loc. free (r,c)-instantons on \mathbb{P}^3 $S \subset \mathbb{P}^3$ a smooth quartic with Pic $S = \mathbb{Z}$. $M_S(r,4c)$ the moduli space of rk *r* slope stable v. b. on *S* with $c_1 = 0$ and $c_2 = c \cdot h^2|_S = 4c$ Using idea of A. Tyurin

Theorem

Let $r \leq 3$ and $c \leq 2$. Then $M_{\mathbb{P}^3}(r, c)$ is smooth and the restriction $r : M_{\mathbb{P}^3}(r, c) \to M_S(r, 4c)$ is a morphism which induces an isomorphism of $M_{\mathbb{P}^3}(r, c)$ onto a Lagrangian submanifold of $M_S(r, 4c)$.

 $M_{\mathbb{P}^3}(r, c)$ the moduli space of Gieseker stable loc. free (r, c)-instantons on \mathbb{P}^3 $S \subset \mathbb{P}^3$ a smooth quartic with Pic $S = \mathbb{Z}$. $M_S(r, 4c)$ the moduli space of rk *r* slope stable v. b. on *S* with $c_1 = 0$ and $c_2 = c \cdot h^2|_S = 4c$ Using idea of A. Tyurin

Theorem

Let $r \leq 3$ and $c \leq 2$. Then $M_{\mathbb{P}^3}(r, c)$ is smooth and the restriction $r : M_{\mathbb{P}^3}(r, c) \to M_S(r, 4c)$ is a morphism which induces an isomorphism of $M_{\mathbb{P}^3}(r, c)$ onto a Lagrangian submanifold of $M_S(r, 4c)$.

For Further Reading

For Further Reading I

I. B. Frenkel, M. Jardim Complex ADHM data and sheaves on ℙ³, *J. Algebra* **319** (2008), 2913-2937.

M. Hauzer, A. Langer Moduli spaces of framed perverse instantons on ℙ³, Glasgow Math. J. 53 (2010), 51–96.

★ E ▶ ★ E ▶ E = のQQ