A NEW EQUATION ON THE LOW-DIMENSIONAL CALABI–YAU METRICS

DMITRY V. EGOROV

ABSTRACT. In this paper we introduce a new equation on the compact Kähler manifolds. Solution of this equation corresponds to the Calabi–Yau metric. New equation differs from the Monge–Ampère equation considered by Calabi and Yau.

Let (M, ω) be the compact Kähler *n*-manifold. Calabi made the following conjecture proven by Yau: If $c_1(M) = 0$, then there exists a Riemannian metric with the holonomy group contained in SU(n) [1, 2]. Explicitly, Calabi conjecture is stated as follows: There exists unique real function φ such that:

(1)
$$(\omega + i\partial\bar{\partial}\varphi)^n = e^F \omega^n, \quad \int_M \varphi \,\omega^n = 0,$$

where F is a smooth real function on M such that $\int_M e^F \omega^n = \int_M \omega^n$. It is assumed that $\omega + i\partial \bar{\partial} \varphi > 0$.

Existence of the solution of (1) implies existence of the Ricci-flat metric on M.

Note that the Monge–Ampère equation describes a deformation of the Kähler form. We study the deformation of the holomorphic volume form on the Kähler manifold M in complex dimensions 2 and 3.

Theorem. Let M be a compact Kähler n-manifold. Suppose $c_1(M) = 0$. Denote a holomorphic volume form by Ω . For n = 2, 3 there exists a solution of the following equation:

(2)
$$(\Omega + dd^{s}\psi) \wedge (\bar{\Omega} + dd^{s}\bar{\psi}) = e^{F}\Omega \wedge \bar{\Omega},$$

where ψ is a complex n-form such that $\tilde{\Omega} = \Omega + dd^{s}\psi$ is a stable primitive form; F is a smooth real function such that $\int_{M} e^{F}\Omega \wedge \bar{\Omega} = \int_{M} \Omega \wedge \bar{\Omega}$. Here $d^{s} = d^{c^{*}}$ is the symplectic differential operator (see [3]).

Here Ω is said to be stable if there exists some complex structure Jon M such that $\tilde{\Omega}$ is a holomorphic volume form with respect to J [4].

This work was supported in part by Russian Foundation for Basic Research (grant 09-01-00598-a) and the Council of the Russian Federation Presidential Grants (projects NSh-7256.2010.1 and MK-842.2011.1).

DMITRY V. EGOROV

References

- E. Calabi, On Kähler manifolds with vanishing canonical class // Algebraic geometry and topology. A symposium in honor of S. Lefshetz, pp. 78–89. Princeton University Press, Princeton, N.J., 1957
- [2] S.-T. Yau, On the Ricci curvature of compact Kähler manifold and the complex Monge–Ampère equation, I, Comm. on pure and appl. math, **31** (1978), 339– 411.
- [3] Li-Sheng Tseng and S.-T. Yau , Cohomology and Hodge theory on symplectic manifolds: I, arXiv:0909.5418
- [4] N. Hitchin , The geometry of three-forms in six and seven dimensions, arXiv:math/0010054

DMITRY V. EGOROV AMMOSOV NORTHEASTERN FEDERAL UNIVERSITY, YAKUTSK, RUSSIA *E-mail address*: egorov.dima@gmail.com