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Introduction
Linear Monads

Instanton bundles on hyperquadrics

Notation:

We will work over C.
Let Qn ⊂ Pn+1 = P(V∨), n > 2, be a smooth quadric
hypersurface.
It is well known that

Pic(Qn) ∼= Z and ωQn
∼= OQn (−n).

Set Ωj := Ωj
Pn+1 and we define inductively ψj :

ψ0 := OQn , ψ1 := Ω1(1)|Qn

and, for all j ≥ 2, we define ψj as

0 −→ Ωj(j)|Qn −→ ψj −→ ψj−2 −→ 0.

In particular we have the exact sequence:

0→ ψ1 → OQn ⊗ V∨ → OQn → 0.
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Linear Monads

Instanton bundles on hyperquadrics

Definition: Let X be a smooth projective variety. A monad on X
is a complex of vector bundles:

M• : F α−→ G
β−→ H

which is exact at F and at H. The sheaf

E := Ker(β)/Im(α)

is called the cohomology sheaf of the monad M•.
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Instanton bundles on hyperquadrics

A monad M• : F α−→ G
β−→ H has a so-called display:

0 0
↓ ↓

0 −→ F −→ K −→ E −→ 0
‖ ↓ ↓

0 −→ F α−→ G −→ Q −→ 0
↓ ↓
H = H
↓ ↓
0 0

where K := Ker(β) and Q := Coker(α).
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Instanton bundles on hyperquadrics

From the display of a monad M• one easily computes the rank
and the Chern character of its cohomology sheaf. We have

(i) rk(E) = rk(G)− rk(F )− rk(H), and

(ii) ct (E) = ct (G)ct (F )−1ct (H)−1.
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Instanton bundles on hyperquadrics

Monads were first introduced by Horrocks who showed that all
vector bundles E on P3 can be obtained as the cohomology of

0 −→ ⊕iOP3(ai) −→ ⊕jOP3(bj) −→ ⊕nOP3(cn) −→ 0.

Monads appeared in a wide variety of contexts within
algebraic-geometry, like the construction of locally free
sheaves.
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Instanton bundles on hyperquadrics

GOAL:
Linear monads

A⊗OQn (−1)→ B ⊗OQn → C ⊗OQn (1)

on Qn ⊂ Pn+1 where A, B and C are vector spaces of
dimension a, b and c respectively.
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Instanton bundles on hyperquadrics

Proposition:
Let n ≥ 3. There exist monads on Qn whose entries are linear
maps:

OQn (−1)a α−→Ob
Qn

β−→OQn (1)c

if and only if at least one of the following conditions holds:

(1) b ≥ 2c + n − 1 and b ≥ a + c.
(2) b ≥ a + c + n.

If so, there actually exists a monad with the map α such that αx
is injective for all x ∈ X .
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Instanton bundles on hyperquadrics

Sketch of the Proof:
Existence part: We may assume that Qn is the quadric
hypersurface in Pn+1 defined by x2

0 + x2
1 + · · ·+ x2

n+1 = 0.
By Floystad, if b ≥ 2c + n and b ≥ a + c or b ≥ a + c + n + 1
then there exist

OPn+1(−1)a α−→ Ob
Pn+1

β−→ OPn+1(1)c (1)

with the map α such that αx is injective for all x ∈ X .
So, restricting a general monad (1) to Qn we get a monad

OQn (−1)a α−→ Ob
Qn

β−→ OQn (1)c

with the map α such that αx is injective for all x ∈ X .
So, it is enough to consider the cases
(a) b = 2c + n − 1 and b ≥ a + c.
(b) b = a + c + n.

Laura Costa Linear monads and instantons
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Instanton bundles on hyperquadrics

Case b = 2c + n − 1 and b = a + c.
Set n1 = n−1

2 if n is odd and n1 = n−2
2 if n is even. Consider the

(n1 + c)× c, (n− 1− n1 + c)× c, (n− 1 + c)× (n− 1− n1 + c)
and (n − 1 + c)× (n1 + c) matrices

A1 =


x0 x1 ... ... xn1 0 0 ... ... 0
0 x0 x1 ... ... xn1 0 0 ... 0
.... ... ... ... ... ... ... ... ... ...
0 0 ... ... ... x0 x1 ... ... xn1



A2 =


xn1+1 xn1+2 ... ... xn 0 0 ... ... 0

0 xn1+1 xn1+2 ... ... xn 0 0 ... 0
.... ... ... ... ... ... ... ... ... ...
0 0 ... ... ... xn1+1 xn1+2 ... ... xn
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Instanton bundles on hyperquadrics

Define the complex

0 −→ OQn (−1)a α−→ Ob
Qn

β−→ OQn (1)c −→ 0 (2)

where β is the map given by the matrix B = (A1 A2) and α is
the map given by

A =

(
A2
−A1

)
.

It is not difficult to see that α is such that αx is injective for all
x ∈ X .
Necessary Conditions: Pursuing the ideas developed by
Fløystead and changing the role of Pn by Qn we get that the
numerical conditions on a, b, c and n are indeed necessary.

Laura Costa Linear monads and instantons
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Instanton bundles on hyperquadrics

Using linear monads to construct indecomposable vector
bundles on Qn, the following come up

Questions:

How are the vector bundles obtained as cohomology
sheaves of linear monads? Are they simple ? stable ?

Which vector bundles can arise in this way?
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Instanton bundles on hyperquadrics

Definition:
Let X be a smooth projective variety and σ = (F0, · · · ,Fr ) a
collection of vector bundles on X . A vector bundle F on X has
natural cohomology with respect to σ if for all i , at most one

Hq(X ,F ⊗ Fi)

is different from 0.

Use Σ∗ meaning that for even n both Spinor bundles Σ1 and Σ2
are considered, and for odd n, the Spinor bundle Σ.
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Instanton bundles on hyperquadrics

Proposition:

Let Qn ⊂ Pn+1 be a quadric hypersurface and let E be a rank
b − a− c torsion free sheaf on Qn with Chern polynomial
ct (E) = 1

(1−e1t)a(1+e1t)b . It holds:
(a) If b − c(n + 2) < 0, E has natural cohomology with respect
to

σ = (Σ∗(−n),OQn (−n + 1), · · · ,OQn (−1),OQn )

and H i(Qn,E ⊗ Σ∗(−n + 1)) = 0 for all i ≥ 0, then E is the
cohomology bundle of a linear monad of the following type

S• : OQn (−1)a −→ Ob
Qn
−→ OQn (1)c .
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Proposition:
(b) If E is the cohomology bundle of a linear monad of the
following type

S• : OQn (−1)a −→ Ob
Qn
−→ OQn (1)c

and H0(Qn,E) = 0, then E has natural cohomology with
respect to

σ = (Σ∗(−n),OQn (−n + 1), · · · ,OQn (−1),OQn )

and H i(Qn,E ⊗ Σ∗(−n + 1)) = 0 for all i ≥ 0.
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Definition
A mathematical instanton bundle on Q2l+1 with quantum
number k is a rank 2l vector bundle E on Q2l+1 with trivial
splitting type (i.e. for a general line L ⊂ Q2l+1 we have
E|L ∼= OL

2l ) and defined as the cohomology bundle of a monad

S• : OQ2l+1(−1)k A−→ O2k+2l
Q2l+1

Bt
−→ OQ2l+1(1)k

where A and B are k × (2l + 2k) matrices with linear entries

Laura Costa Linear monads and instantons
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Remark:
The fact that S• is a monad is equivalent to the following
conditions on A, B

(i) A, B have rank k at every point of Q2l+1,
(ii) ABt = 0.

Let L ⊂ Q2l+1 be a line joining the points p 6= q ∈ Q2l+1.
Then

E|L ∼= O2l
L ⇔ B(q)A(p) is invertible

Laura Costa Linear monads and instantons
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Example:
Let f ∈ C[x0, · · · , x2l+2] defining Q2l+1 be
f = x2

0 + x2
1 + · · ·+ x2

2l+2. Consider the k × (l + k) matrices

A1 =


x0 x1 ... ... xl 0 0 ... ... 0
0 x0 x1 ... ... xl 0 0 ... 0
0 0 x0 x1 ... ... xl 0 ... 0
.... ... ... ... ... ... ... ... ... ...
0 0 ... ... ... x0 x1 ... ... xl



A2 =


xl+1 xl+2 ... ... x2l+1 0 0 ... ... 0

0 xl+1 xl+2 ... ... x2l+1 0 0 ... 0
0 0 xl+1 xl+2 ... ... x2l+1 0 ... 0
.... ... ... ... ... ... ... ... ... ...
0 0 ... ... ... xl+1 xl+2 ... ... x2l+1

 .
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Let α : OQ2l+1(−1)k −→ O2l+2k
Q2l+1

be associated to

A = (A1 A2)

and let β : O2k+2l
Q2l+1

−→ OQ2l+1(1)k be associated to B = At ,
transpose with respect to the standard symplectic form

G :=

(
0 −1k+1

1k+1 0

)
.

Since the localized maps αx are injective for all x ∈ Q2l+1, the
cohomology sheaf of the monad

S• : 0 −→ OQ2l+1(−1)k α−→ O2k+2l
Q2l+1

β−→ OQ2l+1(1)k −→ 0

is an instanton bundle on Q2l+1 with quantum number k .
Laura Costa Linear monads and instantons
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Corollary:
Any instanton bundle E on Q2l+1 with quantum number k
satisfies:

(i) ct (E) = 1
(1−e1t)k (1+e1t)k ,

(ii) E has natural cohomology with respect to

σ = (Σ(−2l − 1),OQ2l+1(−2l), · · · ,OQ2l+1(−1),OQ2l+1)

and H i(Q2l+1,E ⊗ Σ(−2l)) = 0 for all i ≥ 0,
(iii) E has trivial splitting type.

Conversely, any rank 2l vector bundle E on Q2l+1 verifying the
conditions (i), (ii) and (iii) is an instanton bundle E on Q2l+1.
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Definition:
For a torsion free sheaf F on Q2l+1 we set

µ(F ) =
c1(F )

rk(F )
.

The sheaf F is said to be semistable if

µ(E) ≤ µ(F )

for all non-zero subsheaves E ⊂ F with rk(E) < rk(F ); if strict
inequality holds then F is stable.
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Notation:Let E be a rank r vector bundle on Qn. We set
Enorm := E(kE ) where kE is the unique integer such that
c1(E(kE )) ∈ {−r + 1, · · · ,0}.

Proposition: (Hoppe’s criterion)
Let E be a rank r locally-free sheaf on Qn. We have:
(a) If H0(X , (ΛqE)norm) = 0 for 1 ≤ q ≤ r − 1, then E is stable.
(b) If H0(X , (ΛqE)norm(−1)) = 0 for 1 ≤ q ≤ r − 1, then E is

semistable.
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Proposition:
Any instanton bundle E on Q2l+1 is simple and

H0(Q2l+1,E) = 0.

Sketch of the Proof: Let

S• : OQ2l+1(−1)k A−→ O2k+2l
Q2l+1

Bt
−→ OQ2l+1(1)k

be the monad associated to E and the exact sequences:

0 −→ K = ker(Bt ) −→ O2k+2l
Q2l+1

−→ OQ2l+1(1)k −→ 0, and (3)

0 −→ OQ2l+1(−1)k −→ K −→ E −→ 0; (4)

Using Hoppe’s criterion we prove that K is stable.
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We have the exact sequence

0→ E∗ ⊗ E → K ∗ ⊗ E → E(1)k → 0

from which we deduce that h0(E∗ ⊗ E) ≤ h0(K ∗ ⊗ E). Since
h0K ∗(−1) = h1K ∗(−1) = 0, from the exact sequence

0→ K ∗(−1)→ K ∗ ⊗ K → K ∗ ⊗ E → 0

we get
h0(K ∗ ⊗ E) = h0(K ∗ ⊗ K ) = 1

where the last equality follows from the fact that K is stable and
hence simple.
Thus,

h0(Q2l+1,E ⊗ E∗) = 1

or, equivalently, E is simple.

Laura Costa Linear monads and instantons



Introduction
Linear Monads

Instanton bundles on hyperquadrics

Since K is stable and c1(K ) = −k < 0, there exists λ ≥ 0 such
that

H0(Q2l+1,Knorm) = H0(Q2l+1,K ⊗OQ2l+1(λ)) = 0

and we get

H0(Q2l+1,E) = H0(Q2l+1,K ) = 0

.
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Definition:
A vector bundle E is said to be symplectic if there exists an
isomorphism φ : E → E∗ such that φ∗ = −φ.

Remark:

E is symplectic iff H0(
2∧

E) 6= 0.

Lemma:
Let E be a symplectic vector bundle on a projective variety X
with Pic(X ) ∼= Z such that for q odd, 1 ≤ q ≤ rk(E)

2 the following
hold:
(i) h0(

∧q E) = 0
(ii) h0(

∧q E ⊗ E) = 1.
Then, E is stable.
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Proposition:
Any instanton bundle on Q3 and on Q5 is stable.

Sketch of the Proof: Any rank two vector bundle on Qn is stable
if it is simple. Hence, any instanton bundle on Q3 is stable.
Let E be an instanton bundle on Q5. If it is symplectic, it is
stable by the Lemma.
Assume E is not symplectic. Since (

∧q E)norm =
∧q E ,∧3 E ∼= E∗,

∧2 E ∼=
∧2 E∗, we have

H0(E) = H0(
2∧

E) = H0(
3∧

E) = 0.

Therefore, by Hoppe’s criterion E is stable.
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Proposition:
Any instanton bundle on Q2l+1 with quantum number k = 1 is
stable

Question:
Is any instanton bundle on Q2l+1 stable ?
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Any instanton bundle on Q2l+1 with quantum number k = 1 is
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Notation: Denote by MIQ2l+1(k) the open subset of the
Maruyama scheme of semistable coherent sheaves on Q2l+1
with Chern polynomial ct (E) = 1

(1−e1t)k (1+e1t)k .

Questions:
Is MIQ2l+1(k) irreducible? smooth? rational? Which is its
dimension?
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Theorem:
The moduli space MIQ2l+1(1) is smooth and irreducible of
dimension 2l2 + 5l + 2.
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Sketch of the proof: We know that any E ∈ MIQ2l+1(1) is stable.
Hence,

dim[E ] MIQ2l+1(1) = dim T[E ]MIQ2l+1(1) = dim Ext1(E ,E)

and if Ext2(E ,E) = 0, then the moduli space is smooth at E .

Claim: For any E ∈ MIQ2l+1(1), h2(E ⊗ E∗) = 0.
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Indeed, let E ∈ MIQ2l+1(1) given by a monad M• and consider
its display

0 −→ K −→ O2+2l
Q2l+1

−→ OQ2l+1(1) −→ 0, (5)

0 −→ OQ2l+1(−1) −→ K −→ E −→ 0. (6)

From the exact sequence

0 −→ E∗(−1) −→ K ⊗ E∗ −→ E ⊗ E∗ −→ 0

we deduce that

h2(E ⊗ E∗) = h2(K ⊗ E∗).
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Dualize (6) and tensor by K to get

0 −→ E∗ ⊗ K −→ K ⊗ K ∗ −→ K (1) −→ 0

and hence

H1(K (1)) −→ H2(E∗ ⊗ K ) −→ H2(K ⊗ K ∗).

From (5) we deduce that H2(K ⊗ K ∗) = 0 and from the fact that
K (1) ∼=

∧2l K ∗ we get H1(K (1)) = 0. Thus

H2(E ⊗ E∗) = H2(K ⊗ E∗) = 0

and MIQ2l+1(1) is smooth at [E ].

By Riemmann-Roch or using the display of the monad we
obtain

dim MIQ2l+1(1) = dim Ext1(E ,E) = 2l2 + 5l + 2.
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Finally we establish a dominant map

Π : MIQ2l+1(1)→ M

where M is a moduli space of stable vector bundles that contain
the kernel bundles K .
From this we deduce the irreducibility of MIQ2l+1(1)
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Example: Let E0 be an instanton bundle on Q5 given as the
cohomology of the monad

OQ5(−1)2 → O8
Q5
→ OQ5(1)2

defined by the matrices

A0 =

(
0 f e d 0 −c −b −a
e d 0 2f −b −a 0 −2c

)
and

Bt =

(
a b c 0 d e f 0
0 a b c 0 d e f

)
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Let E be an instanton bundle on Q5 given as the cohomology of
the monad

OQ5(−1)2 → O8
Q5
→ OQ5(1)2

defined by the matrices

A =

(
0 f e d 0 −c −b −a
f e d 0 −c −b −a 0

)
and

Bt =

(
a b c 0 d e f 0
0 a b c 0 d e f

)
.
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Using Macaulay we get

h2(E0 ⊗ E∗0 ) = 0

Thus MIQ5(2) is smooth at [E0] of dimension ext1(E0,E0) = 45.
On the other hand,

h2(E ⊗ E∗) = 2 and ext1(E ,E) = 47 > 45.

Thus, MIQ5(2) is singular at E
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Conjecture:

For any k ≥ 1, the moduli space of instanton bundles MIQ3(k) is
smooth, irreducible of dimension 12k − 3.
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