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2-sphere and holomorphic 1- and 2-balls

Let V be a C-linear space endowed with a hermitian form 〈−,−〉 of
signature ++ or +− or +−−. Then

BV :=
{

p ∈ PCV | 〈p, p〉 > 0
}
, SV :=

{
p ∈ PCV | 〈p, p〉 = 0

}
are the round 2-sphere or the holomorphic 1- or 2-ball and its ideal
boundary, i.e., the absolute (empty in the case of the round 2-sphere).

At points p ∈ PCV \ SV , we have a (pseudo-)hermitian metric induced
by the trace function on LinC(V ,V )

TpPCV = LinC(p,V /p) ' LinC(p, p⊥) 6 LinC(V ,V ).

The group AutholBV = PUV = IsomholBV 6 IsomBV is an index 2
subgroup. (In the case +−, we get the Riemann sphere glued from two
Poincaré discs.)

The geodesics have the form PCW , where V >W is a 2-dimensional
R-linear subspace such that 0 6= 〈W ,W 〉 ⊂ R. The distance is a mono-

tonic function of the tance ta(q1, q2) := 〈q1,q2〉〈q2,q1〉
〈q1,q1〉〈q2,q2〉 .
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Poincaré discs.)

The geodesics have the form PCW , where V >W is a 2-dimensional
R-linear subspace such that 0 6= 〈W ,W 〉 ⊂ R. The distance is a mono-

tonic function of the tance ta(q1, q2) := 〈q1,q2〉〈q2,q1〉
〈q1,q1〉〈q2,q2〉 .

S. Anan′ in (ICMC-USP) spherical and hyperbolic 2-spheres May 17, 2016 2 / 11



2-sphere and holomorphic 1- and 2-balls

Let V be a C-linear space endowed with a hermitian form 〈−,−〉 of
signature ++ or +− or +−−. Then

BV :=
{

p ∈ PCV | 〈p, p〉 > 0
}
, SV :=

{
p ∈ PCV | 〈p, p〉 = 0

}
are the round 2-sphere or the holomorphic 1- or 2-ball and its ideal
boundary, i.e., the absolute (empty in the case of the round 2-sphere).

At points p ∈ PCV \ SV , we have a (pseudo-)hermitian metric induced
by the trace function on LinC(V ,V )

TpPCV = LinC(p,V /p) ' LinC(p, p⊥) 6 LinC(V ,V ).

The group AutholBV = PUV = IsomholBV 6 IsomBV is an index 2
subgroup. (In the case +−, we get the Riemann sphere glued from two
Poincaré discs.)
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Crash survey on compact 2-ball quotients

1.0. Up to finite cover, such quotients are C-surfaces of general type,
hence, projective and algebraic. Clearly, each surface possesses plenty of
smooth curves. Every quotient is an orbifold, known to be rigid. In what
follows, we consider cocompact lattices up to commensurability.

1.1. Arithmetic lattices of the first type. Let V be a C-linear space
endowed with a hermitian form 〈−,−〉 of signature +−−. A lattice
L 6 SUV is arithmetic of the first type iff 〈−,−〉 is defined over some
quadratic imaginary extension F of a totally real number field R 6 R, the
hermitian form 〈−,−〉g is definite for any embedding g : F ↪→ C that is
not the identity on R, and L 6 GLΛ, where Λ is a free OF -submodule in
V such that C⊗OF

Λ = V and OF stands for the ring of all integers of F .
(In fact, we took Mostow-Vinberg criterion as a definition.) For cocom-
pactness, one requires that L contains no unipotent elements.

1.2. Arithmetic lattices of the second type are related to division
algebras. All we need to know about them is that they cannot contain a
C-fuchsian subgroup (defined later).
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1.1. Arithmetic lattices of the first type. Let V be a C-linear space
endowed with a hermitian form 〈−,−〉 of signature +−−. A lattice
L 6 SUV is arithmetic of the first type iff 〈−,−〉 is defined over some
quadratic imaginary extension F of a totally real number field R 6 R, the
hermitian form 〈−,−〉g is definite for any embedding g : F ↪→ C that is
not the identity on R, and L 6 GLΛ, where Λ is a free OF -submodule in
V such that C⊗OF

Λ = V and OF stands for the ring of all integers of F .
(In fact, we took Mostow-Vinberg criterion as a definition.) For cocom-
pactness, one requires that L contains no unipotent elements.

1.2. Arithmetic lattices of the second type are related to division
algebras. All we need to know about them is that they cannot contain a
C-fuchsian subgroup (defined later).
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1.3. Nonarithmetic Mostow-Deligne lattices (9 examples) and
Deraux-Parker-Paupert lattices (5 examples).

The second group of
examples is quite similar to the first one. The latter was revised by
Thurston as follows. Let C (a1, . . . , an) denote the space of all flat
2-spheres of area 1, considered up to orientation-preserving isometries,
whose cone singularity angles 0 < ai < 2π are prescribed. Each sphere can
be cut to form a polygon P inside C. (In the drawn picture, I am cheating
a bit.) The vertices of P (complex numbers) define complex coordinates,
another cut provides a C-linear change of coordinates, and the area of a
polygon can be calculated as 〈p, p〉, where the hermitian form 〈−,−〉 has
signature (1, n− 1). In this manner, C (a1, . . . , an) obtains the geometry of
a holomorphic (n − 3)-ball. It is smooth, but incomplete. The completion
can be achieved by colliding each group of cone points with sum of
curvatures ki := 2π − ai less than 2π; the curvatures sum at the collision.
(Let us drop the case = 2π as it leads to a noncompact completion.) We
obtain a complete nonsmooth space with singularities stratified according
to the mentioned groups of points (the inclusion of groups corresponds to
that of strata). This space can be cut and then embedded into the
holomorphic (n − 3)-ball as a polyhedron, where the strata become faces.
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Arguing as in Poincaré’s polyhedron theorem

(a bit sketchy; so, we are not
sure we can follow his arguments), Thurston arrives at the

1.3.1. Orbifold condition (Thurston). Let 0 < ki < 2π for all 1 6 i 6 n
be the cone point curvatures such that

∑
i ki = 4π. The orbifold

condition ki + kj < 2π ⇒ 2π
2π−ki−kj ∈ Z for all i 6= j is equivalent to the

fact that the space C (a1, . . . , an) is an orbifold holomorphic (n − 3)-ball
quotient. (In order to simplify the condition, we consider the space
C (a1, . . . , an) of 2-spheres with labelled cone points, i.e., the isometries
are required to preserve the labels.)

Kalashnikov: disc bundles (noncompact)

Here we discuss when a topological disc bundle π : M → S over a closed
orientable surface S admits the geometry of the holomorphic 2-ball. The
topology of M is completely characterized by two numbers: the Euler
characteristic χ of S and the Euler number e of the bundle (this is the
intersection number of a couple of topological sections of the bundle).
If the bundle admits a geometry of the holomorphic 2-ball, we get a
representation π1S = π1M

%−→ IsomholBV = PU(1, 2).
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Arguing as in Poincaré’s polyhedron theorem (a bit sketchy; so, we are not
sure we can follow his arguments), Thurston arrives at the

1.3.1. Orbifold condition (Thurston). Let 0 < ki < 2π for all 1 6 i 6 n
be the cone point curvatures such that

∑
i ki = 4π.

The orbifold
condition ki + kj < 2π ⇒ 2π

2π−ki−kj ∈ Z for all i 6= j is equivalent to the

fact that the space C (a1, . . . , an) is an orbifold holomorphic (n − 3)-ball
quotient. (In order to simplify the condition, we consider the space
C (a1, . . . , an) of 2-spheres with labelled cone points, i.e., the isometries
are required to preserve the labels.)

Kalashnikov: disc bundles (noncompact)

Here we discuss when a topological disc bundle π : M → S over a closed
orientable surface S admits the geometry of the holomorphic 2-ball. The
topology of M is completely characterized by two numbers: the Euler
characteristic χ of S and the Euler number e of the bundle (this is the
intersection number of a couple of topological sections of the bundle).
If the bundle admits a geometry of the holomorphic 2-ball, we get a
representation π1S = π1M

%−→ IsomholBV = PU(1, 2).

S. Anan′ in (ICMC-USP) spherical and hyperbolic 2-spheres May 17, 2016 5 / 11
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fact that the space C (a1, . . . , an) is an orbifold holomorphic (n − 3)-ball
quotient. (In order to simplify the condition, we consider the space
C (a1, . . . , an) of 2-spheres with labelled cone points, i.e., the isometries
are required to preserve the labels.)

Kalashnikov: disc bundles (noncompact)

Here we discuss when a topological disc bundle π : M → S over a closed
orientable surface S admits the geometry of the holomorphic 2-ball. The
topology of M is completely characterized by two numbers: the Euler
characteristic χ of S and the Euler number e of the bundle (this is the
intersection number of a couple of topological sections of the bundle).

If the bundle admits a geometry of the holomorphic 2-ball, we get a
representation π1S = π1M

%−→ IsomholBV = PU(1, 2).

S. Anan′ in (ICMC-USP) spherical and hyperbolic 2-spheres May 17, 2016 5 / 11
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For any representation π1S
%−→ IsomholBV , there is a map f : S̃ → BV

which is π1S-equivariant with respect to %, where π : S̃ → S is a universal
covering. The Toledo invariant τ of % (or of the bundle M) is given by
τ := 1

2π

∫
S π∗f

∗ω, where ω stands for the Kahler form of BV .

All known bundles admitting the geometry of the holomorphic 2-ball
satisfy the following variant of the Gromov-Lawson-Thurston conjecture.

Conjecture. An oriented disc bundle over a closed orientable surface is a
quotient of the holomorphic 2-ball iff |e/χ| 6 1 and χ < 0.

2.1. Simple disc bundles.

C-fuchsian bundles, characterized by χ = τ (Goldman-Toledo
rigidity); satisfy e = χ/2.

R-fuchsian bundles: satisfy e = χ (tangent bundle of S) and τ = 0.

2.2. Goldman-Kapovich-Leeb examples. They are sort of hybrids of the
previous ones and satisfy e = χ+ |τ/2| and χ 6 e 6 1

2χ.

2.3. Kalashnikov examples. These are AGG examples, examples of trivial
bundles (Goldman problem), and examples constructed by C. H. Grossi
(yet unpublished). They all satisfy the relation 2(χ+ e) = 3τ .
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Suppose we have a smooth C-curve in a disc bundle M admitting the
geometry of the holomorphic 2-ball homotopic to a section of the bundle.
Then the relation 2(χ+ e) = 3τ holds (it is nothing but the adjunction
formula).

[Typical talk on a Russian factory: ‘Oh, it does not really matter.
Whatever we try to build, we will end up with a Kalashnikov gun.’]

Conjecture. In all Kalashnikov examples there is a smooth (Kalashnikov)
C-curve homotopic to a section.

Later we will see why this conjecture can be interesting.

2-spheres with cone singularities

Let us return to cocompact nonarithmetic lattices in PU(1, 2). Namely, let
Ch(a1, . . . , an) denote the space of all hyperbolic 2-spheres whose cone
singularity angles 0 < ai < 2π are prescribed and satisfy the inequality∑

i ki < 4π, where ki := 2π − ai (by Gauss-Bonnet, this is a neccessary
and sufficient condition for Ch(a1, . . . , an) to be nonempty); the
singularities are labelled and the 2-spheres are considered up to
orientation-preserving and label-preserving isometries.
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In order to get a compact completion of Ch(a1, . . . , an), we should also
require that

∑
j kij 6= 2π for any subset of cone points.

The case
Cs(a1, . . . , an) of spherical 2-spheres with

∑
i ki > 4π can be dealt with in

a similar way, except that it is more complicated. (Also, there are rumors
that Dmitri Panov did something in this direction; so, it seems reasonable
first to read his paper.)

3.0. Thurston orbifold condition and PPT.

Proposition. The completion is morally the same as in the flat case. The
orbifold condition is the same as in the flat case.

Pseudo proof. Yet, we have no geometry on Ch(a1, . . . , an) to speak of
completion (but there are many providing the same topology on the
completion). For the orbifold condition, one should apply a version of
Poincaré’s polyhedron theorem �

3.1. It would be handy if each sphere could be cut to form a polygon P
inside the hyperbolic disc BV . In general, this might be difficult or even
impossible to achieve. So, for simplicity, we require that ai 6 π for all i .
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Let p be one of the cone points.

We join it by shortest geodesic segments
with the remaining cone points and cut along the segments. It is easy to
see that we get a convex (hence, embeddable into the hyperbolic disc BV )
polygon P. The polygon P has 2(n − 1) vertices and is equipped with a
gluing pattern. The p-vertices pi correspond to the cone point p. The
other vertices ci correspond to the other cone points. The gluing pattern
can be realized by means of counterclockwise rotations ri by ki about ci .
Of course, there are infinitely many polygons that provide the same
2-sphere after gluing. For instance, one can cut a polygon P along the
geodesic segment joining ci and pj and rotate a certain half of P by ri
getting a new polygon by means of such bending bi . It is easy to see that
the new polygon generates an isometric 2-sphere.

Proposition. Suppose that the 2-spheres made from polygons P and P ′

are isometric. Then P ′ can be obtained from P by finitely many bendings.

Now we can describe the space Ch(a1, . . . , an) as Ch(a1, . . . , an) = C/G ,
where C is the space of the polygons in question and G is the group acting
on C and generated by the bendings. In the case n = 4, for example, C is
a component of a real surface in R3(t1, t2, t3) given by the equation
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3.3. Nonarithmetic cocompact lattices of the second type.

All known
examples of nonarithmetic smooth compact holomorphic 2-ball quotients
possess a smooth C-fuchsian C-curve. Such a curve C comes from a
projective line D in PCV that intersects BV and whose stabilizer S (called
C-fuchsian subgroup in L) in the corresponding lattice L provides
C = D/S . (Everybody knows essentially three classes of such curves, but
there exists a fourth one.) Let us say that such lattices are of the first
type. The remaining nonarithmetic compact holomorphic 2-ball quotients
are of the second type.
Remembering that every smooth compact holomorphic 2-ball quotient
possesses plenty of smooth C-curves, we can imagine that a Kalashnikov
C-curve is an evidence of the existence of a quotient of the second type.
As the discrete group S 6 PU(1, 2) providing a Kalashnikov curve is
explicitely known a priori, it must be easy to find the corresponding lattice.

Conjecture. There are infinitely many nonarithmetic cocompact lattices
of the second type.

Thank you for attention!
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As the discrete group S 6 PU(1, 2) providing a Kalashnikov curve is
explicitely known a priori, it must be easy to find the corresponding lattice.
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