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ABSTRACT. We collect here results on the existence and stability of weak so-
lutions of complex Monge-Ampere equation proved by applying pluripotential
theory methods and obtained in past three decades. First we set the stage
introducing basic concepts and theorems of pluripotential theory. Then the
Dirichlet problem for the complex Monge-Ampere equation is studied. The
main goal is to give possibly detailed description of the nonnegative Borel
measures which on the right hand side of the equation give rise to plurisubhar-
monic solutions satisfying additional requirements such as continuity, bound-
edness or some weaker ones. In the last part the methods of pluripotential
theory are implemented to prove the existence and stability of weak solutions
of the complex Monge-Ampere equation on compact Kahler manifolds. This
is a generalization of the Calabi-Yau theorem.
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Introduction

In this paper we survey the existence theorems for the complex Monge-Ampere
equation which are proved by pluripotential theory methods. In mid-seventies Bed-
ford and Taylor [BT1] found plurisubharmonic solutions of the Dirichlet problem
for the complex Monge-Ampere equation with continuous data in a strictly pseu-
doconvex domain. In their subsequent fundamental paper [BT2] they developed
pluripotential theory in which the Monge-Ampere operator plays a crucial role in
establishing many important properties of plurisubharmonic functions. Since the
Monge-Ampere equation is fully nonlinear many problems in pluripotential theory
are more difficult than their counterparts in classical potential theory where we
have nice Poisson’s equation to play with. Those difficulties can be often overcome
if we apply methods exploiting the basic fact that for a plurisubharmonic function
u the form ddu (understood in the sense of distributions) is nonnegative. In recent
years the Dirichlet problem for the complex Monge-Ampere equation

(dd°u)"™ =dp, uw=¢ on the boundary,

has been solved for a wide variety of measures. We can now give fairly sharp
conditions under which a measure yields a continuous solution as well as characterize
those measures which lead to solutions in some larger classes of plurisubharmonic
functions.

The complex Monge-Ampere equation is also investigated in connection with
the geometry of Kahler manifolds. Here the solution of the equation yields a Kahler
metric with prescribed Ricci curvature. In seventies Yau [Y] solved the Monge-
Ampere equation on compact Kéhler manifolds, for smooth, non degenerate data,
confirming a famous conjecture of Calabi. In the proof he employs the methods
of elliptic PDE: the continuity method coupled with a priori estimates for the
derivatives of the solution. In a similar fashion the equation can be studied in
strictly pseudoconvex domains as it was first done by Caffarelli, Kohn, Nirenberg
and Spruck [CKNS]. Then apart from existence we obtain regularity of solutions
under suitable assumptions. More about this approach can be found in [A2] or
[TT]. Using the methods described in the present paper one can generalize Yau’s
theorem by admitting non smooth, degenerate data.

We shall present those results with the necessary background. The paper is
organized as follows. We first review, following Lelong [L], the basic properties of
positive currents. Then the currents associated to plurisubharmonic functions are
introduced. The results, for the most part coming from the paper by Bedford and
Taylor [BT2], include: Chern-Levine-Nirenberg inequalities, convergence theorems,
the comparison principle, Josefson’s theorem and the theorem on negligible sets.
Some relations between the relative and global extremal functions are studied in
the next chapter. In particular the Alexander-Taylor inequalities are important for
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vi INTRODUCTION

the sequel. The remaining part deals exclusively with solving the Monge-Ampere
equation. We start with the result of Bedford and Taylor [BT1] who solved the
Dirichlet problem with continuous data, and then present its generalizations due to
the author (Chapter 4) and Cegrell (Chapter 5). In the last chapter we generalize
Yau’s theorem showing, in particular, the existence of the solutions for the right
hand side belonging to LP,p > 1. The unified approach allows us to simplify many
original proofs. Main references are given at the end of each section.

We refer to books by Hérmander [H2] and by Klimek [KL] for background
material on plurisubharmonic functions. There is a good deal of high quality liter-
ature on pluripotential theory, besides Klimek’s book there is Cegrell’s monograph
[C1] and excellent surveys by Bedford [B] and Kiselman [KI3|. There are also
unpublished lecture notes by Demailly [D1] and Blocki [BL)].

I lectured on the subject at the Jagiellonian University in the period 1999-2001,
and also at the summer school in pluripotential theory at TUBITAK, Istanbul,
1999 (first part) and at NCTS, Hsinchu, Taiwan in October 1999 (Chapters 4,6). T
would like to thank all the institutions for giving the opportunity for lecturing and
many interesting discussions. In particular I thank A. Aytuna, Z. Blocki, P. Guan,
C. S. Lin, A. Rashkovski, V. Zahariuta, A. Zeriahi, and students of Jagiellonian
University who attended the courses, for their critical comments.



CHAPTER 1

Positive Currents and
Plurisubharmonic Functions

POSITIVE FORMS

We begin with the study of the basic properties of positive forms. Let us denote

by C’&j”p)(Q) the set of all smooth differential forms of bidegree (p,p) defined in an

open set {2 C C". Using conventional notation, any form w from C
by

(O;,p)

(Q) is given
w=1P Z /wJKdZJ/\dEK,
|J|=p,|K|=p
where wyx are C°° functions in Q, dz; = dz;, Ndzj, A... Ndz;,, dz; = dzj, NdZzj, N
.. ANdzj,, and E/ indicates that we sum up over multi indices J = (j1,...,jp), K =
(k1, ..., kp) such that j1 < jo < ... <jp; k1 < ke < ... <k,. We call w Hermitian if
w=0u.

When w € C°

(o.p) (§1) has a representation

w=1Pw; Aoy ANwa A g A e Nwp N wp
where w; € C’(ofo)(Q), it is said to be a simple positive form.
PROPOSITION 1.1. The space of (p, p) forms with constant coefficients is spanned
by simple positive forms.

Proor. It is enough to represent dz; A dzj as a linear combination of simple
positive forms, and in fact

4
1 -
dz; \Ndz, = 1 E ZS(dZ7 +1i°dzg) A (de +i%dzyg).

s=1

ProPOSITION 1.2. The pull-back f*w of a simple positive form w via a holo-
morphic mapping f is again simple positive.

PROOF. Let f: Q — ' be a holomorphic mapping and let a = )" a;dz; be
(1,0) form on ’. Then

of:
ko

and

fra=> a;df; = Z(Z 5;‘(%))dwk-

k
1



2 1. POSITIVE CURRENTS AND PLURISUBHARMONIC FUNCTIONS

Hence

fflana) = frfan(f*a),

from which the proposition easily follows.

We shall often use the canonical (1,1) form on C™:
N R _
B=5002* = 5 Y dz; N dz;.
1

Then V,, = %B" is the volume form in C".

DEFINITION. A (p,p) form w is said to be positive if
wAa=fp" with f >0,

for any simple positive form « of bidegree (n — p,n — p).

REMARK. It is enough to verify the above defining condition for simple positive
forms with constant coefficients.

PROPOSITION 1.3. 1) A pull-back of a positive form via a biholomorphic map-
ping s positive.

2) A (p,p) form is positive if and only if its restriction to any complezx analytic
submanifold of dimension p (equivalently: any analytic subspace of dimension p) is
equal to the volume form of the submanifold multiplied by a nonnegative function.

PROOF. 1) Let f: 2 — Q' be a biholomorphic mapping and let w be a positive
form in €. For a simple positive form a € C’E’;p)(Q) its pull-back (f~1)*a is also
a simple positive form. Thus for some nonnegative function g

frona=f(wA(f ) = (98" = gldet f'|*B".

This proves our first claim.
2) Having 1) we may reduce the verification of the defining conditions to the
case of simple positive form

Qo = Z‘nipdzp_kl A d2p+1 A A dZn A dZn

and the subspace Ay = {z : 2p41 = ... = z, = 0}. But if the restriction to Ay of a
(p,p) form w is equal to

iPgdzy NdZy A ... Ndzp N dZp = 2PgV,
then

w A ag =2"gV,.

PROPOSITION 1.4. 1) A (1,1) form o = £ Y ajpdz; A dZy, is positive iff (i)
is a positive (semidefinite) Hermitian matriz.
2) If, moreover, w is a positive (p,p) form then so is a A w.
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PROOF. 1) Let us first observe that if « is positive then it is Hermitian. Indeed,
for any (n — 1,n — 1) simple positive form -y we have
aANy=aANy=alNy

By Proposition 1.1 the same is true for any (n — 1,n — 1) form. Therefore o = a.
If we consider a parameterization of a complex line

L: X — (Qwy, Awa, ...y dwy,)
then _
7 —
L'a =3 ajuwjwpd) AdA.
Using the preceding proposition we get the desired equivalence as w varies.
2) One can apply a unitary change of coordinates to diagonalize the matrix
(k) at a given point zp so that
Oé(Zo) :iZajjdzj/\dij7 aj; > 0.
Then for any simple positive form =
aAwAy =Y ajwA (idz; Adz; AY)

and since the forms in brackets are simple positive the right hand side is nonnegative
as a sum of nonnegative terms.

CURRENTS

Since plurisubharmonic functions are not smooth in general we need to study
also forms with distribution coefficients which are called currents. Most interesting
for us will be positive currents. Let Dy, 4)(£2) denote the space of test forms in
of bidegree (p, ¢) equipped with Schwartz’ topology.

DEFINITION. Any continuous linear functional on the space D, 4)(£2) is called
a current of bidegree (n — p,n — q) (equivalently: of bidimension (p,¢q)) in 2. The
collection of such currents will be denoted by D} ().

(p.9)
When for T € Dy, (£2) we have
(T,w) >0
for any simple positive test form w we say that T is a positive current.

For an increasingly ordered multi index J we denote by J’ the unique increasing
multi index such that JUJ = {1,2,...,n} and |J|+|J'| = n. Let us denote by ajx
the form complementary to dz; A dZk, that is

ajx = Mdzyg NdZgo,

where ) is chosen so that dz; Adzg A ajx = V,.
Let us observe that one can identify a current 17" € sz q)(Q) with a differential
form which has distribution coefficients

’
T = Z Trxdzy NdZgk.
|J|=n—p,|K|=n—q
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The coefficients T);i are defined by
(Trx,8) = (T, pavyi).

As it was in the case of differential forms the positivity of the current is not affected
by a biholomorphic change of coordinates. Let f : Q — €' be a biholomorphic
mapping and let TV be a positive current in €. Then the pull-back T' = f*T" of T"
via f defined by

(Tyw) = (T, (F 1))

is again positive. Given T € DEP ) (§2) we set

(fT,w') = (T, fru')

and call f,T the direct image of T. Then for positive T its direct image f.T is
positive as well. The above statements follow directly from the fact that related
pull-backs of simple positive forms are simple positive.

One may also define a wedge product of a current 7' and a smooth form w
setting

(T Aw,d) = (T,wA @)

for any test form ¢. If T is positive and w is a positive (1,1) form then T A w is
again positive. In particular, for a positive (p,p) current T and a (n — p,n — p)
simple positive form w the current 7' A w is a nonnegative Radon measure.

We differentiate currents according to the formula

(DT, ¢) = —(T, Do)
for a first order differential operator D. We shall often use the operator d° :=
(0 — 0).
ProproSITION 1.5. The action of a positive current can be continuously ez-

tended to the space of compactly supported forms with continuous coefficients.

Proor. We are to show that if
!
T = Z Tixdzy NdZg
|J|=p,|K|=p

then all Ty are Radon measures. Let us represent o yx introduced above in a basis
(wj;) consisting of simple positive forms with constant coefficients (see Proposition
1.1)

AJK = E CsJKWs-
s

Then for any test function g we have

(Tyx,g9) = (T gask) = Y corx(Tgws) = Y cas(T Aws, g).

Thus Tk is a linear combination of nonnegative Radon measures.

For a current T" with measure coefficients one can define a norm

!
ITe=" > |Tsxls

|J|=p,| K|=q

where |Tjk | is the total variation of Tk on a compact set E.
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For two (p,p) currents S, T the inequality
S<T

means that T'— S is a positive current.

PROPOSITION 1.6. There exists a constant C' depending only on the dimension
of the space such that

Hﬂmgc/TAmw
E

for positive T € Dy, ().

PROOF. In the preceding proof we got the representation

Tk = carxT Aws,

where ws are simple positive forms with constant coefficients and ¢, jx depend only
on n. Since w,s are wedge products of (1,1) forms we have reduced the proof to
an obvious estimate: given (1, 1) form w with constant coefficients one can find C4
such that

w S Clﬁ

It is often convenient to work with smooth forms and then prove statements
about currents by using an approximation of a given current by smooth forms. To
do this one can apply the standard regularization by means of the convolution with
a smoothing kernel to each coefficient Tjx of the current 7'

Given a nonnegative, rotation invariant function p € C§°(B) (B stands for the
unit ball in C™), where [ pdV = 1, define a regularizing sequence (T})r,;7 = 17,7 %p;j.
with p;j(2) :== j>"p(jz). Then T; — T in the sense of currents which, by definition,
means that for any test form w the sequence (7},w) converges to (T, w).

Unless otherwise stated the term convergence applied to a sequence of currents
shall have the above meaning.

CURRENTS ASSOCIATED TO PLURISUBHARMONIC FUNCTIONS

By PSH() we denote the set of plurisubharmonic (psh in short) functions in
Q. If u € PSH(Q) then dd“u is a closed positive (1,1) current. Conversely, if T is a
positive closed current of bidegree (1,1) defined in a neighbourhood of a closed ball
then there exists a psh function inside the ball such that dd°u =T (see e.g. [LG].

We can define wedge products of currents dd“u provided that the associated
psh functions are locally bounded. Indeed, the following statement is true

PROPOSITION 1.7. Foru € PSH N L () and a closed positive current T on

loc
Q the current uT' is well defined and so is

dd°u AT := dd°(uT).

Moreover, the latter current is also closed and positive.
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PROOF. The statement is local, so one can use the standard regularization of
u by a decreasing sequence of smooth functions u; which are uniformly bounded.
Since we know that distribution coefficients of T' are complex measures it follows
from Lebesgue’s dominated convergence theorem that u;7T" converges weakly to
uT. Hence dd°(u;T) — dd°(uT). Functions u; being smooth we have dd®(u;T) =
dd®u; AT and thus dd°uAT is equal to the limit of positive closed currents ddu; AT
which proves the proposition.

This way, using induction, one may define closed positive currents
dduy N ddus A ... A ddup,
for u; € PSH N L;S.(€2). It is also possible to define

loc

du Nd°uNT

if u is locally bounded psh function and T a closed positive current. For this we
can assume that u > 0 (therefore u? is psh) and use the identity

du NduNT = (1/2)dd“u* AT — udd°u AT

in which the right hand side is well defined by the above proposition. If moreover
T is of bidegree (n — 1,n — 1) and v is another locally bounded psh function then

du NdONT =dv ANduNT
are well defined and by definition equal to
(1/2)[du +v) Nd(u+ V) AT —du ANduNT — dv Adv AT]

This follows from Proposition 1.8 below.
The Monge-Ampere operator M acts on a C? smooth psh function u according
to the following formula

0%u
(92j82k

M(u) := 4"nldet( )dV,, = (ddu)”,

where the power on the right is taken with respect to the wedge product.

A TOOLKIT FOR THE WORK WITH CURRENTS
Here we gather facts which will be frequently used in the sequel.

STOKES’ THEOREM. Let 2 C C" be a domain with CLl boundary and let T be
a current of degree 2n — 1 defined in a neighbourhood of Q and such that T is C*
smooth in a neighbourhood of 0. Then

[ o= [ar
oQ Q
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PRrOOF. Let us apply the standard regularization 7; of 7. Fix a test function
x in Q which is equal to 1 in a neighbourhood of the set where T is not smooth.
Set
S =T —x)+xT}.

Thus S; = T in a neighbourhood of 9€ and one can apply classical Stokes’ theorem

to §; getting
/T:/ S]:/dS]—>/dT
Gle) o0 Q Q

PROPOSITION 1.8. IfT is a closed positive current in Q2 of bidegree (n—1,n—1)
and u,v are locally bounded psh functions then

du Nd“ONT =dvANd°uNT

PROOF. For smooth functions u and v the identity follows from the fact that
the parts of bidegree (1,1) of du A d°v and dv A d°u are both equal to i0u A dv +
i0v A Ou. The general case follows if we apply the standard regularization.

SCHWARZ’ INEQUALITY. IfT is a positive current in Q of bidegree (n—1,n—1)
and u,v are linear combinations of locally bounded psh functions then

/du/\dcv/\TS(/ du/\dcu/\T)l/Q(/ dv A d°v AT)Y?
Q Q Q

PROOF. It is enough to observe that the form
(u,u) = / du Nd°uNT
Q
is positive definite since du A d°u = 2i0u A Ou is simple positive.

We shall often use in the proofs the following way of reducing the proof to that
of a simpler case.

LOCALIZATION PRINCIPLE. If we are to prove the weak convergence or local
estimate for a family of locally uniformly bounded plurisubharmonic functions it is
no loss of generality if we assume that the functions are defined in a ball and are
all equal on some neighbourhood of the boundary.

PROOF. Given a compact set K we cover it by balls B(a;,r). Fix one of
them and consider the restrictions us of functions from our family to the ball
B = B(aj,tr), t > 1, which is contained in the domain we start with. Since u, are
uniformly bounded we can assume u; < 0 and find an exhaustion plurisubharmonic
function h for B which is smaller than any u, on B(a;,r). (Note that if h is an
exhaustion function so is Mh for a positive constant M). To verify the desired
estimates we now can work with hy = max(u,, h) which are equal to us on B(a;,r)
and equal to h on some neighbourhood of the boundary of B.
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CHERN-LEVINE-NIRENBERG (CLN) INEQUALITIES. If K CC U CC Q then
for a constant C = C(K,U, Q) the following inequality holds

[|[ddug A dduy A ... A dduk ATk < Clluol|u|uillo--Juello | T|u,
for any closed positive T and any set of u; € PSH N L™(Q?). Moreover
||ddcu1 AddCus A ... A ddcukHK < C'(f(7 Q)HulHLl(Q)||u2||Q...||ukHQ,

and
||U0 ANdduy A ... A ddcuk||K < C(K, Q)HUQHLl(Q)HulHQHukHQ

Proor. Take a nonnegative test function ¢ in U which is equal to 1 on K
and does not exceed 1 elsewhere. Applying Proposition 1.8 and (twice) the Stokes’
theorem we get for a (n —j — 1,n —j — 1) current 7"

llddCuo A T||x gcl/ bddug AT A B :01/ uodd°d AT A B
U U
< Clluollv | T,

where C' depends on C; and the second order derivatives of ¢. Iteration of this
argument gives the first part of the statement. To obtain the second inequality we
apply the localization principle and assume that —1 < u; <0, j =1,2,...,k. Let
us fix compact sets K = Ko C K1 C ... C K C Q and smooth psh functions in
Q:h, hi,.., hy such that h — h; > 1 on K;_1 and h = h; on Q\ K;. Then using
Stokes’ theorem and Proposition 1.8 one gets

/K ddui A ddug A ... A ddug A B
< [0 b s
,
= /K (—u1)dd®(hy — h) A ddus A ddus A ... A ddug A gn—k
!
< /K (—u1)dd®hy A ddus A dduz A ... A ddCug A B™F
:

g/ (h — ha)ddhy A ddug A ... A ddCuy, A B8
Ko
repeating the argument

< /(—uk)ddchl A ddhg A ... Ndd°hy, A "R < C/ (—ug)B".
Q

In view of Proposition 1.6 this estimate gives the second assertion (if we inter-
change u; and ug). To get the third one use the localization principle and then the
integration by parts and iteration as above give:

/ wpdd®uq A ddus A ... A ddCu A B7F < / uo(ddh)* A g7k,
K Q
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THE RELATIVE CAPACITY AND THE CONVERGENCE OF CURRENTS

In pluripotential theory, as it is the case in classical potential theory, capacities
play an important role. In particular they help to decide when the convergence of
psh functions is ”"good” enough.

DEFINITION.

cap(E,Q) = sup{/ (dd°u)" :u e PSH(Q),—1 <u <0}
B

is called relative capacity of the Borel set E (with respect to Q).

We shall also consider set functions associated to closed positive (n — k,n — k)
currents 1™

capr(E,Q) = sup{/ (ddu)* AT :u € PSH(),—1 <u < 0}.
E

By CLN inequalities those quantities are finite. Moreover, cap(E,Q) > C [ 5 Va
with the constant C' depending on the dimension of the space and diameter of €.
Other easy properties are listed in the following proposition.

PROPOSITION 1.9. For Borel subsets E; of bounded domain Q) we have
1) cap(En, Q) < cap(E2, Q) if By C Ea,
2) cap(E,Q) > lim cap(E;, Q) if the sequence is increasing to E,
j—o00
3) cap(E,Q) < anp(Ej, Q) for E = UE;.
In the next proposition we estimate the relative capacity of a sublevel set of a
negative psh function.
PrOPOSITION 1.10. Let K CC U CC Q. Then there exists a constant C' de-
pending on those sets such that for any u € PSH(), u <0
) C
cap(K N{u < —j},Q) < 7Hu||L1(U)-

The same inequality holds for capr with C' depending also on T.
Proor. Fix v € PSH(Q) with —1 < v < 0. Then by CLN inequalities

C n - [ n C
[ o </ [ i@ < Sl
Kn{u<—j} K J

which in view of the definition of the relative capacity proves the statement. The
same argument works for capr.

DEFINITION. A sequence u; of functions defined in €2 is said to converge with
respect to capacity to u if for any ¢t > 0 and K CC Q2
lim cap(K N {|u—u;| >t},Q) =0.
]*}OO

In the same way one defines convergence with respect to capr.

The Monge-Ampeére operator is continuous with respect to sequences converg-
ing in this fashion.
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THEOREM 1.11 (CONVERGENCE THEOREM). Let {“i}ﬁl be a locally uni-

formly bounded sequence of psh functions in Q for k = 1,2,...,n; and let u{c —
up € PSH N LYS.(Q) with respect to capg as j — oo for k=1,2,....,n. Then

loc
dd°ul A ... Addul, — dd®uy A ... A ddCuy,

in the weak topology of currents. If the sequences are convergent with respect to
caprag then

ddw) A ... N dduly AT — dduy A ... Add®un AT

for positive T € Dy, _ . ny(£2).

PROOF. We shall prove the first statement, the argument for the other one is
analogous. Without loss of generality we assume that all psh functions involved
take values between —1 and 0. Using the identity

dd®vi A ... ANddvy — dduq A ... ANddupn
= dduy Adduy A ... Adduj_y A dd(v; — ;) Addvig A A ddoy
J

we reduce the proof to showing that if u; — u with respect to capg and closed
positive currents T} have the representation ddcv{/\.../\ddcv%_l, with v! € PSH (),
-1< vgj < 0 then

dd®(u; —u) NT; — 0.
Let us fix a test function ¢ in Q with supp¢ = K CC Q. For ¢t > 0 set E;(t) =
K N {|u; —u| > t}. Note that for T represented as above we have

/ Ty A8 < / (dd° S v ()" A B < (n — 1)" Leapp (B, )
E E
This inequality coupled with Stokes’ theorem give the estimate

K Ej(t)
<||dd“¢||(n — 1) (capp(E;(t), Q) + teaps(K,Q)).

One can make the right hand side arbitrarily small by fixing ¢ small enough and
then choosing j such that capg(E;(t), ) is very close to 0 as well.

The conclusion of the theorem holds if convergence with respect to capg is
replaced by the convergence with respect to cap since by definition capg < n"cap.
In particular, as the following proposition shows, for decreasing sequences of psh
functions we get the convergence of corresponding currents.

PROPOSITION 1.12. A sequence u; € PSHNL™(Q) with u; | u in Q converges
to u € PSH N L>®() with respect to capacity. So, for decreasing sequences the
conclusion of Theorem 1.11 holds true.
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PrOOF. Our localization principle applies in this setting, so we can assume
that 2 is a ball and u; form a constant sequence in some fixed neighbourhood 2\ E
of 0€2. One can also assume that —1 < u; < 0on E. Wefixv e PSH(Q2), 0 <v <1
and estimate

To(v) = Io = /E (uy — u)(ddv)".

Note that the supremum over all v as above exceeds tcap({u; —u >t} N E, Q). By
Stokes’ theorem and Schwarz’ inequality

I = /E (uj — u)(ddv)"* A (ddu)®
= /Ed(uj —u) Adv A (ddv)"* LA (ddCu)k
<( [E d(u; —u) A d°(uj —u) A (ddv)" 1A (ddou)*)1/?
x(/E dv A dv A (ddv)"F71 A (ddCu)k) /2
As for the last term let us observe that

dd®(v +1)* > dv A d°v

(see the definition of the latter current). Hence as in the preceding proof we can
estimate as follows

/ dv A dv A (dd°v)"* 1 A (ddu)® < C? = n"cap(E, Q).
E
Furthermore

/ d(uy —u) A d°(u; — u) A (dd°v)" 1 A (dd°u)®

E

=- /E(Uj —u) Add®(uj —u) A (ddv)" 1 A (ddCu)*
Ui — U Cu n—k—1 Ca k+1.

S/E(] ) A (dde0)"F=1 A (ddeu)

Thus we have proved

L <on/?.

and therefore
b < C(f u; =~ w) ) = o
E
The sequence ¢; tends to 0 as j tends to co. Since

cap({u; —u>t}NE Q) < %J

our assertion is thus proved.

COROLLARY. For u; € PSH N L () the mapping

loc
(u1, ug, ..., ug) = dduy A ddus A ... A dd uy

15 symmetric.
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PROOF. It is true for smooth functions, and any psh function is a limit of a
decreasing sequence of smooth psh functions. Thus the symmetry follows from the
convergence theorem.

THEOREM 1.13. For a psh function u defined in Q and a positive number €
one can find an open set U € Q with cap(U,Q) < € and such that u restricted to
Q\ U is continuous.

ProOF. Fix a compact set K C 2. By Proposition 1.10 one can find M > 0
such that the relative capacity of the set Uy = K N{u < —M} is less than €/2.
Let us consider the standard regularizing sequence u; decreasing to max(u, —M).
As we know the sequence converges with respect to capacity. Thus for any integer
k > 1 there exists j(k) such that

cap(Ug, Q) < 278,

where Uy := K N {u;) > u+ k~1}. The sequence uj(k) is uniformly convergent to
uon K\ UUy so u is continuous there. To get the statement it is now enough to
take an exhaustive sequence of compact sets K; 1 €2 and apply the first part of the
proof to find U; C K; with cap(U;,Q) < €277 and the property that u restricted
to K; \ U; be continuous. Then u is continuous on the complement of U which is
the union of U;’s. The subadditivity of cap and the estimates for the capacity of
U; give
cap(U,Q) < e.
The proof is completed.

COROLLARY 1.14. Let U be a uniformly bounded family of psh functions in Q.

Suppose T;,T are wedge products of currents ddu with v € U, and assume T; — T.
Then for any w € PSH(Q) :

uTj — uT.

PRrROOF. For fixed ¢ > 0 we can find a continuous function v such that the
relative capacity of the set {u # v} is less than e. Then for any compact set K we
have (see Proposition 1.10)

max(||(v —v)T|k, ||(v — v)Tj||k) < const.(K)e.

For T; having measure coefficients we get v — vT. To finish the proof it is now
enough to combine those two facts with the triangle inequality.

THEOREM 1.15 (CONVERGENCE THEOREM FOR INCREASING SEQUENCES). Let
{u{c}i‘;l be a locally uniformly bounded sequence of psh functions in Q for k =

1,2,..,N; and let w;, T w, € PSH N LS.(Q) almost everywhere as j — oo for
k=1,2,....N. Then

ddw) A ... N ddwly — dduy A ... A dduy.
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ProOF. We shall use induction over N. Suppose that for N < n
Tj = dd°ul A ... Add°uly — dd®uy A ... Add®un = T.
It is enough to show that for psh functions v; T v we have
v; T — T,
since then by the Stokes theorem
dd®v; A ddul A ... A dduly — ddv A dd®uy A ... A ddun.
Applying the localization principle we assume that 2 = B and all involved psh

functions are equal to h € PSH()) in a neighbourhood of dB. By Corollary 1.14
one obtains

m ’UjTj S m ’UTj =T

In view of this inequality we are done as soon as we prove that

liim/vaj/\ozz/vT/\oz7
B B

for any simple positive (n — N,n — N) form «. The last inequality is obtained
by making use of Corollary 1.14 and Stokes’ theorem in the following way (with
T = ddcul A Sl)

@/ vaj/\ozZliimj_wo/vsTj/\oz
B B

:/UST/\oz:/vsddcul/\Sl/\a
B B

:/uldd”vs/\Sl/\a%/ulddcv/\Sl/\a:/vT/\a
B B B

where the convergence in the last line (with s — oo) follows from the induction
hypothesis.

COMPARISON PRINCIPLE

The comparison principle is the most effective tool in pluripotential theory. It
fully exploits the positivity of dd“u for psh u.

THEOREM 1.16 (COMPARISON PRINCIPLE). Let 2 be an open bounded subset
of C". For u,v € PSH N L*>(Q) satisfying lim._,,(u —v)(¢) > 0 for any z € 9Q

we have
/ (ddv)™ §/ (ddu)"™.
{u<v} {u<wv}
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PRrROOF. The proof is easy for u,v € C*°(Q2) and F = {u < v} CC 2 having
smooth boundary. In this case setting vy, = max(v,u+1/k) we obtain by the Stokes
theorem

(1.1) / (ddv)" = / dvy A (dd o))" = / d°u A (dd°u)" "t = / (ddu)™
E OE OF E
since v = u + 1/k on neighbourhood of JF.
Furthermore, Proposition 1.12 applied to vy | v on (open) E gives for any
compact K C Fand ¢ € C§°(E),0<¢ <1 with ¢ =1o0n K

/K(ddcv)” < /qﬁ(dd%)" :hm/¢(ddcvk)" Sliim/E(ddcvk)”.
Hence

/E (dd°v)" < lim /E (ddvy,)™.

This combined with (1.1) implies the statement.

For the general case suppose ||ul|,|lv]| < 1, fix ¢ > 0,6 > 0, and find an
open set U such that cap(U) < €,u = ug,v = v on \ U for some continuous
ug and vg. Let vy | v and up | u be the standard regularization such that for
Ey(0) :={ug < vg—d} and Fx(0) := {ug < vp—3d} we have Ey(20)\U CC NER(5)\U
and UEL () \ U CC Ep(0) (use uniform convergence). By Sard’s theorem we can
assume (changing ¢ if needed) that the boundary of Ej(6) is smooth. Since for any
6 > 0 we have

E6)\U=Ey(5)\U, E(6):={u<v-—4},

we may apply the first part of the proof in the following way

/ (ddev)" = / (ddev)"
E@S\U Bo(26)\U

<lim (ddvy)" < lim (ddv)" + €
Ep(§)UU Ey ()

<lim (ddug)"™ + € < / (ddu)™ + 2e < / (ddu)™ + 2e.
E3(6) Eo(0) E(0)UU

The statement follows if we let €, to zero.

COROLLARY 1.17. Under the assumptions of Theorem 1.16 the inequality (dd°u)™ <
(ddev)™ implies v < u.

If (dd°u)™ = (dd°v)™ and lim¢_,,(u —v)(¢) =0 for z € 0 then u = v.

PROOF. Suppose to the contrary that for € > 0 the set E = {u < v — €} is

nonempty and fix a negative strictly psh function p which is bigger than —e in Q.
Then, using Theorem 1.16 we reach the contradiction with our assumptions since

/ (ddv)" < / (dd(v+p))" < / (dd°u)™.
{u<v+p} {u<v+p} {u<v+p}
The second part follows directly from the first one.

Next we estimate the Monge-Ampere measure of the maximum of two psh
functions.
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THEOREM 1.18. Let Q be an open subset of C". For u,v € PSH N L{3.(Q).
Then
(ddc maX(”? ,U))n > X{qu}(ddcu)n + X{u<wv} (ddcv)na
where xg denotes the characteristic function of the set E.

PROOF. It is enough to show the estimate on any compact K C {u > v}.
Suppose ||u|| < 1, fix e > 0 and find open set U such that cap(U) < €,u = ug,v = vg
on Q\ U for some continuous vy and vg. For a sequence u; decreasing to u and
Vi == {vo < up+t},t > 0 we have v < uj+t on V;\U. Therefore, by the convergence
theorem

[y <tim o [ da) <timg [ )
K V,uU Vi\U

=lim; / (dd° max(uj +t,v))" + 2 < / (dd® max(u +t,v))" + 2e.
v iy

(Note that limu,; (K) < u(K) for compact K and p; weakly convergent to j.) Since
Vi \ U decreases to {u > v} \ U as t goes to 0 our estimate follows after another
application of the convergence theorem.

THE RELATIVE EXTREMAL FUNCTION

A domain is called hyperconvex if there exists nonzero u € PSH(2) N C(Q)
such that v = 0 on 0.

DEFINITION. For a subset E of a domain Q C C"™ we define the relative ex-
tremal function by the formula

ug,q=ug =sup{u € PSH(Q):u <0, and u < —1 on E}.

By the Choquet lemma (see e.g. [D3]) ug is the limit of an increasing sequence
of psh functions. Thus u}, € PSH(Q).

ProroSITION 1.19.
V) If Ey C Ey then ug, < ug,.
w) If ECQy CQy then ugq, <upq,-
we) If Kj LK, with K; compact in Q0 then (limuj )" = uj.

PROOF. The first two statements are obvious and so is the inequality ” <7 in
the last one. For the reverse inequality consider v € PSH(Q2),u < 0 with u < —1
on K. For e > 0 the open set U. = {u < —1 + €} contains K. Hence, for j
large enough K; C U, and therefore u — e < u}j. Taking supremum over all such
functions u we get uxg — e < lim uj(j. Letting € to 0 we obtain the conclusion.

The next result shows that for compact sets the supremum in the definition of
the relative capacity is attained for u = u}. The outer capacity cap* is defined as
follows

cap®(E,Q) = inf{cap(U,Q), E C U, U open}.



16 1. POSITIVE CURRENTS AND PLURISUBHARMONIC FUNCTIONS

THEOREM 1.20. For a relatively compact set E in a hyperconver domain Q2 we
have

cap*(E, Q) = / (ddup)™.
Q
If E; | E is a sequence of compact sets then

lim cap(E;,Q) = cap(E, Q) = cap*(E, Q).
j—o00

PrOOF. Applying the Choquet lemma one can find an increasing sequence
uj > —1 with (limwu;)* = u};. Using the solution to the Dirichlet problem for the
Monge-Ampere equation (Theorem 3.6 below) we find v; such that u; < v; < uj,
and (ddv;)™ = 0 on a fixed ball B(z,7) C Q\ E. Theorem 1.15, applied to the
sequence v;, implies that (dd°u};)™ = 0 on B(z,7) and so on the whole set 2\ E.
Since u}, = —1 in int E we conclude that (dd“u’;)™ is supported by OF.

Now, suppose E = F and fix an exhaustion psh function A for Q with h < —1
on F. Then one can choose the sequence u; above so that h < u;. Take arbitrary
v e PSH(Q),—1 <v < 0 and for small € > 0 set

hj = max(u;, (1 — 2€)v —¢).

Observe that h; = (1 —2€)v — e on E and h; = u; in Q\ Q' where Q' cC Q.
Moreover —1 + ¢ < h; < 0 and for € small enough £ C Q. Those properties and
the fact that €’ can be chosen with smooth boundary allow to apply the Stokes
theorem to obtain

/E (1 — 2€)"(dd°v)" = /E (dd°h;)" < / (ddchy)" = / (ddu;)".

’

From Theorem 1.15 we thus infer

/E (1 — 26)(dd°v)" < Tim (ddeuty)™ = /E (dd°uy)",
where the last equality follows from the first part of this proof. Hence
(1.2) cap(E,Q) = /E(ddcu*E)" = /Q(ddcu*E)".

By Theorem 1.15 and Proposition 1.19 we thus get
lim cap(E;, Q) = cap(E, Q) = cap™(E, Q),

Q

() < [

Q/

with the second equality justified by taking F; with £ C intE;.
To get the first part of the statement for arbitrary F let us first note that for
relatively compact, open V'

cap(V,) = [ (@),
Q

which follows from Theorem 1.11 applied to u}‘(j with K; being an exhaustion
sequence of compact sets for V. If now £ C V then by Theorem 1.16

/Q(ddcu*E)" < /(ddcu"'})” = cap(V, ).

Q
Hence

[ @iy < cap (.9
Q
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For the reverse inequality let us consider u; and h chosen above. For ¢; | 1 set
Vj = {tju; < —1}. Then Vj is decreasing, E' C V; and tju; < uy, . Hence uj, 1 up
almost everywhere and by Theorem 1.15

/(ddcuE)” = lim/(dd"’u*{,v)".
Q Q !

SMALL SETS

DEFINITION. A set E in C" is said to be pluripolar if for any z € E there exists
a neighbourhood V of z and v € PSH(V') such that ENV C {v = —o0}.

If EC {v=—o0} for v e PSH(C") we call E globally pluripolar. However,
this notion turns out to be redundant since Josefson’s theorem proved below says
that any pluripolar subset of C™ is globally pluripolar.

DEFINITION. A subset E of an open set 2 C C" is called negligible if £ C
{u < u*}, where u = supus, us € PSH(Q).

Here the family us can be chosen to be countable by Choquet’s lemma. It is
easy to see that if E C {v = —oo} for v € PSH(Q) then E is negligible since
E C {u < u*} for u = sup;cyv/j. We shall see that the converse is also true and
negligible sets are pluripolar.

PRrROPOSITION 1.21. In a hyperconvex domain 2 the following conditions are
equivalent:

1) EC{v=—o0} forve PSH(Q),v <0.

2) up o = 0.

3) cap*(E,Q) = 0.

ProOOF. (1) — 2) ) If 1) holds then for any ¢ > 0 we have ev < ug. Thus
ug = 0 outside the set {v = —oo} which has empty interior. Therefore u}, = 0.

(2) — 1) ) We can choose u; as in the proof of Theorem 1.20 with additional
property [, |u;|dV, < 277 (by the Lebesgue monotone convergence theorem). Then
v =) uy; is psh in  and equal —oco on E.

The last two statements are equivalent by Theorem 1.20 and Corollary 1.17.

One of the major results in pluripotential theory, widely used in polynomial
approximation, complex dynamics and elsewhere, says the the negligible sets and
the pluripolar sets are the same.

THEOREM 1.22 (BEDFORD-TAYLOR). Negligible sets are pluripolar.

ProOOF. By the last proposition it is enough to show that a negligible set F
satisfies cap™(E, Q) = 0. Let u; be the sequence from the definition of the negligible
set and u = supu;. Fix € > 0 and set Q. = {z € Q : dist(z,00) > e}. Using
quasicontinuity of u; choose an open set U such that cap(U,2) < € and all u; are
continuous on the complement of U in Q. For rational numbers s < t set

Ky=1{2€Q\U:u<s<t<u"}

Then (Q2.NE)\U is represented as a (countable) union of such compact sets. Thus
it is enough to show that cap(K,Q) = 0 for K = K. Reasoning by contradiction
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suppose that this equality is false and there exists h € PSHNC(Q) with —1 < h <0
and | w(dd°h)™ > 0. Applying the localization principle one can assume that h is
exhaustive and for any j u; = h outside a compact subset of Q. Set v; = u; +h
and v = u* + h. Then by Stokes’ theorem and Proposition 1.8 we have
n—1
/ (=h)[(dd°v;)" — (dd°v)"] = / (v —v;)ddh A 3 (dd°v;)* A (ddow)m=+—1

k=0
> / (v — v;)(dd°h)" > (¢ — s) / (dd°h)" > const. > 0
K K
contrary to Theorem 1.15 and Corollary 1.14.

THEOREM 1.23 (JOSEFSON). For any pluripolar subset E of C™ there exists
h € PSH(C™) with E € {h = —oc}.

PROOF. By definition E = UE; where E; C B(aj,7;) and for some
v; € PSH(B(aj,r;)) we have v; = —oo on Ej. Let us fix a sequence of pos-
itive integers j(k) in which every integer is repeated infinitely many times and
such that B(a;),mjx)) C B(0,exp(2¥)) = By. By Propositions 1.19 and 1.21
qu(WBHl = 0. Thus one can find uy € PSH(Bg41) with —1 < u < 0;up = —1

on Ejgy and [p |ug|dV, < 27F. Set

ug(2) on By
hi(z) = max(uy(2),2 ¥ log|z| —2) on Bri1\ B
2 % log |2 — 2 on C"\ By11

Then h = )" hj € PSH(C") since on By, the terms hj,j > k are negative and the
series is convergent by the choice of ug. Moreover, infinitely many terms of the
series are equal to —1 on Ej(). Hence E € {h = —oo}.

REMARK. Note that h(z) < log(1+ |2]).

Notes. The notion of the positive current was introduced by Lelong who
proved most of the results of the first paragraph [L]. The main results on Monge-
Ampere operator are due to Bedford and Taylor [BT1][BT2]. The exceptions
are: Chern-Levine-Nirenberg inequalities [CLN], Josefson’s theorem [J], Theorem
1.11 which is due to Xing [X] and Theorem 1.18 which is due to Demailly [D1].
The proof of Theorem 1.23, essentially following [BT2], was simplified by Demailly
[D1]. The global defining function with logarithmic growth in this theorem was first
found by El Mir [EM] and Siciak [S2](independently). The present construction is
due to Blocki [BL]. Some proofs has been shortened (Theorems 1.11, 1.15, 1.22).



CHAPTER 2

Siciak’s Extremal Function
and a Related Capacity

In this chapter we shall deal with entire plurisubharmonic functions of loga-
rithmic growth. The Siciak extremal function and a capacity T introduced below
were originally defined by means of polynomials. Zahariuta showed that one can
equivalently use the entire psh functions for this purpose. In the study of the
Monge-Ampere equation an important role is played by inequalities between glob-
ally defined capacity T and the relative capacity.

Let us first define the Lelong class and its subset:

L:={ue€ PSH(C"):u(z) —log(1+ |z|) < cu},
Ly :={ue PSH(C"):|u(z) —log(1+ |z])| < cu}.
The Siciak extremal function associated to a bounded set E is given by the formula
Lg(z) =sup{u(z) :ue L, u<0on E}.
The upper semicontinuous regularization L7, is a psh function.

THEOREM 2.1. If E is pluripolar then L}, = 400, otherwise for bounded set
E the function LY, belongs to L.

PRrROOF. According to the Remark following Theorem 1.23 for a pluripolar set
E there exists u € L equal —oco on the set. Then for any constant ¢ we have
u + ¢ < Lg which proves the first part if we let ¢ to infinity.

Consider u € £4. Then the function u(z) — log|z| restricted to an extended
complex line (Riemann sphere) through zero is subharmonic away from a given disk
centered at 0. Hence, by the maximum principle

sup  (u(z) —loglz|) = sup (u(z)—log|z|)
Cn\B(0,r) OB(0,r)

It follows from this that if v € £, and
f(t) = max u(w)

Jw|=t

then

(2.1) f(s) = f(r) <logs/r, r <s.

Suppose now that I is non pluripolar. Since, by Theorem 1.22 the set Lg < L%
is pluripolar one can find a point, say 0 where L7 is finite. By upper semicontinuity
L% is upper bounded by some ¢ in a ball B(0,7), r > 0. Then (2.1) applied to
u = L% shows that L%, <log(1l + |z|) + ¢. On the other hand if E C B(0, R) then
obviously L% (z) > log |z|/R.

19
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PROPOSITION 2.2. There exists a uniform constant C,, such that
sup L < /LE ds—-C,, EcC B=DB(0,1),
B

where dS is the normalized Lebesque measure on the sphere S = 0B.

PRrROOF. We assume, not violating the generality of the argument, that f(1) =
0, where f is the function introduced in the preceding proof and taken here for
u=L%. For s <1 we apply (2.1) and the Harnack inequality to obtain

0=f(1) < f(s)—logs < c(s)/L}‘; dS —log s.
The estimate remains valid for any u € L.

Other basic properties of L}, are listed below.
PROPOSITION 2.3.
L) If FEi1 C E5 then LE2 < LEl-

w) Ly = jhﬂrgo LEJ_ if the sequence Ej is increasing to E.

we) If Kj L K, with Kj compact then (lim Lj )" = Lj.

The Monge-Ampere measures associated to the extremal functions u}; and L
are equicontinuous.

PROPOSITION 2.4. Let E be a nonpluripolar compact set with E C Q where Q
is hyperconvex and E denotes the polynomial hull of E. Then
(supLE)flLE S ug + 1 S (infLE)ilLE,
80 o0

and
(sup L) "(dd°Ly)" < (dd°up)" < (inf L) ™" (dd° L)
o0

PRrROOF. The first part is easy. The measure (dd°L%;)™ vanishes outside E by
the same proof as for (dd®u};)™. Since the set Ly < L%, is pluripolar both measures
are supported on {Lg = 0}. The inequalities now follow from the first part of the
proposition and Theorem 1.18. Indeed, observe that if v = max(u,v) in Q and
u=v on E then by Theorem 1.18 (dd®u)™ > (dd°v)™ on E.

Comparing the Monge-Ampere measures of the relative extremal functions with
that of the global one we obtain the following corollary.

COROLLARY 2.5. For hyperconver @ CC €y CC Qo there exists ¢y > 0 such
that for any compact K C

creap(K, Q) < cap(K,Q2) < cap(K, Q).

PROPOSITION 2.6. For u € L4 we have [, (ddu)" = (2m)".
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ProoFr. Take any two functions w,v from L. Fix a compact set K and a
number ¢ > 1. Adding a constant to v one gets that tv < u on K and the inequality
holds on a bounded set in C™. The comparison principle implies

/ (ddeu)™ < ¢ / (dd°v)".

K cn

Letting t to 1 and exchanging the roles of u and v:

/ (ddu)" = / (ddev)".

([:’IL C’!L
To complete the proof it now enough to compute [(dd®log 3 log(1+ |z|*))"™, which
can be verified by an elementary calculation.

By means of the Siciak extremal function we define the capacity
Tr(K) = exp(—sup{Li(z) : |2| < R}),
for some fixed R > 0. We shall write T" for T;. This capacity is comparable with
the relative capacity in the following manner.

THEOREM 2.7. If Bg := B(0,R) and K C B(0,r),r < R is compact, then
exp(—A(r)(cap(K, Bg)) ') < Tr(K) < exp(—2n(cap(K, Br)) /™).

Proor. By Proposition 1.21 and Theorem 2.1 both capacities are equal to 0
when K is pluripolar. Suppose now it is non pluripolar. For C' = sup{L}(z) : z €
Bgr} we have —1 < C71L% — 1 < 0 in Bg and by Proposition 2.4 and Proposition
2.6

Cnn) = 07 [ L) < caplK B,
which proves the right hand side inequality. For the proof of the other one take
u = uj o where  is the ball B(0,eR). The function f from the proof of Theorem
2.1, with u = L}, is bounded by C' + 1 on 9f). Hence for any v € £, with v <0
on K we get that v; = (C' +1)"1(v — C — 1) is less than 0 on © and less than —1
on K. Thus v; < u and taking supremum over v

(C+1)"Y Ly -C—-1)<u.
At a point zg € B(0, R) where L% equals C we have u(zp) > —(C + 1)~!. Since u
is subharmonic —u(z9) > C(R)||ul|z1(q). The last two inequalities combined with
CLN inequalities lead to
cap(K, Q) = / (dd°w)™ < Colful ey llull*~* < CLC
Q
The proof is completed by use of Corollary 2.5.

LEMMA 2.8. For any a < 2 there exists c(a,n) such that for all u € aL the
following inequality holds with B = B(0,1)

/ exp(supu — u)dV < c(a,n).
B B
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PROOF. One can assume that suppu = u(a) = 0 for some a € B. Set for
k=23,.. Ey={z€ B(0,2) : log(k—1) < —u < logk}, Fj, = U° E;. The function
v(z) = 1 (u(z)+log(k—1)) belongs to £ and v < 0 on Fy, v(a) = L log(k—1). Since
v is dominated by the extremal function of Fj we conclude that for any complex
line [ with a € I:

T(INF) < (k—1)"7,
where T is considered as a capacity in the plane. By Proposition 2.2 the logarithmic
capacity and T are equivalent for n = 1. Therefore one may infer from Theorem
IIT 10 in [T'S] that for some independent constant cy

Vi(IlN Fy) < T2 (N Fy) < colk — 1) 5.

Hence, via Fubini’s theorem
2

V(Fk) < Cl(k 1) o,
Using this inequality we shall estimate (with B’ = B(0,2))

//exp )dvV = Z/ exp(— dVgikV(Ek)

=2V (F) +ZV Fy) <2c12k & =c(a,n).
k=3 k=1

Thus the lemma follows.

Notes. The extremal function was introduced by Siciak [S1], and the defini-
tion given here is due to Zahariuta [Z]. Theorem 2.1 was proved by Siciak [S2],
Proposition 2.2 by Alexander [A], Proposition 2.4 by Levenberg [LV] (it is true for
Borel sets, see [BKL]), Proposition 2.6 by Taylor [T]|. The proof of Theorem 2.7
is due to Alexander and Taylor [AT], and its presentation simplified by Demailly
[D1]. Lemma 2.8 is shown in Zeriahi’s paper [ZE] by means of Skoda’s integrability
theorem [SK].



CHAPTER 3

The Dirichlet Problem for the Monge-Ampere
Equation with Continuous Data

Throughout this chapter we shall work in a strictly pseudoconvex domain 2.
The goal is to find the solution to the following Dirichlet problem

u€ PSHNC(Q)
(%) (ddu)"™ = fdV
lim u(2') = p(2) 2z €09, p € C(9Q),

for any nonnegative f which is continuous in the closure of 2. Such a solution is
always unique by Corollary 1.17.

Let C denote the cone of n X n nonnegative Hermitian matrices and define on
C a homogeneous superadditive functional

F(A) =det'/"A, AecC.

We also consider the space M of C- valued measures on {2 and set

Fu(E) = ianf(u(Em,

where the infimum is taken over all partitions {E;} of E into a finite number of
disjoint Borel sets. This construction is due to Goffmann and Serin [GS] who also
proved the following properties (except the last one - shown in [BT]) of Fpu.

LEMMA 3.1.

a) Fu is a scalar measure.

b) F(tu) =tFu fort >0 and F(p+v) > Fu+ Fr.

c) F(p+v)=Fu+Fvif p and v are mutually singular.

d) |Fu— Fv| <|pu—v| where | -| denotes the total variation of the measure.

e) If v is a nonnegative measure, h - C valued function and u(E) = fEhdu
then Fu(E) = [, F(h)dw.

f) If a sequence p; of C-valued measures tends weakly to p then Fp > lim Fp;.

g) If p is a test function then F(u* p) > Fu* p.

PROOF OF g). By Jensen’s inequality
Flu ) (E) = F( [ ploulE; - (v (2

> / p(2) F(u(E; — (1)) dV (2).
23
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Summing over j
S Fux oNE) = [ 0l2) 30 F(ulEs - (D) av ()

> / p(2)Fu(E — {2})dV(2) = Fux p(E),

For plurisubharmonic v define
0%u )
8zj82k '

Note that for smooth u we have (dd“u)™ = ®"(u)dV. The operator ® has the
following properties.

®(u) = 4(n)/" F(

PROPOSITION 3.2.

a) ®(tu) = t®(u) fort >0 and ®(u+v) > ®(u) + ®(v).

b) If p is a test function then ®(u* p) > ®(u) * p.

¢) If a sequence of plurisubharmonic functions u; tends weakly to uw and ®(u;)
is weakly convergent then ®(u) > lim ®(u;).

d) For the standard regularization lim ®(u.) = ®(u).

e) ®(max(u,v)) > min(P(u), ®(v)).

PROOF. The first three assertions follow from Lemma 3.1. As for d) observe
that by b) and ¢) we have

O(u) > lim P (ue) > lim @(u) * p. = (u).

The last part of the statement is true for smooth u and v (see Theorem 1.18).
In general, consider the standard regularization u; | u and v; | v. Passing to a sub-
sequence one may assume that ®(u;), ®(v;), ®(max(u;, v;)) and min(®(u;), ®(v;))
are all weakly convergent. Then applying b) and c¢) we get

®(max(u,v)) > li§n ¢ (max(uj;,v;)) > li]m min(®(u;), ®(v;))

> lim min(®(u) * pj, (v) * pj) > Immin(P(u), P(v)) * p; = min(P(u), P(v)).
J J
We now return to the Dirichlet problem (x). Let us define the family of subso-
lutions:
S={ve PSHQ)NC@Q): ®(v) > f* dV, vpa < ¢}
and its upper envelope

U = Supv.
S

This function will turn out to be the solution of the Dirichlet problem. Note that S
is nonempty since if p is C? smooth, strictly plurisubharmonic, exhaustion function
for € then for sufficiently big constants A, B > 0 Ap — B € S. Furthermore for
u,v € § we have max(u,v) € S (see Theorem 1.18).

PROPOSITION 3.3. The upper envelope is continuous and belongs to S. If more-
over f% and ¢ are Lipschitz then so is u.
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PRrROOF. Suppose first that the boundary data ¢ is smooth and extend it to a
smooth function in the closure of 2. With p as above and A large enough we thus
get vg = Ap+ ¢ € S and P(vg) > max f% dV. Then for h harmonic in ) and equal
to ¢ on the boundary

Vo S U S ha
which shows that w is continuous on 9f).

Fix € > 0 and a compact set K C Q. Take zp € K. Find v € S with v(z) >
u(z0) — € and vg < v. To show the continuity of u on K we shall prove that for
small |a| the function v(a + -) modified close to the boundary also belongs to S.
One can find > 0 such that for any w € 02

|h(z) — p(w)| < € and |vg(2) — p(w)] < € if |z — w| < 4.
(Note that if ¢ and vy are Lipschitz with constant M then 6 = ¢/M is fine.) Hence
lv(z) —p(w)] <e
for such z. Therefore, if |a| < § and z + a € 99 then
v(z+a)—e<p(z+a) <v(z)+e.
It now follows that
v(2) ifz4+a¢Q
vi(z) = . =
max(v(z),v(z+a)—2¢) ifz+a€
is well defined and v; = ¢ on 0f). Let w denote the modulus of continuity of f .
Since )
O(v(-+a) > fr(-+a)
we get, using Proposition 3.2 e) that
B(v1) = min(f7, f7(a+)).
Therefore for vy = vy + w(|al)vy
D(v9) > ®(v1) + w(|a)P(vg) > fr dV.
Thus vy — w(|a|)||ve]| € S and
u(zo — a) = va(z0 — a) — w(la])[|vo[| > v(z0) — 2€ — w(lal)||vol|

3.1) > v(z0) — 3€ > u(zo) — 4e

for |a| small enough. Therefore u is continuous. Moreover, if f ¥ is Lipschitz then
w(|a]) is proportional to |a| and therefore § can be chosen proportional to e.

By the Choquet lemma there exist u; € S increasing (uniformly) to u. One can
assume that ®(u;) is convergent and use Proposition 3.2 ¢) to conclude that u € S.

If ¢ is not smooth then we approximate it by a decreasing sequence of smooth
¢, and observe that the corresponding envelopes u; are uniformly convergent. The
limit function belongs to S by Proposition 3.2 c). It is the largest minorant of the
sequence u; and therefore it is the envelope we are looking for.

PRrROPOSITION 3.4. The upper envelope has bounded second order derivatives

under extra assumptions: 0 is equal to the unit ball B, f= € CYY(B) and ¢ is
chl.
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ProOF. For the proof we shall estimate the expression
u(z + h) +u(z — h) — 2u(z).

Since this expression is not defined in the whole B we shall first replace the trans-
lations by vectors h and —h with automorphisms T, and T_,, where for given z we
have h = a— < z,a > z. The mappings are defined as follows

(Pa(z) —a) + /1 —[af?(z — Pa(2))
1-<z,a>

_<za>a
|af?
where < -,- > denotes the Hermitian product in C™. Then, by computation

Tu(2) = z = h+9(a, 2)|al?,
det(T.(2)) =1+2 < z,a > +0(|al?),

Ta(2) = » Fa(2)

(3.2)
with some bounded smooth ¢ and 7, denoting the Jacobian of T,,. Hence for any
g € C¥(B),
(3.3) |90 Tu(2) — g(z = h)| < e1llgllcor(mlal?,
Since, by (3.2)
4

(det(T5()))" =1+ — < z,a > +0(|af?)

and, by the assumptions and (3.3) ,
7o Ta(z) = f7(2) + ¥1(a.2) + O(lal)

where (from the Taylor expansion) ¥ (—a,z) = —1(a, z), we may conclude that
for a constant ¢y the following inequality holds

(3.4) (det T!)% (f7 0 To) + (det T' ) * (f7 0 T_g) > 2f7 — colal?,
Furthermore, from the assumptions and (3.3) applied to g = ¢ we have upon

enlarging cy
(3.5) woTy+@oT_ o <20+ calal’.

Let us consider
Va(2) = (wo Ty +uoT_,)(2).
By the chain rule ®(u o T,) = (detT)= (f# o T,). From this fact, Proposition 3.2
a) and (3.4) we get
(o) > (2F — cslal) dV.
Hence (see (3.5) ) there exists a constant ¢4 such that

0(2) = 5va(z) — ealaP(L+ ea(1 = [22) €8,
and therefore v < u. Thus
2u(z) > (wo Ty +uoT_o)(2) — cslal?.
Applying (3.3) with g = u (which is Lipschitz by Proposition 3.3) we obtain
2u(z) > u(z + h) + u(z — h) — cglal?.
One can regularize this inequality (on slightly smaller ball) to get the estimate

2uc(2) > uc(z 4+ h) + ue(z — h) — crlal*.
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Now, fix € and let a to 0 to conclude that the Hessians D?u, are locally uniformly
bounded from above (by ¢(K) on a compact set K). Since u. is psh we also have
D?u, - h? + D?u, - (ih)? > 0 and further

D?u, - h* > —D%u, - (ih)? > —¢(K).

It follows that second order derivatives of u are locally bounded.

THEOREM 3.5. Suppose 0 < f» € CY(B) and ¢ € CYY(8B). Then the
envelope u belongs to C1*(B) and solves the Dirichlet problem (%) in the unit ball.

PROOF. The smoothness of v has been shown in Proposition 3.4. We also know
that ®(u) > f# dV. For u € C1! the density of ®(u) is equal to
0%u
8zj82k
at any point where the second order derivatives exist (that is almost everywhere).
Arguing by contradiction, suppose that we have the strict inequality at a point z

where second order derivatives are defined.
The Taylor expansion of u at zg has the form

u(zo + h) = u(z0) + RP(h) + H(h) + o(|h]?),

where P is a complex polynomial (so ®P is pluriharmonic) and

4(n!)"/" (det( )"

Since H is strictly positive definite we have for ¢ < 1 close enough to 1, and some
positive r and § that

u(zo) + (RP +tH)(h) <wu(zo +h) =46, |h|=r,

and the function

o(z) = { u(z) if z ¢ B(zg,7)
max(u(z),u(zg) + (RP +tH)(z — z9) +9) if z € B(zo,7)

belongs to S. Then we reach contradiction u(zp) < v(z9) —d. The proof is complete.

THEOREM 3.6. The upper envelope u solves the Dirichlet problem (x) in any
strictly pseudoconver domain.

PROOF. In the case ) = B we approximate f and ¢ uniformly by smooth
functions f; and ¢; respectively. Applying Theorem 3.5 we obtain solutions u; of
(%) corresponding to the set of data f;, ;. It easily follows from the comparison
principle that u; — u uniformly in B and so (dd“u;)™ — (dd“u)™ by the convergence
theorem. Thus wu solves (x). For general it remains to prove that (dd“u)"™ = fdV
(see Proposition 3.3). Fix a ball By C Q and denote by u; the solution of the
Dirichlet problem (dd°u)™ = fdV in By, u; = u on 0By. Then v equal to u; in
By and equal to u elsewhere in €2 belongs to S. Hence v < w. Since, due to the
comparison principle, u; > u in By we conclude that u; and u are equal in By
which shows that (dd°u)™ = fdV in Q since the above is true for any ball in 2.

Notes. The results here are due to Bedford and Taylor [ BT1]. The presen-
tation derives also from Demailly [D1] (who dealt with the homogeneous case).



CHAPTER 4

The Dirichlet Problem Continued

We shall generalize Theorem 3.6 weakening restrictions on the right hand side
of the equation. We call a continuous increasing function h : Ry — (1,00) admis-
sible if it satisfies

/Oo(xhl/"(x))_ldx < o0,

1

and if for some ¢ > 1 b > 1 and zg > 0 we have
h(ax) < bh(z) for x> xo.

Let us define the family of nonnegative Borel measures in ) associated to an ad-
missible function h and a positive constant A:

Az

F(AR) ={p: w(K) < F(cap(K,Q)) for F(z) = Wz 1/7)

and any compact K C Q}.

For a function ¢ : Ry — R, such that @ increases to oo as  — oo we define

L¥(co) = {f € LY(Q) : f > o,/ﬂw(f) av < co}.

and

P(Aa ha dja €o; 90)
={u € PSH(Q)NC(Q) : (dd°u)" € F(A,h) N L¥(co), u= ¢ on IN}
Set
Pn(t) = [t|(log(1 +[t]))"h(log(1 + [¢])),

for some admissible k. First we shall prove that
L (cp) C F(A, h)

for some positive A. Then, a priori estimates for || - || norm of solutions of the
Dirichlet problem for the measures from F(A,h) will be shown which imply that
for f € L¥"(cp) the equation (x) has a solution.

LEMMA 4.1. Suppose u € PSH(Q) N C(Q),u =0 on 89, [(dd°u)™ < 1. Then
for any oo < 2 the Lebesgue measure V(€s) of the set Qg := {u < s} is bounded
from above by cexp(—2mals|), where ¢ does not depend on u.

29
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PROOF. Assume ) to be contained in a ball B = B(0, R). We denote by Vj, the
Lebesgue measure in C*. Let us write the coordinates of a point z € C™ in the form
z = (21,2') € C x C" !, and denote by B; (resp. B’) the balls {z € C : |z| < R}
(resp. {z € C"~1:|z| < R}). Consider the slices of the set

Qs(2') :={z21 € C: (21,2) € Qs}.
For fixed s, the Siciak extremal function of of €25 in C™ will be denoted by L. We
shall use the capacity T from the previous section.

For n = 1 the set function Ty dominates the logarithmic capacity multiplied
by a constant depending on R. Hence by Theorem IIT 10 from [TS] we get

Vi(Qs(2")) < CiTR(Qs(2)),
where C is an independent constant. Thus, making use of the Fubini theorem and

Lemma 2.8 we can estimate as follows
(4.1)

V() = / Vi(Qu(2) dVaa () < Cy / TS (Qu(2)) dVr ()

gCl/exp(—a sup L(z1,2"))dV,—1(2") < Caexp(—a sup L(z)) < CoTH(Qs).
|z1|<R B1Xx B’

From Theorem 2.7 it follows that
Tr() < exp[—2m(cap(Q, B)) ™™ < exp[—2m (cap(Q, Q)™
So, continuing the estimate (4.1) we finally arrive at
V(Qy) < Chexp[—2ma(cap(Qs, Q)™
To complete the proof it remains to show that
(4.2) cap(s, Q) < |s|7™.

Fix t > 1 and a regular compact set K C 5. Then by the comparison principle we
have

cap(K,Q) = /

(ddur)" = / (dd°ur)"
K {—ts lu<ug}

gt”|s|_"/(ddcu)” < n|s| .
Q
Thus (4.2) holds and the lemma follows.

LEMMA 4.2. For any admissible h satisfying h(z) < const.(1 + z)* for some
k < 00, and for any co > 0 there exists A > 0 such that

L¥"(co) C F(A,h).
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PROOF. We are going to verify that for some A > 0, any f € L¥"(cy) and any
compact regular set K C  the following inequality holds

(4.3) /K fdv < Acap(K,Q)[h((cap(K, Q)™

First, let us note that (4.3) follows from
(1.4 [ 1erhensav < a.
Q

where v € PSH(RQ) is of the form v = cap™'/"(K,Q)uk, with ug the relative
extremal function of K with respect to €. Indeed, from (4.4) we have

A /Q (o)) f dV > /K (o)) f dV

> cap™ (K, h((cap(K, )7 [ fav.

which proves (4.3). To prove (4.4) we shall use Young’s inequality applied to G(r) =
g(log(1 + 7)) = (log(1 4 r))"*h(log(1 + r)) and its inverse. Then

f) a(lv())
g(lv(z)\)f(Z)S/O g(log(1+r))dr+/0 exp(g™ (1)) — 1] dt

[v(2)]
< F(2)9(log(1 + (=) + / e*g'(s) ds
0
< n(£(2)) + g(o(=z))e" .

Since the integral fQ ¥p(f) dV is bounded by ¢y, we obtain by integrating the above
inequality over 2

[ @D v <+ [ gu@nelav

It remains to find a uniform bound (independent of v) for the last term. To do this
we make use of Lemma 4.1 and the extra assumption on h

/ g(jv(2)))el*@av = Z/ g(Jv(2)))el*@ av

s—1<v<— s}
<D s+ D) (s + DtV ({v < —s}) <> (s+1)"h(s + 1)el T2
s=0 s=0

<cl[h(1) + Z(s + 1)kl +s(1=2M] < const. < oo
s=1

The proof is completed.
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LEMMA 4.3. Let Q be a strictly pseudoconvex domain in C™. Assume v €
PSHNC(Q), and w € PSH N L>*(Q). Suppose that for some positive number A
and an admissible function h the following inequality holds

[ @0y < Acap(. 0 (eap( K, ) ),

for any compact set K. If the sets U(s) := {u—s < v} are nonempty and relatively
compact in Q for s € [S,S + D] Then

(4.5) D < k(cap(U(S + D),Q)),

where -
/4;(3) = C(n)Al/n[/ yflhfl/n(y) dy + hfl/n(sfl/n)]7

s—1/n
and the constant c(n) depends only on n.

PROOF. Let us introduce the following notation

a(s) :=cap(U(s), ), b(s) = /U( )(ddcu)".

Then
(4.6) t"a(s) <b(s+1t) for0<t<S+D—s.

Indeed, consider a compact regular set K C U(s), the psh function w := 1 (u—s—t)
and the set V := {w < ug + %v}, where ui denotes the relative extremal function
of K with respect to Q. Let us first verify the inclusions K C V C U(s + ¢).

Take z € K C U(s). Then u(z) — s < v(z) and so w(z) = (u(z) — s —t) <
ug () + tv(z) which means that z € V. To see the latter inclusion, note that if
z € V then 3(u(z) — s —t) < ug(2) + +v(2) < v(z) since ug is negative. Once
we have the inclusions we can apply the comparison principle and Theorem 1.20 to

the effect

ant9) = |

C 1 n C 1 n C n
(a7 g/v[dd (s + 7)) g/v(dd w)

<4 / (ddeu)™ < =" / (ddeu)™ = 1="b(s + 1).
14 U(s+t)

This way (4.6) follows.
Next we define an increasing sequence s, $1, ..., Sy, setting so := .S and

sj:=sup{s:a(s) < lim da(t)}

t—sj 1+

for j = 1,2,...,N, where d is a fixed number such that 1 < d < 2. Then this
sequence is increasing and

(4.7 a(s;) > da(s;j—2).
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(Note that if a(s;—1) < da(sj_2) then by definition od s;_; for any s > s;_1 we
have a(s) > da(sj—2). In particular it is true for s;.)
The integer N is chosen to be the greatest one satisfying sy < S+ D. Then

a(S+ D) < t_l>isr}rvl+da(t)
(otherwise we would have sy11 < S+ D.) From the last inequality, the assumptions
and (4.6) it follows that for any t € (sy,S + D) we have
(S+ D —t)"a(t) < b(S + D) < Aa(S + D)h~*([a(S + D)]~/™)
< Ada(t)h=([a(S + D)]7V/™).
Hence
(4.8) S+ D —sy < (Ad)Y"hY"([a(S + D)]7H™).

Now we shall estimate sy — S. Consider two numbers S < s’ < s < S+ D such
that a(s) < da(s’) and set t := s — s’. Then by the assumptions and (4.6) we have

a(s') < 7"b(s) < At™"a(s)h ™ ([a(s)] ")

< Adt™"a(s"Yh ™ ([a(s)] 7Y/ ™).

Hence
t < (Ad)"/"hy(a(s)),
where hy(z) := [h(z~1/")]71/". Letting s — s;.1— and s’ — s;+ we thus get
tj =841 — 85 < (Ad)l/"hl(a(sjﬂ)).

Using this inequality, (4.7) and the fact that the function hg(z) = hy(d*) =
h=1/"(d=*/™) is increasing one can estimate as follows

N-1 N-1

tj S (Ad)l/n Z hg(logd a(5j+1))
7=0 j=0

2

2 rlogga(sj+2)
< (Ad)Y/| / ha(x) dz + 2hy(log, a(sy))]
1 Jlogg a(s;)
log, a(S+D)
< 2(Ad)/7| / ha(2) da + ha(log, a(S + D))].
log, a(S)

J

The change of variable y = d—*/" leads to the following transformation of the above

integral
log, a(S+D) log, a(S+D)
/ ho(x) da = / [h(d=/™)] 7Y™ da
1 1

ogg a(S) og4 a(S)

[a(s)] /"

n

= — h(y))Y ™y~ dy.
i L 0

Hence finally

2n

_4< 1/n
SN S S (Ad) (hld

[a(S)]—l/n
/[ (S+D)]-1/m [yhl/n(y)]_l dy + 2[h(a(S + D)_l/n)]—l/n)7

which combined with (4.8) gives the desired estimate.
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THEOREM 4.4. Let Q be a strictly pseudoconver domain in C". Assume that
u; € PSH(Q)NC(Q) is a sequence converging weakly to w € PSH(Q) and for any

J
lim, g0 (u; —u)(2) > 0.
Suppose further that
(ddcuj)" = fj dVv
with f; € F(A,h) N LY (co), where L) s increasing to 0o as x goes to co. Then

x
u; — u uniformly in Q.

PROOF. Denote by a;(0) = cap(E;(25),€) the relative capacity of the set
E;(26) = {u; + 26 < u}. The set E;(20) is compact in view of our assumptions.
Let us denote by v; the relative extremal function of the set E;(2¢). By Theorem
1.20

| ) = a0,

E;(26)

Observe that for V' = {u; < dv; +u — 0} the following inclusions hold
E;(20) CV C E;(9).

Applying the comparison principle we thus get
a;(0)6" < / [dd®(dv; + u)]" / (ddu;)"
E;(26) 1%

< / fidv.
E; ()

Hence for any M > 0 and u4 := max(u,0) we have

(4.9)

005" < [ (w=w)ifav
Q
:/ (u —uj)t f; dV+/ (u—uj)t f;dV
{fi>M}

(4.10) (5<My

< max(u —uj)+ /

f]dV—&—M/ u—u;)4dV
{f7>M}

g e [ gt [ (-

For the last inequality we use the assumption that @ is increasing. Fix € > 0. By

the previous lemma, applied for v = 0, there exists ¢; > 0 such that w > —¢; for
any w € F(A, h) with w > u on 9. So, in view of our assumptions the quantities

max(u — Uj)+/ﬂl/f(fj)dv

are uniformly bounded. Using the assumptions on i we can make arbitrarily

w(M )
small by taking M big enough. We choose M so that the first term on the right
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hand side (4.10) is less than €/2 for any j. Since u; — u in L'(£2) (see e.g. [H1])
the other term is less than €/2 for j > jo. Therefore

a;(9) < e "t for j> jo.

Suppose for a while that E;(30) were nonempty. Then, applying Lemma 4.3 we
would get

5 < K(a;(8)) < K(es ), §> jo.

Since, by the assumption on h we have lims_,¢ k(s) = 0 the last inequality yields
a contradiction if we take € small enough. Thus E;(36) is empty for j > jo which
together with Hartogs’ lemma implies the uniform convergence of the sequence ;.

THEOREM 4.5. For v as in the previous theorem the set P(A, h, v, co;p) is
equicontinuous.

PROOF. Arguing by contradiction suppose that for some € > 0,u; € F(A4,h)N
L¥(cp) and two sequences z;,w; of points in  we had ||z; — w;|| < j~! and
u;j(2;) — u;(w;) > €. Since P(A, h, 1, co; ) is uniformly bounded (due to Lemma
4.3), one can pick subsequences z;, ,w;, converging to z € Q and uj, converging in
L' norm to u € PSH(Q) N C(Q). By Theorem 4.4 u;, converges uniformly. Thus

for k£ large enough we have the following inequalities

[u(z;,) — u(z)] < e/4,
lu(w;y,) —u(z)] < e/4,

lwji (25,) — ul(z,)| < €/4,
[wj, (wj,,) — u(wy, )| < e/4.

Combined they yield

|ujk (ij) — Ujy, (wjk)| <k¢,

which contradicts the choice of the sequences. The proof is completed.

THEOREM 4.6. For any f € LY"(co) the Dirichlet problem (x) has a solution.

PROOF. Set hi(x) = min(h(z),z + 1). Then, by Lemma 4.2, for some A > 0
we have

Ld)h (CO) C Lwhl (CO) C ]:(A, ]’Ll)

Take a sequence of continuous functions f; € L¥"(co) tending to f in L'. The
sequence u; of solutions of (x) of with f; in place of f (obtained in Theorem 3.6)
is uniformly bounded by Lemma 4.3. From the previous theorem we can therefore
conclude that, after passing to a subsequence, u; is uniformly convergent to a
continuous plurisubharmonic function u. From the convergence theorem it follows
that

(dd°w)" = fdV

which completes the proof.
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ExXAMPLE. Take ¥(t) = [t|(log(1+]t]))™ (1+log(1+log(1+[t])))™, m > n. Then,
by Lemma 4.2, the Dirichlet problem (x) is solvable for any f € L¥(cp). On the other
hand, if x(¢) = [¢|(log(1+[t]))™, m < n then by the result of Persson [P], the Monge-
Ampere equation admits unbounded solutions with pointwise singularities for some
radially symmetric densities from LX. Indeed, one may verify that the function
f(2) = |z|72"log ™" 2|z| ! belongs to LX(B) for k > m + 1 and the corresponding
solution is equal —oo at 0 for £k < n + 1.

EXAMPLE. For any p > 1 we have LP(Q2) C L¥(Q), where ¢ is the function
from the previous example. Thus for f € LP,p > 1 the equation (x) is solvable.

HOWwW SUBSOLUTIONS LEAD TO SOLUTIONS

Let us consider the Dirichlet problem in a strictly pseudoconvex domain where
we admit bounded plurisubharmonic solutions.

we PSH N L®(Q),

(%) (ddu)" = dp,
%I_I}I u(¢) = p(z) for z € ON.

THEOREM 4.7. If there exists a subsolution for the Dirichlet problem (xx) then
the problem s solvable.

PROOF. Let us first state some additional assumptions and observe that by
doing this we do not affect the generality of the proofs. It is enough to consider only
measures p which have compact support. Then, given non-compactly supported
measure i one can find solutions corresponding to x;u, where x; is a non-decreasing
sequence of cut-off functions x; 1 1 on Q. The solutions will be bounded from below
by the given subsolution (due to the comparison principle) and they will decrease
to the solution for p by the convergence theorem.

Next, the subsolution v given by the hypothesis can be modified so that the
function is defined in a neighbourhood of Q, and lim¢_,, v(¢) = 0 for any z € 9.
Furthermore, using the balayage procedure, one can make the support of dv :=
(dd°v)™ compact in . For such v one can define the regularizing sequence w; | v in
the closure of Q. Let (dd“w;)™ = g; dV. By Theorem 3.6 there exits v; € PSH(Q)N
C(Q), v; = 0 on 9Q and such that (dd°v;)™ = g;dV. Since |v; — w;| attains its
maximum on 02 and w; tends to 0 uniformly on the boundary we conclude that
v; — v uniformly on each compact set where the restriction of v is continuous.
Thus it is convergent with respect to capacity.

By the Radon-Nikodym theorem dy = hdr, 0 < h < 1. Applying Theorem 4.6
we solve the following Dirichlet problem

u; € PSH(Q)NC(Q)
(dd°u;)™ = hg; dV
u;(z) = ¢(z) for z € 9Q.

As we shall see the function u = (limsup u;)* solves the equation (xx). Passing to
a subsequence we assume that u; converge in L(§).
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LEMMA 4.8. The function u defined above solves the Dirichlet problem (xx)
provided that for any a > 0 and any compact K C Q we have

(4.11) lim (dduj)™ =0, where Ej(a) :={u—u; > a}.
170 JE;(a)NK

ProOOF. Indeed, if (4.11) holds then for any s one can find j(s) such that
/ (dd°u;)" < 1/s, > j(s).
E;(1/s)NK

Set ps := max(u(s),u — 1/s). Then (ddps)" = (dd®ujs))"™ on (int K)\ Ejs(1/s),
and so the above inequality implies that any accumulation point of {(dd®ps)™}
is > du on int K. On the other hand, by the definition of ps and a version of
the Hartogs lemma given in Theorem 4.1.9 from [H1] p; — u uniformly on any
compact F such that u|g is continuous. So it follows from Theorem 1.13 that ps

converge to u with respect to capacity. Therefore applying Theorem 1.11 we obtain
(dd°ps)™ — (dd®u)™, and further

(4.12) (ddu)"™ > dp.

To get the reverse inequality note that ps = u;(s) on a neighbourhood of 92 since
all the u;’s (and therefore u as well) are bounded from above by the solution
of the homogeneous Monge-Ampere equation with the same boundary data, and
this solution is continuous in the closure of 2. Hence, due to the Stokes theorem,
Jo(ddps)™ = [ (dd°uj(s))". By the construction, the integrals on the right tend
to [, dpu, so the measures in (4.12) must be equal. Thus the lemma follows.

LEMMA 4.9. Suppose that u; do not fulfil the hypothesis of the previous lemma,
and so, after passing to a subsequence (which does not change u since u; converge
in L') we have

/ (ddcu])” > Ag, Ao > 0,a0 > 0.
E;j(ao)

Then there exist a, > 0, Ay > 0,k1 > 0 such that

(4.13) / (ddv;)" ™™ A (ddv)™ > A, § > k> k.
Ej(a'm)

PrOOF. We shall proceed by induction over m. For m = 0 the statement holds
by the hypothesis. We assume that (4.13) is true for some fixed m < n and now
we shall prove it for m + 1.

Let us observe that by the CLN inequalities there exists C' > 0 such that

(4.14) /Q T<C,

for currents 7" which are wedge products of dd“v; or dd“u;. Indeed, we can extend
all the functions involved to a slightly larger domain as it was done in Chapter 3
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and apply CLN inequalities. We also assume that those functions have L°° norm
bounded by one.
Denote by T' = T(j,k,m) the current (ddv;)" ™! A (dd“vi)™. For fixed € €

(0, ‘1’5‘12) we choose an open set U such that

cap(U,Q) < 6/2”“7

and both v and v are continuous on 2\ U. Note that, assuming for simplicity, that
—1 < wj,u; <0, we have

(4.15) /U(ddc(vj + )" < 2%cap(U, Q) < €/2.

Moreover one can replace v; by u; in this inequality. Then for & > ky and we have

v < U+

(4.16) e
on Q\ U. Indeed, the inequalities are valid in a neighbourhood of 99 because all u;
(resp. vj;) are bounded from above by the maximal function in £ with boundary
data ¢ (resp. 0). On the remaining part of 2\ U one obtains (4.16) by the Hartogs
lemma. Set

J' (4, k) = /(u —u;)ddv; AT,
Q

J(j, k) = / (u—u;)ddve AT, j >k > ko.
Q

Integrating by parts we get

Lw$m—Juww=/

Q

(vj —vk)ddc(u—uj)/\T:/Q\U...—i—/U....

Since v; — v uniformly away from U one can find k1 > ko such that [|v; — vg|| <
€/2C on Q\U for j > k > ky. Thus, using (4.14) and (4.15), we conclude that each
integral on the right hand side does not exceed €/2 for such j, k. So

amAm
4

(4.17) TG k) = T( k) < e < > k> k.

Using the induction hypothesis, (4.14), (4.15), and (4.16) we have

J'(4,k) > am/

Ej (am)

ddcvj/\T—e/

dd®v; AT — / dd®v; AT
o\U U

3a, Am
4 )

zam/ dd°v; NT —e(C+1) > amA, —e(C+1) >
EJ(QM)
for j > k > ko > ki. Combined with (4.17) this gives

mA7n .
(4.18) J(, k) > GT §>k> k.
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Fixing d > 0 one can estimate J(j, k) from above as follows
J(j,k)g/ ddcvk/\T+d/ddcvk/\T
{uj<u—d} Q
< / ddvp AT + dC.
{uj<u—d}

Setting amy1 == d = % in the last formula and combining it with (4.18) we

finally arrive at

/ ddvp NT >
Ej(am+1)

which concludes the proof of the inductive step. Thus the lemma follows.

Now we shall prove Theorem 4.7 reasoning by contradiction. So, suppose the
hypothesis of Lemma 4.9 is valid. Then using its statement for m = n we can fix
k > k1 such that

amAm

= Apmy1, J> k> ko,

/ (dd°v)" > A, ifj > k.
Ej(an)

Since, by the construction, (dd®vi)™ < MdV for some My, > 0 one infers from the
last inequality that

A, .
V(E;(an)) > M (ddvp)" > T k,
Ej(an) k

which contradicts the fact that u; — u in L}, .. Thus the theorem follows.

Notes. The main results of this section come from [ KO1][KO2][KO3][KO5].
The proof of Theorem 4.7 is considerably simplified. The improved estimate of
Lemma 4.1 has been shown (in a different way) by Kiselman [KI2] and Zeriahi
[ZE].



CHAPTER 5

The Monge-Ampere Equation
for Unbounded Functions

Applying Proposition 1.7 we have defined
dduy A ddug A ... A dduy

for any collection of locally bounded psh functions. For unbounded psh functions
the matter becomes complicated as the following example from [KI1] shows

ExaMPLE. The function
u(z) = (—log|z1)!/?(|2|* - 1)

for z = (z1,2') € C x C"! is psh in a neighbourhood of the origin but

/ (dd°u)™ = 0o
B(0,r)\L

for L={z:2z =0} and r > 0.

However, the Monge-Ampere operator can be defined on some classes of psh
functions in such a way that (dd°u)™ is locally finite and that it is continuous
with respect to monotone sequences of psh functions. Throughout this section
Q will denote a fixed hyperconvex domain in C". Recall that a domain is called
hyperconvex if there exists nonzero u € PSH() N C(Q) such that u = 0 on 9.
The set of such functions satisfying [, (dd“u)™ < co we denote by &.

FacT. £ is a convex cone.

DEFINITION. We say that a plurisubharmonic function u belongs to F, if there
exists uj € E with uj | u,sup; [o(—u;)P(ddu;)™ < oo and sup; [q(dd°u;)™ < oo,
If the sequence u; fulfils the above conditions but the last one then u belongs to &,.

Facr. £ C F, C&,, FqC Fpforqg>np.
The following estimate is crucial for the sequel.
THEOREM 5.1. Foru,v € £ andp > 1
/ (—u)P(ddu)? A (ddv)™7
Q
<CUP)( [ (uptddeny) e [ (—op(ado) /o
Q Q

with C(4,p) =1 ifp=1 and C(j,p) =p(p+j)(n—35)/(p — 1) otherwise.

41
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PROOF (SKETCH). Suppose
/ (dd°u) A (dd°v)" < oo,
Q

and denote

;= log/ﬂ(fu)p(ddcu)j A (ddv)™ ™,

y; = log /Q (—v)P(ddu)" 7 A (ddv)? .

Applying integration by parts (which is justified by using the additional assumption,
see [CP]) and Holder’s inequality one gets

et = — / dv A d°(—u)? A (dd°u)? A (ddv)" 7~
= / vdd®(—u)? A (dd°u)’ A (ddv)" It
=p(p—1) /U(—u)p_2du A d°u A (ddu)? A (ddv)" 71
+p/(—v)(—u)p_l(ddcu)j+l A (ddv)=I71
< p/(—v)(—u)lf’*l(ddcu)H1 A (ddv)" =it
< [oparay s a -y
x (p / (—w)P(ddu)T T A (ddCv)n=I=1)P=D/p,

Take logarithms of both sides to obtain the system of inequalities

1
T < Tj+1 + ];yn—j—l + Ing

p—1 1
y; < Vit + pln=i- + log p.
The system in matrix notation is given by

(51) A(x()?yOv'-'vxTwyn)T < logp(lala"'al)Tv

where A = (ajx),j = 1,...,2n;k = 1,...,2n + 2 has coefficients a;; = 1,a; 42 =
(1—-p)/p,ajon—j+1 = —1/pfor j =1,..., 2n. Removing from A the last two columns
we obtain 2n x 2n matrix denoted by C. After showing that C' has an inverse with
nonnegative coefficients we shall multiply the system by C~' reducing it to the
row-echelon form. To invert C consider the system of equations

C(20, Y05 s Tr—1,Yn—1)" = (b0, €0y ey 1, En1)

and compute z;,y; which turn out to be linear combinations of b}s and c;»s with
nonnegative coefficients. The same calculation shows that C~! A is equal to the 2n x
2n identity matrix complemented by two last columns given by pJ%n(A(h ey A )T
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where A; = (af,) is 2 x 2 matrix with a], = a}y = p+j and @}, = @}, = n — j
Multiplying (5.1) by C~! one obtains (by calculation)

pti o n—j (ot —j)

T lo

7 p+n n p+n n = p—]. gp

P et P Pti, (p+5)(n—j) log p.
p+n p+n p—1

This gives the assertion for p > 1 and passing to the limit for p = 1.

To get rid of the extra assumption from the beginning of the proof one applies
the above reasoning to the standard regularizations u;,v; of v and v on slightly
smaller domains €2;. It turns out that the integrals from the statement are the
limits of analogous integrals for u;,v;, ;. We refer to [CP] for details.

The following two facts can easily be deduced from Theorem 5.1.

Fact. &, and F, are convex cones.

Facr. &, and F, are closed with respect to the operation of taking maximum
of a finite number of functions.

THEOREM 5.2. Suppose u € PSH () is the limit of a decreasing sequence u; €
& such that a = sup; [,(—u;)?(dd°u;)™ < co. Then (dd“u;)"™ is weakly convergent
to a measure dp which is independent of the choice of u; satisfying the condition
above. Thus one can define (dd°u)™ = dpu.

PrROOF. Take a nonnegative test function x with ||x|| = 1. We shall use the
notation
vp, := max(v, —k).
Since u; = u [, on {u; > —k} we get

| [Ny = g < [ )+ ()]

{u;<-k}

gk—p/{ . EP[(ddu;)™ + (dd wjp)"]

<k~ /(—uj)p(ddcuj)" + ()P (dd upr)"
<2akP.

Hence, by the convergence theorem, if du is the weak limit of a subsequence of
(dd®uj)™ then

| [ X~ (g < 20k,

which gives the statement.

THEOREM 5.3. For u; € &, u; T u we have u € &, and
lim (ddu;)" = (ddu)™.

Jj—o0

PROOF. Use the estimate from the previous proof and Theorem 1.15.
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THEOREM 5.4 (COMPARISON PRINCIPLE). Ifp > 1 and u,v € F, then

/ (ddv)™ < / (dd°u)™.
{u<v} {u<v}

PRrROOF. Using the fact that u,v € F, one can find Uy with cap(Uy, Q) < € and
/ (ddu;)"™ + (ddv;)"™ < €
Ug

for any j, where u;,v; are continuous and u; | u,v; | v. Then after incorporating
Up into U we may repeat the proof of Theorem 1.16.

COROLLARY. Ifp>1, u,v € Fp, and (dd°u)"™ < (dd°v)™ then v < u in Q.

Following Cegrell [C2] one can now characterize the measures for which the
Dirichlet problem has a solution in F,.

THEOREM 5.5. Let p be a positive measure with finite total mass in 2. Then
there exists a unique u € F, solving

(ddu)"™ = dp

if and only if for some positive A the following inequality holds

(5.2) /(*U)” dp < A(/(fu)p(ddcu)”)n%p,

for anyu e €.
PrOOF. We begin with a version of Lemma 4.8.

LEMMA 5.6. Ifu; € € is a sequence converging a.e. to uw € PSH () with

sup/(—uj)p(ddcuj)" < 00
i JQ

and
lim / |u — u;|(ddu;)" =0,
j*)OO
then
lim (ddu;)" = (ddu)™.
j—o0
PrOOF. The proof of Lemma 4.8 applies except that we do not know in advance
that ps is uniformly bounded. So, to ensure that p;, — u with respect to capacity
we need to use the assumption

sup/(—uj)p(ddcuj)" < 00
J JQ

to conclude that
lim sup/ (dd®ps)"™ = 0.
{ps<_k}

k—oo g

To this end we need the following proposition.
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PROPOSITION. Ifu,v € & and v < u then
/(—u)(ddcu)" < /(—v)(ddcv)".

PROOF. Use repeatedly the inequality which follows from integration by parts
formula

/ (—u)(ddeu)"* A (dd°v)* < / (—0)(ddeu)™* A (dd°v)*
- / (—u)(ddeu)™ =1 A (ddev)*+

Applying this inequality for u = ps and v = u;(,) we get the desired estimate

k/{ps<k}(dd6ps)n : /(7ps)(ddcps)n = /(*“j(sﬂ(ddcug‘(s))”-

LEMMA 5.7. Let u be a nonnegative compactly supported measure that satisfies
(5.2) forp>n/(n—1) and let u; € € be a sequence with sup; [q(dd°u;)" = a < oo
that converges a.e. to u € PSH(Q). Then lim; [u;du = [udp.

PRrROOF. A simple measure theoretic argument shows that mj Jujdu < [udp,
thus we need to prove lim; f uj dp > f udp. Passing to a subsequence one can as-
sume that lim; [ u; dy = lim; [ u; du. Set E(j, k) = {u; < —k}Nsupp p and denote
by ;i the relative extremal function of this set. By the assumptions

/ du < A( / (ddCuzp)") 5.
E(j,k) E(j,k)

By the comparison principle (Theorem 5.4)

E(j,k) {2u; <kujp}

Combining the above two inequalities we get
/ du < A(2"a) 757 kit .
E(j,k)

np

Since we assumed p > n/(n— 1) we have ¢ := s

estimate one obtains

(uau=3" [ (—uj) du
/Emzk) ’ z::k T S

> 1. Thus applying the previous

» o0 25+1
< A(2"a)7 P Z Se = Ck-
s=k
Hence
lim sup/ (—u;)dp =0
k—oo j E(4,2%)
and

/(—uj)du§2k/dp—l—ck.
Q Q
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Thus sup; J(—u;)dp < oo. Having those estimates it is enough to show that

lim /uj[k du = /u[k du
j—o0

or just assume that u; are uniformly bounded. Then the sequence is also bounded
in L?(du), so, passing to a subsequence one can find v € L*(dp) with vy, :=
k1 Z’f u; — v in L?(dp). Extracting a subsequence of vy, we also get vy, — v
dp a.e. From a.e. convergence of u; to u we obtain that vi, — u a.e. with respect
to the Lebesgue measure. Therefore (sup,,vx,)* | v as t — oo. Then

1lm/ujdﬂzmj/ujduz lim /ngd/i:/’l)dﬂ
J s$—00

= lim (supvks)*du:/udu.

t—o0 s>t

The proof is completed.

PROOF OF THEOREM 5.5. Case p > -"5. As in the proof of Theorem 4.7 one
can show that it is enough to prove the statement for p compactly supported. For
such ;1 we define a regularizing sequence p;. Let Iy denote a unit cube containing
Q and let us consider a sequence B; of subdivisions of Iy into 3%™ congruent open
cubes of equal size which are pairwise disjoint but their closures cover Ij. It is no
restriction to assume that for each j we have u(Urep, 01) = 0. Set

u(InNQ) .
(for z € OI we put f;(z) =0).
By Theorem 4.6 one can solve the following Dirichlet problem
u; € PSH(Q)NC(Q)
(ddcuj)” = fjdV
uj(z) =0 for z € 0Q.
1

First we are going to show that u; is bounded in L} .. Set 7; = n377 and ¢; =
[V(B(0,7r;)] . Then for z € I € Bj we have I C B(z,r;). By subharmonicity

uj(z)gcj/B( )ujdvgcj/lujdv.

Hence, via Fubini’s theorem

/Iuj dp < (Sgpuj)/lfj dv < cj(/luj dV)(/Ifj dv)
SCjV(I)\/Iuj d‘LLJ

Thus [(—u;)du; < const. [(—u;)dp and the last integral is uniformly bounded by
the previous proof. Applying this estimate and Theorem 5.1 with v = u; and some
fixed strictly plurisubharmonic function v we conclude that ||u;||.: is bounded on
any compact subset of {). Therefore, passing to a subsequence, we may consider u;
to be convergent to u a.e. in dV.
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Our next objective is to prove that (dd°u;)™ — (dd°u)™. To this end we define
the ”error term”

1mw=qém)uw+m—ww+wmm
Tj

with 7, ¢; introduced above. Setting @; := (sup;<, ux)* we estimate this term as
follows: -

b Se [ ) =G ) - )l @
< cj/ Uiz +w) —u(z +w) dV(w)
B(0,r;)
+cj/ Uiz +w)dV(w) — cj/ ui(z +w) dV(w)
(0,r5) B(0,r5)
§cj/ Uj(z+w) —u(z+w)dV+ sup a4;(-+2) —u,;(2).
B(0,r;)

B(U,’l’j)

From the Lebesgue monotone convergence theorem we conclude that v;(z) — 0 a.e.
in dV. Thus, by Lemma 5.7 we have lim; [v; du = 0.
Now, observe that by Fubini’s theorem

/|u—u]|ddu] = /|u—u3|f]dV
I1€B;

_Z /du/\u uj|dV < Z V /vjdpzconst./vjd,u%O.

IEB; IEB;
We have thus verified that the assumptions of Lemma 5.6 are fulfilled and therefore
(dd°uw)"™ = lim (ddu;)" = du.
j—oo
We need yet to prove that w € F,. If one denotes by xj the characteristic
function of the set {u > —k} then by Theorem 1.18 (dd®up,)" > xpdp. Ap-

plying Theorem 4.7 we now get a bounded plurisubharmonic function v, with
limy,—, vg(w) =0, z € 9Q and such that (dd°v)™ = xxdu. By the assumptions

/(—Uk)p(ddcvk)n < /(—Uk)p(ddcu)” < A(/(_Uk)P(ddcvk)n)%ﬂ,’

and so

n+p

(53) /(—Uk)p(ddc’vk)n S A

Hence u = lim vy, € Fp.

Case p > 1.
Fix ¢ > n/(n—1), a compact K containing supp p and a constant C' satisfying
(5.4) C > C(0,q) cap™ia (K, 9Q),

where C'(0,g) comes from Theorem 5.1. Let us consider the set of measures

M={v>0,suppr C K, /(fu)q dv < C(/(fu)q(ddcu)”)ﬁ for u € £}
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and the set N associated to some vy € M

N:{uzo,suppuCK,/ dv =1,

q

/(—u)q dv < C(1/Dy + 1/D2)(/(—u)q(ddcu)")ﬁ for u € £}
where Dy = sup{ [ dv,v € M} and Dy = [ diy. Then for v € M
(1/D1D2)[(D1 — / dl/)V() + DQV] € N.

It is easy to check that IV is weak™ - compact and convex set of probability measures.
By a version of Radon-Nikodym theorem from [R] there exists v € N and f €
L'(dv) such that vy = u— f dv is nonnegative and orthogonal to N. If E C K and
cap(E,Q) > 0 then by Theorem 5.1 and (5.4) (dd“u};)™ € M . Thus there exists
a measure in N which does not vanish on F. Since v; is orthogonal to N and, by
(5.2), u puts no mass on pluripolar sets one concludes that vy, = 0 and p = fdv.
By the first part of the proof one can find u; € F; with (dd°ux)” = fi dv, where
fr = min(f, k). The sequence uy is decreasing and the same argument as the one
leading to (5.3) shows that u = lim uy belongs to F.

COROLLARY 5.8. If i is a nonnegative compactly supported measure in Q sat-
isfying
H(K) < Acap’ (K,9),
for some p > 1, A > 0 and any compact reqular K C Q then there exists u € F1
such that (dd°u)™ = dp.

PROOF. As in the proof of Lemma 5.7 we first show that
/ dp < const.k%7
E(j,k)

where = u; < —kj;Nsuy and u,; is the sequence constructed in the
(where E(j, k) = {u; k} N suppp and wu; is the seq d in th
preceding proof) and then

Sup/(—uj)du < 0.
J

Having this we may continue as in the proof of Theorem 5.5 proving that (dd®u;)™ —
(dd°u)™ and u = (limsupu;)* € Fi.

THEOREM 5.9. The Dirichlet problem (x) has a continuous solution for any
dp € F(A, h) with admissible h.

Proor. Fix an exhaustion sequence K; of compact sets in {2 = UK;. De-
note by x; the characteristic function of K;. It is clear that x;du satisfies the
assumptions of Corollary 5.8 with (for instance) p = n. Thus we get u; € F; sat-
isfying (dd®u;)" = x;du. Similarly, denoting by x;x the characteristic function of
K; N {u; > —k} we can find uj, € F; solving

(dduj)™ = xjrdp.
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Now, functions u;, are bounded by the argument from the proof of Theorem 5.5.
Since the family of measures x;rdp fulfils the hypothesis of Lemma 4.3 with the
same function h and the same constant A, we have by Lemma 4.3 a uniform bound

lluji|| < B,

for all these solutions. Thus in particular the functions u; = limy, u; are bounded
and so is u = lim; u; (the limits exist since the sequences are monotone due to the
comparison principle). From the convergence theorem it now follows that

(dd°u)™ = dp.

The boundary values of u are equal to 0 (see the definition of F7). To get the general
case, consider v = u + ug, where ug is the function which solves (dd®uq)™ = 0
with the given boundary data ¢. The function v is a subsolution for the Dirichlet
problem in the statement of Theorem 4.7. Applying Theorem 4.7 one gets the
desired solution.

We need yet to prove the continuity of u. To do this we shall apply Lemma
4.3 once more. Since ¢ is continuous one can find for any given § > 0 a compact
K C Q such that u; < u+ § on JK, where u; is the standard regularization for
u. Then the capacity of the set {u; > u+ 20} tends to 0 as j goes to infinity (see
Proposition 1.12). Thus for j large enough the right hand side in (4.5) is less than
d when applied for v = u; which yields a contradiction unless the set {u; > u+ 24}
is empty.

Notes. This section is based on Cegrell’s work [C2]. Theorem 5.5 also holds for
nonzero continuous boundary data (see [C2]) but the proof requires the main result
from [CKNS] which is beyond the scope of this paper. The important estimate
from Theorem 5.1 is due to Cegrell and Persson [CP]. Theorem 5.9 comes from
[KO4].



CHAPTER 6

The Complex Monge-Ampere Equation
on a Compact Kahler Manifold

Let us consider a compact n-dimensional Kéhler manifold M equipped with
the fundamental form

) P
wzi;gkjdz NdZ.
N/

By the definition of a Kéhler manifold (gj;) is a positive definite Hermitian matrix
and dw = 0. The volume form associated to the Hermitian metric is given by n-th
wedge product of w multiplied by 1/n!. For the introduction to Kahler manifolds
we refer to [D3].

We shall study the Monge-Ampere equation

(6.1) (@ +ddp)" = fu™,

where ¢ is the unknown function such that w + ddp is a nonnegative (1,1) form.
The given nonnegative function f € L'(M) is normalized by the condition

/M Jer= /M o

Since, by the Stokes theorem, the integral over M of the right hand side is equal
to [ 2 W' this normalization is necessary for the existence of a solution.

Equation (6.1) has the following geometrical meaning when f is smooth and
positive. Given the volume form fw”™ on M we look for a Kéhler metric (repre-
sented by the fundamental form w + dd®y) which yields this volume form. More
interestingly, as a short calculation shows (see [A1] [A2] [TT] [Y]), equation (6.1)
arises when given a closed (1,1) form 7 representing the first Chern class of M
we want to find a Kahler form w’ such that 7 = Ricc(w’) (the Ricci form of w')
and ' lives in the same Chern class as 7. E. Calabi conjectured that this is always
possible. He also proved in [C] the uniqueness of such w’ which is equivalent to the
fact that any two solutions of (6.1) differ by a constant. The Calabi conjecture was
confirmed by S.-T. Yau [Y] who proved the following theorem.

THEOREM 6.1. Let f > 0,f € CF(M),k > 3. Then there exists a solution to
(6.1) belonging to Hélder class C*+12 (M) for any 0 < a < 1.

For its proof we refer to [Y]. In this section we shall generalize the existence
part of this result.

ol
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PRELIMINARIES

We work throughout on a compact Kéhler manifold M with a fundamental
form w and assume
/ w" =1.
M

Denote by || - ||, the norm in LP(M) for p € [1, 00].
For the sake of brevity we shall write

Wy = w + ddp

and call a continuous function ¢ w-plurisubharmonic (w-psh in short) if w, > 0.
The set of such functions will be denoted by PSH (w).

If in an open subset of M there exists a potential function v satisfying w = ddv
then for w-psh ¢ the function v+ ¢ is a true plurisubharmonic function. Thus such
properties of plurisubharmonic functions as Hartogs’ lemma or the theorem saying
that the weak convergence implies convergence in L} = (see e.g. [H2]) hold also for

w-psh functions. The same goes for the convergence theorems from Chapter 1.
For a Borel set £ C M one can define a capacity

cap,(E) = sup{/ wyp € PSH(w),0< ¢ <1}
B

Let us consider two open finite coverings {Vi}, {VJ/}, s = 1,2,..., N of M such
that V! C V, and in each strictly pseudoconvex V; there exists vy € PSH(V;) with
dd°vs = w and vs = 0 on dV,. Given a compact set K C M define Ky = K NV/.
We are going to show that cap,,(K) is comparable with capl,(K) = > cap(K,, Vs),
where cap(K, V) denotes the relative capacity from Chapter 1. We know that

cap(K,V) = Sup{/ (ddu)",u € PSH(V),u<0,u<-1 on K}
K
- / (dd“uyey)",
K

For fixed s put s = ug_ v, — vs. Then ¢, > —1 on K, and s = 0 on 9V;. One
can find ¢, € PSH(w) N C*(M) such that 15 = 0 outside V; and 95 < —36 < 0,
§ < 1/2, on V! with the same ¢ for all s. (To see this just take any smooth ¢
which is equal to 0 outside V; and negative on V! and choose € > 0 so small that
s = el is w-psh.) Take x, which is equal to max(dps — d,15) on V and equal
to 0 elsewhere on M. Note that this function is w-psh and equal to dps — 6 on a
neighbourhood of K. Therefore

/KS Wy = /K [dwy, + (1 — 0)w]™

s

> (5"/ WZS = (5"/ (ddcuy}{&VS)" = §"cap(Ks, Vy).
K K

s s

So
capy(K) > cap,(Ks) > §"cap(Ks, V).
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By the definitions,

cap,(K) < (C1 +1)™ Y cap(Ks, Vi),

where C; is chosen so that vy > —Cj for any s. Indeed, let ¢ € PSH(w) with
—1 < ¢ <0. Then (C;+1)"*(¢+wy) is a competitor in the definition of cap(Kj, V).

So
(C1+ 1)’"/sz <(Ci1+ 1)”;/}( wy
<3 cap(K.. VL)

which proves the preceding inequality. Thus we finally obtain

n
(6.2) Nca,p;(K) < cap,(K) < (Cy + 1)"cap,(K).
A sequence ¢; of functions defined in M is said to converge with respect to
capacity to ¢ if for any ¢ > 0

lim cap, ({|¢ — ¢;| > t}) = 0.
Jj—o0

The following lemma is shown in [D3] and the proof relies on Richberg’s ap-
proximation theorem [RI].

LEMMA 6.2. If ¢ € PSH(w) and 7 is a continuous (1,1) form on M such
that dd°p > v (as currents) then given 6 > 0 one can find a smooth function 1
satisfying ¢ < Y < @+ 6 and dd“ > v — dw on M.

Next lemma is well known for smooth forms. We need a more general version
(ct. [D2]).

LEMMA 6.3. Suppose g € LY(M) and p,v» € PSH(w) satisfy
Wy > gw", wy > gw™.

Then wf, A wz_k > gw™.

ProOF. The statement is local and so it is equivalent to the following one:
For u,v € PSH(B)NC(B) (B - a ball in C") satisfying

(dd°u)™ > gdV, (dd°v)" > gdV

we have (dd°u)® A (dd°v)"~* > gdV, where g € L*(B).

For smooth u,v and g > 0 it is a well known matrix inequality which follows
from concavity of the mapping A — log det'/™ A defined on the set of positive
definite Hermitian matrices (see Corollary 7.6.9 in [HJ]). If u,v € C*! then dd°u
and ddv can be evaluated pointwise almost everywhere and so the statement follows
in that case too. Next we shall prove it for g € L?(B). Let g; be a sequence of
smooth functions, positive on B and tending in L?(B) to g. Fix also two sequences
fj,h; of smooth functions on 0B such that f; = u and h; — v uniformly on 0B.
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Applying Theorem 3.5 one can find uj, v; € PSH(B)NC"!(B) solving the Dirichlet
problems for the Monge-Ampere equation

(dd°u;)" = g;dV, w; = f; on OB

(ddc’l)j)n = gjd‘/, U = hj on 3B

By Theorem 4.5 u; and v; tend uniformly to u and v respectively. Hence one can
apply the convergence theorem and the statement for C''>! functions to the effect

(dd°u)* A (ddv)"~F = jlixglo (dd®u;)* A (dd®v;)" "

> lim g;dV = gdV.
j*}OO

For the general case we take an increasing sequence g; 1 g with g; € L?*(B) and
repeat the above argument using Theorem 4.6 to solve the suitable Dirichlet prob-
lems. Now the convergence of the approximating sequences is not uniform, but
the sequences are decreasing due to the comparison principle. So the convergence
theorem still applies in this case.

COMPARISON PRINCIPLE

Now we shall prove the comparison principle for the Monge-Ampere operator
on compact Kahler manifolds.

THEOREM 6.4. If ¢ and ¢ are w-psh on M then for Q = {¢© < ¢} we have

/wgg/wg.
Q Q

PRrROOF. Suppose first that ¢, and the boundary of 2 are smooth. Set ¢, =
max(¢ + t,9), t > 0. Then close to 9 we have p; = ¢ + t. Define the (closed)

current
n

Tt = Z <Z) (ddcgﬁt)k71 A\ wnik

k=1

and set T = lim;_,o T;. By Stokes’ theorem

/wzt:/ddc%/\Tt—kw": dcgpt/\Tt—i—/w"
Q Q a0 Q

= dcgo/\T—l—/w":/wz.
oQ Q Q

Since ¢; | 1 in  as t — 0 we get applying the convergence theorem that

n n :
Wy, — Wy, in Q.

Hence for a test function x in 2 with 0 < xy <1 we get

n __1: n : n
/ XwWy, = %1_{% Xwg, < hmt_m/ We, -
Q Q Q
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n : n o __ n
/wwghmtﬁo/w%—/w(p,
Q Q Q

which completes the proof for smooth functions. Suppose now that ¢ and v are
continuous and that they satisfy the extra assumption

(6.3) dd®¢ > (0 — Dw, dd°d > (0 — Dw,

for some 6 > 0. Then, applying Lemma 6.2, one can find two sequences of w-psh
functions ¢; and v; converging uniformly to ¢ and 1 respectively. Given a compact
set K C Q we find ¢t > 0 and a positive integer jo such that K C Q(t,5) = {¢; <
1 —t} C Qfor j > jo and the boundary of Q(t, j) is smooth (using Sard’s theorem).
Applying the first part of the proof and the convergence theorem we obtain

/wﬁéliimj_)oo/ Wy, Sliimj%o/ Wy, S/wZ-
K Q(t,7) Q(t,9) Q

Exhausting 2 by compact sets we get the desired inequality in this case. It remains
to get rid of the extra assumption. Note that for fixed ¢ € (0, 1) and w-psh functions
©, 1 the functions tp and ty satisfy (6.3) for some ¢ > 0. Fix a compact set K C Q =
{¢ < ¢} and consider 6 > 0 and t € (0,1) such that K C Q(4,¢) = {p <t —§/t}.
By the above and the convergence theorem we have

Jop<tm, [ oy <tme, [ et [
K Q(s,t) Q(5,t) Q

Again to complete the proof it is enough to consider an exhaustion sequence of
compact subsets of 2.

L°° ESTIMATES

Consider a family of functions
FAm={f el 0nifzo, [ gun =1,
M
/ fw™ < F(eap,(E)) for any Borel set E C M},
E

where F(z) = ﬁ, with A > 0 and admissible h : Ry — [1,00) (see Chapter
4). By extension, we also call F' admissible. Our goal is to prove the existence of
continuous solutions of equation (6.1) for f € F(A, h). We first prove an analogue of
Lemma 4.3 for compact Kahler manifolds. Only the beginning of the proof requires
some modification.

LEMMA 6.5. Let ¢ and v be w-psh functions on M with 0 < ¢ < C. Assume
that {¢ — S < ¥} is nonempty. Suppose that for some positive number A and an
admissible function h the following inequality holds

Ax

04 [ < Fleap (), with F(@) = S

A >0,
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for any compact set K. Then for D <1 we have
D < k(a(S+ D)),
where
a(s) :=cap,(U(s)), U(s):={p—s <},

and
K(s) = e(n)AY™(1 + c)[/ a7 WY (@) da + RV (s,

s—1/n

PROOF. Set for s € [S,S + D]

First we shall prove the inequality

S+D-—s

(6.5) t"a(s) <b(s+t+Ct) fort<1,0<t < 11

Indeed, take p € PSH(w) with =1 < p < 0 and put V(s) :=={p—s—t—-Ct <
tp+ (1 —t)}. One easily verifies that U(s) C V(s) C U(s +t + Ct). We can now
apply the comparison principle (Theorem 6.4) to obtain

t”/ w;}g/ (tw, + (1 — o)
U(s) Vi(s)

5/ wgﬁ/ wy =b(s +t+Ct).
V(s) U(s+t+Ct)

Taking supremum over p we get (6.5). The rest of the proof goes on exactly the
same way as in the proof of Lemma 4.3.

COROLLARY. The family of w-psh functions such that w}; € F(A, h) and maxy ¢ =
0 is uniformly bounded.

PROOF. For w-psh function ¢ we have A, o > —n. So, using the representation
of ¢ in terms of the Green function on M (see e.g. [A2]) we get

Ozmaxcpg/ ww"™ + C,
M M

with C depending only on M. Having this L! estimate we can use Proposition 1.10
coupled with (6.2) to obtain

cap,(U(#,5)) < C1/j, Ulp,j) = {p < —j},

where C] does not depend on ¢. Now we apply Lemma 6.5 with ) = 0 and .S chosen
so that
k(C1/S) <1

and conclude that U(p, S+1) must be empty for any ¢ from the family we consider.
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LEMMA 6.6. If the sequence @; is uniformly bounded and

with || f; — flly < 27771 then ¢ := (limsup; ., ;)* solves the equation (6.1).

PROOF. Let us introduce some auxiliary functions

PR = Max ¢;, P = (zllngo Ter)"s

k<j<l
Fkl = min i Gk = lim Fkl-
k<j<l T =00 +

Since, locally, w is representable by dd“v, where v is a plurisubharmonic function,
one can apply Theorem 1.18 to get

(W ddppr)" > Fryw".
Hence, by the convergence theorem

(6.6) Grw™ < llim (w+ ddpr)™ = (w + dd )™
— 00

Note that ¢ = limy_, o | ¥k, so one can apply the convergence theorem once more
to get

(6.7) (w+ ddYPr)" — wy.

From the assumptions we have || f —Gy||r1(ar) < 57,50 Gy — f in L*(M). Therefore
applying (6.6) and (6.7) one obtains

n n
wg,sz.

Since the integrals over M of both currents in the above inequality are equal to
Sy w™ we finally arrive at

wl = fw".

€3

Thus the lemma follows.

We are now in a position to generalize Theorem 6.2.

THEOREM 6.7. If h is admissible and 1 € F(A,h), then for any f € F(A,h)
there exists a continuous solution of (6.1). Moreover there exists a(A,h) > 0 such
that any solution of

n __ n —
wgy = fw", mA%X(,D—O,

with f € F(A,h) satisfies p > —a(A,h).
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PROOF. Suppose first that f is bounded. Then one can find f; € C*°(M),0 <
fi <N, [y fiw" =1and f; converging in L' to f. Since 1 € F(A,h) we have
fj € F(NA,h). Applying Yau’s theorem we find w-psh solutions of

n  __ N L
Wy, = fjw™, max g; = 0.

By Corollary to Lemma 6.5 ¢; are uniformly bounded which allows us to use Lemma
6.6 and conclude that ¢ = (limsupp;)* solves (6.1). For general f construct
fj = t;jg;, where g; = min(f,j) and ¢; > 0 is chosen so that fM fjw™ = 1. Since
f € L'(M) we have lim;_, t; = 1 and so for j big enough f; € F(2A, h). Therefore
the w-psh solutions of

wy = fjw", max p; = 0

are uniformly bounded (see Corollary to Lemma 6.5). Again, Lemma 6.6 says that ¢
= (limsup ¢;)* solves

wg = fw™.
The uniform bound for sup norms of the solutions follows from the corollary to
Lemma 6.5. The proof is finished.

Define
L% (co) ={f6L1(M):f20,/Mfw” - L/Qw(fw < co}

and recall that in our notation

¥n(t) = [t|(log(1 +[t]))" h(log(1 + [t])),
for some admissible k. In analogy to Lemma 4.2 we have the following inclusion

THEOREM 6.8. For any admissible h, with h(z) < (1+x)*, k>0, and cog > 0
there exists A > 0 such that

LY"(co) C F(A,h).
PROOF. Fix f € L¥"(cq) and a compact K C M. Consider the covering Vi,
the sets K and numbers §, N as in Preliminaries of this chapter. We can assume

that | g fwt < /, e fw™. The following chain of inequalities is obtained by using
the properties of h, Lemma 4.2 and (6.1).

N
Afw Ss:1»/stw = K1fw
< AgF(cap(K1,V1)) < AF(cap,(K)),

where F(z) = 7 The proof is complete.

Az
h(m*l/”
Combining the last two results one obtains the following corollary.
COROLLARY 6.9. For admissible h and f € LY"(cy) we can solve
wngwnv _CSSOSO,

where C depends on h and cg.
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UNIQUENESS AND STABILITY OF THE SOLUTIONS

The uniqueness (up to an additive constant) of solutions of the Monge-Ampere
equation on compact Kadhler manifolds has been proved by Calabi [C] in the case
of smooth data. The result holds for data belonging to F(A,h). It follows from a
stability estimate which we are now about to prove. Let us fix F(A,h) for some
admissible h. From Theorem 6.7 it follows that there exists a constant denoted by
a(A, h) such that for any f € F(A,h) the w-psh solution ¢ of

n __ n —
wg = fw”, mﬁxgp—O,

satisfies ¢ > —a(A,h). We shall denote by k4, the function x from Lemma 6.5
with C = a(34,h). So

Kan(s) = c(n)AY™(1 + a(?»A,h))[/OO e Y (z) do + W (s

s—1/n

We shall need an estimate similar to the one given in Theorem 4.4.

LEMMA 6.10. Let ¢ and v be w-psh functions on M with 0 < ¢ < C —1 and
let

Wy, = gw".

Then
cap,({v 4+ 2s < v}) < C’"s*”/ gw™.
{Y+s<e}
PROOF. Denote
Ei(s)={¢Y+s<¢} and a; = cap,(E;(2s)).
Take p € PSH(w) with =1 <p <0andset V:={y < Gp+ (1 - &)p— s} Then
E;(2s) CV C Ej(s).
By the comparison principle for s < C' we have

&,
C" Jg

S [ G 0= B

\%
n n
= ws@j S/ gw-.
14 Ej(s)

J

Taking supremum over p one gets

STL
Sy < / gw™.
¢ B, (s)

The proof is finished.
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THEOREM 6.11. Let us consider two functions f and g belonging to F(A,h)
for some admissible h with 1 € F(A, h) and the corresponding solutions of

W

€3
I
~
&
.3
&
<
I
Q
S

normalized by
max(p —¢) = max(y) — ).

Set g = q(n) = (%)1/" and define an increasing function on Ry by

__2aBAR))" g1
"= Gean 3 Al

(where HZ}h(t) denotes the inverse of ka(t)). Then the inequality

IIf = glly < y()e"+?

implies
e = Plloc < (4a(34, ) +2)t

fort <ty with to > 0 depending on .

PROOF. Put a = a(3A4,h). One can assume that

(6.9) /{ LU

since otherwise we may interchange the roles of ¢ and . Since lim;_,o y(t) = 0 one
can fix ty < (¢ — 1)/2 and such that v(tp)t0"* < 1/3. From now on we shall work
with fixed ¢ < ¢9. Denote by Ej the set {¢) < ¢ — kat} and put

C’Oz/ gw'.
E,

Then by (6.8) and the assumptions

Lo =5 [0 ro -

(6.9) )
< 5(1 + ’Y(to)tgH) <

[SSI )

Define w-psh function p as the solution of

n o __ n —
w, =giw", IHI\%Xp—O,

where g1 = (3/2)g on Ey and g; is equal to a constant ¢y > 0 elsewhere, with ¢
chosen so that [,, giw™ = 1. (Observe that (6.9) implies ¢o > 0.) Since

[ o< [ (/20 + 1"
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and 1 € F(A, h) the solution p belongs to F(3A4, h) and so
p = —a.

Adding the same constant to ¢ and 1 (which does not influence neither the hy-
pothesis nor the assertion) one can assume that

—a< <0
The last two inequalities entail
EyCcE={y<(1—-t)p+tp—at} C Ep.

Let us denote by G the set {f < (1 —t?)g}. From Lemma 6.3 we know that for
k < n the following inequalities hold on Ey \ G :

wi A w;‘*k > "R = 2R gwn.

Therefore on Ey \ G

where the last inequality follows from t < tg < (¢ —1)/2.
By the assumptions we have

t? / gw" < / (g — flw" < (6" F2.
G G
Hence
(6.11) / gw" < ()t
G

The following chain of inequalities is obtained by applying, in turn, formula (6.10),
the comparison principle, and formula (6.11):

t
u+7<q—1>1/ gw”s/w” . s/gw"
2 G B tp+(1—t)p 5

(6.12)
< / gw™ + ()t
E\G

We infer from (6.12) that
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Therefore

-1 -1
Loty < L ([ gon [ ) <5
Eo G

and further

2
< _— L n
Co < (t+ - 70" < - 70t

We also have from Lemma 6.10
(a+1)" / n
cap,(Ey) < ——— gw™.
(2at)" /g,

So coupling the last two estimates one obtains

capy(Ey) < (2ta) ™ (a+1)"Co < (a + 1)"(2(1)_”%7(1&)

< (a+ 1) " =1 (0),

Suppose E' = {¢ < ¢ — (4a+ 2)t} were nonempty. Then by Lemma 6.5, the above
estimate and the definition of v we would have
n 3
2t < kp(capy,(Ey)) < kp((a+1)"(2a) my(t)) =t,

which is a contradiction. Therefore E’ is empty which translates into the desired
estimate
max (1) — ) = max(p — ¥) < (da + 2)t.

The proof is completed.

It follows from Theorem 6.11 that for f € F(A, h) with admissible h the solution
of (6.1), normalized by maxys ¢ = 0, is unique.
COROLLARY. If @1 and o solve

n __ n __
wy, = fw" =w

with f € F(A, h) for some admissible h then p1 — po = const.

ExXAMPLE. We shall make the estimate from Theorem 6.11 more explicit for
h(zx) = ™. Then vy,(t) = [t|log®"(1 + |t|). The function k4 5, is easy to compute:

Kan(t) = const.(At)/"

and so y(t) = Ct"™ with C depending on A. Therefore, by Theorem 6.11, suitably
normalized w-psh solutions of the equations

n

n __ n n o __
wg = fw", wy = gw

for f,g € LY (cy) satisfy
o = lloe < ellf =gl @,

with ¢ depending on cg.

Notes. The results are taken from [KO3] and [KO6].
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