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Introduction 

A contac t  s t ructure on a (2n + l ) -d imensional  manifold  is a cod imens ion  1 tangent  
d is t r ibut ion  which can be defined (at least locally) by a 1-form 7 with 7/x (d~)" 
nowhere 0. In this paper  we will s tudy a special class: overtwisted contact  s tructures 
on 3-manifolds.  Examples  of overtwisted structures were s tudied by Lutz [11], 
Gonza l o  and Varela [10], Er landsson [5], and  Bennequin [1]. We give here the 
complete  classification of overtwisted structures. Fo r  example,  it follows from the 
classification that  all known examples  of non- s t anda rd  (but homotop ica l ly  stan- 
dard)  contac t  s tructures on S 3 are  equivalent.  

The  paper  has the following organizat ion.  In Sect. 1 we give basic definit ions and  
formulate  main  results. In Sect. 2 we prove miscel laneous lemmas needed for the 
main theorem. In Sect. 3 we prove the main  theorem, and in Sect. 4 discuss open 
quest ions a round  the subject. 

The paper was motivated by a question of J. Gonzalo. I would like to thank him for helpful 
conversations. I want to thank M. Gromov and W. Thurston for critical discussions and A. 
Weinstein for his constant help and support. I am also grateful to D. Bennequin, F. Laudenbach 
and J.-C. Sikorav who read the first variant of the paper and whose criticism helped me to make 
the text more understandable. 

I. Basic definitions and the statement of the main theorem 

1.1. The induced foliation on a surface in a contact 3-manifold 

Let M be a 3-dimensional  contac t  manifold with a contac t  s t ructure ( and S c M 
be a surface tangent  to ( at a set 2; c S. Intersect ions of ( with tangent  planes to 
S define a one-d imens ional  d is t r ibut ion  on S \ S .  Its integral  curves form 
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a one-foliation S~ on S with singularities at S. Leaves of the foliation are by 
construction legendrian curves of ~ (i.e. curves tangent to 4). 

1.2. The sign o f  a contact structure 

A contact structure on a 3-manifold M defines an orientation because the sign of 
the form c~/x d~ does not depend on the sign of ~. If M is connected and already 
oriented then we call the contact structure positive if the two orientations coincide, 
and call it negative in the opposite case. Furthermore, we will consider only positive 
contact structures. The term contact structure will always denote positive contact 
structure. Negative contact structures could be considered in the same way. 

1.3. Contact structures on ~3 

We will consider two special contact structures on N3: the standard structure (0 
and the standard overtwisted structure (1, which are defined, respectively, in 
cylindric coordinates (p, qS, z) by equations 

d z + p 2 d c ) = O  and c o s p d . z + p s i n p d ~ b = 0 .  

We will also denote by (o the standard contact structure on S 3 formed by complex 
tangent lines to the boundary of the unit ball in C 2. At the complement of a point 
p e S 3 these two standard structures Co are equivalent. The contact structure on N3 
which is equivalent to Go can also be defined by the equation dz - ydx  = 0 in 
cartesian coordinates (x, y, z). Note that for both structures (~0 and C1 the rays 
{z = c 1, 0 = cz} perpendicular to the z-axis, are legendrian. The planes of the 
distributions Co and Ca turn around these rays when they move along them away 
from the z-axis. The angle of turning is always less than n/2  for C0 and goes to 
infinity for C1. 

Denote by A the disc {z = 0, p < n} c N3. The disc A with the germ of the 
contact structure C1 on it will be called the standard overtwisted disc. The boundary 
c?A is a legendrian curve for C1 and the structure (1 is tangent to A along 0A. Thus 
A is not in general position to CI. But for any e > 0 the embedded disc 
A ~ = {z = ep2, p < n} is close to A, is tangent to C~ only at the origin, and has the 
induced foliation (see Fig. 1) with only one singular point of focus type and with 
one limit cycle at the boundary. 

1.4. Overtwisted structures 

A contact structure ~ on a connected 3-manifold M is called overtwisted if there is 
a contact embedding of the standard overtwisted disc (A, (1) into (M, 4). As follows 
from 1.2, an overtwisted structure contains an embedded 2-disc ~ such that the 
induced foliation 9r  has the form as in Fig. 1. It is easy to see that the converse is 
also true. I r a  contact manifold contains a disc with the foliation as in Fig. 1, then it 
is overtwisted. 
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Fig. I 

Any contact structure can be "spoiled" and made overtwisted using so-called 
Lutz twistin9 (see [10] or [1] for definitions and discussions) which is a surgery of 
the structure (but not of the manifold) along a closed transversal. It  is possible to 
make Lutz twisting without changing the homotopy class of the contact structure 
as a plane distribution. 

1.5. The spaces Distr(M), Cont(M), and Cont~ 

Let M be an oriented connected 3-manifold. Let us fix a point p eM. and an 
embedded 2-disc A c M centered at the point p. Denote by Distr(M) the space of 
all tangent 2-plane distributions on M fixed at the point p e M provided with the 
C~ Denote by Cont(M) the subspace of Distr(M) which consists of 
(positive) contact structures and by Cont~ the subspace of Cont(M) consisting 
of all overtwisted structures which have the disc A c M as the standard overtwis- 
ted disc. If M is closed then any two contact structures belonging to the same 
component of Cont(M) are isotopic (see [7]). Any overtwisted structure on M is 
evidently isotopic to a structure from Cont~ 

Consider the inclusions 

i: Cont(M) ~ Distr(M) 
j: Cont~ ~ Distr(M) 

R. Lutz proved [11] that the mapping i , :~0 (Con t (M))~  zo(Distr(M))is surjec- 
tive. D. Bennequin [1] showed that this mapping is not injective in the case 
M = S 3. Namely, he proved that the standard contact structure fro on S 3 is not 
overtwisted. Hence it is not equivalent to (and does not belong to the same 
component of Cont(S3)) any overtwisted structure on S 3 which we can get by Lutz 

twisting of fro. 

1,6. The main results 

Theorem 1.6.1. The inclusion j: Cont~  Distr(M) is a homotopy equivalence. 
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In particular, two (positive) overtwisted structures on a closed M are isotopic if 
they are homotopic as plane distributions. If M is open then 1.6.1 follows immedi- 
ately from the classical theorem of Gromov [8]. A non-trivial result for non-closed 
manifolds is the extension theorem (see 3.1.1 below). 

Corollary 1.6.2. There exists an overtwisted structure ~ o n  S 3, a ball B c S 3 and 
a contact embedding ~: (B, () ~ (S 3, 3) such that ~b cannot be extended to a contact 
dijfeomorphism S 3 ~ S  3 and cannot be connected with the inclusion B ~ S  a by 
a contact isotopy. 

P r o o f o f l . 6 . 2 .  Any contact isotopy of a submanifold in a contact manifold can be 
extended to a contact diffeotopy of the whole manifold. Thus it is enough to prove 
only the first assertion. Let us take S 3 with the standard structure (o and make the 
Lutz twisting of (o along a closed transversal inside a smal ball B c S 3, The 
resulting overtwisted structure ( can be made to belong to the same component of 
Distr(S 3) as (o. Now take ( and make the same perturbation inside another small 
ball B' c S 3 \ B .  The new contact structure ( '  is also overtwisted and by 1.6.1 there 
is an isotopic to the identity contact diffeomorphism h: (S a, ( ) -~ (S  3, ('). Let 
B " = h ( B ) .  By the construction there exists a contact diffeomorphism 
g: (B', ( ' ) - ,  (B, (). Now I claim that the contact diffeomorphism hog: 
(B', ( ' )  ~ (B", ( ' )  cannot be extended to a contact diffeomorphism 
(S 3, (') ~ (S a, ('). Indeed, Lutz untwisting in B" moves ( '  into ( while untwisting in 
B' transforms ( '  into (o. But ( is equivalent to ( '  and is not equivalent to (o- 

2. Miscellaneous lemmas 

In this section we define notions and prove propositions needed to prove 1.6.1. 

2.1. Contact structures near 2-surfaces 

2.1.1. Simple and almost horizontal foliations. A one-dimensional oriented foli- 
ation on S 2 with two singular points of focus type is said to be simple if all its limit 
cycles are isolated and placed on parallels between the two focuses (see Fig. 2) and 
if one of its focuses is stable and the other is unstable. We will call the focuses north 
and south poles respectively. 

A simple foliation o~- on S 2 is called almost horizontal if there is a transversal 
to o~ connecting its poles. 

If an oriented contact structure ~, defined in a neighborhood of a sphere 
S embedded in a 3-manifold, generates a simple or almost horizontal foliation S~ on 
S, then we say that the contact structure itself is simple or almost horizontal near S. 

2.1.2. Diffeomorhism ofholonomy.  For an almost horizontal foliation o~ on S ~ the 
holonomy along the leaves defines a diffeomorphism of the transversal and hence 
(defined up to a conjugacy) a diffeomorphism h(o~): I ~ I of the unit interval 
1 = [0, 1]. Given a diffeomorphism h:I ~ 1, we denote by ~ ( h )  the almost horizon- 
tal foliation with h(o~(h)) = h. 
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I f f f  is simple but not a lmost  horizontal,  then the ho lonomy is defined near  the 
poles and the limit cycles. 

2.1.3. The diagram o f  a simple fol iat ion.  A limit cycle of a simple foliation .~- di- 
vides the sphere S into two hemispheres: the lower one (containing the south pole) 
and the upper  one. We call the limit cycle positive if it is oriented as the boundary  of 
lower hemisphere and negative in the opposite case. Let us order  limit cycles of 
~,~ in the direction from the south to the north poles: {1 . . . . .  t~p. The diagram ~ ( ~ )  
of the simple foliation f f  consists of p points ql . . . . .  q~ on a line with the following 
additional structure: to each point qi, i = 1 . . . .  , p, is assigned the sign of the limit 
cycle (i; each interval qiqi + 1, i = l . . . . .  p, is oriented f rom ql to q~ + 1 (resp. from 
qi + ~ to q~) if the cycle #~ is unstable (resp. stable) for the foliation ~ restricted to the 
band  between {i and {i + 1 (see Fig. 3). 

The following proposi t ion is a corollary of the Poincar6-Bendixson theorem. 

N N 
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Fig. 2. Simple and almost horizontal foliations 
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Fig. 3. A simple foliation and its diagram 
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2.1.3.1. The topological type of simple foliation o~ is uniquely defined by its diagram 
~ ( ~ ) .  

2.1.4. Connected sums of  simple foliations. For  two simple foliations o~ on S and 
~ '  on S' we define the connected sum ~ # ~ - '  on S # S' as follows. Take  small discs 

c S on ~ '  c S' which contain, respectively, the north pole of o ~ and the south 
pole of ~ - '  whose boundar ies  ~ and ~ '  are transverse to ~ and ~ ' .  N o w  at tach 
S ' \ ~ '  to S \ ~  along 0 ~  and 0@' and smooth  the resulting foliation on S # S ' .  The 
procedure  defines o~ # ~- '  uniquely up to a homeomorph i sm.  

2.1.5. Extendability of  contact structures 

Lemma 2.1.5.1. Let ~ be a simple contact structure near the boundary S = 6B of 
a 3-ball B. The extendability of ~ as a contact structure to B depends only on the 
topological type of the foliation S~. 

Proof Let 4' be another  contact  structure near  S. Without  loss of generality we can 
think that  ~ and ~' have the same poles and limit cycles and that  ~ and ~' are 
spherical near  poles (i.e. con tac tomorph ic  to round spheres in the s tandard contact  
(~3, Co). Let t and t' be closed transversal to ~ which is close to poles of S. Let L be 
the union of limit cycles of ~ (and ~') and transversals t and t'. Denote  by N a small 
tubular  ne ighborhood  of L. There exists a diffeomorphism 9: S \ N  ~ S \ N  which 
moves ~'IN into ~lu. We can extend 9 to a diffeomorphism g':  S ~ S which is 
constant  on L and such that  the foliation ~ = g'(S~,) is Cl-close to S~ 
(Cl-closeness near  poles depends on how close to the poles the transversals t and t' 
are chosen). Let B, B ~ B, be a larger ball on which the structure ~ is still defined. 
Let us show that  there exists an embedding 0" S---,/~ which is C~ to the 
inclusion S ~ B, is the identity on L and outside a small ne ighborhood of L and 
such that  the foliation (g (S))~ is diffeomorphic to ,~. Near  each limit cycle { the 
contact  structure ~ is equivalent  to the s tandard overtwisted structure Ca near  the 
circle C = {p = 1, z = 0}. The S in coordinates  (p, a, z) is transverse to the planes 
{z = const} and the semiplanes {p = const} near the circle C. The leaf of the 
foliation o~ through a given point  p = (Po, ao, zo) e S can be defined by an equat ion 
z = f(40- If  If'(~bo) [ is sufficiently small (and this is true near  C) then the equat ion 
ptgp = f'(~bo) has the unique solution h(P) near  p = ~. The desired embedding 0 is 
defined near  C by the formula  0 (P) = (h(P), (Oo, Zo). Similarly we can construct  0 
near  transversals t and t'. It is easy to see that  0 induces the foliation ~- on S and is 
the identity where ~ coincides with S~. To  finish the proof, note that  the diffeomor- 
phism of foliations 0g ~': S'  --* (g ~(S)) can be covered by a contact  dif feomorphism 
of germs of ~' and ~ on S and 0 (S). Because the structure ~10 Is) is already extended 
to the ball, the same is true for ~'ls. 

2.1.6. The contact structure near the standard overtwisted disc 

Let B be the ball of  radius 5~/4 with the center at the origin in ~3 provided with the 
contact  s tructure 

~1 = {cos p dz + p sin p dq5 = 0} . 
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Denote by ~ the foliation (0B)~, induced by fl  on 0B (see Fig. 4). It has exactly two 
limit cycles at the intersection of c~B with the cylinder { O = ~z}. In fact, for any 
convex surface of revolution around the z-axis which is contained in the cylinder of 
radius < 27z and contains the overtwisted disc A inside itself, the induced foliation 
on it is homeomorphic to Jr .  Hence for any contact embedding h of the overtwis- 
ted disc A into the contact manifold M, the image h(A) has an arbitrarily small 
neighborhood bounded by a sphere with the induced foliation homeomorphic to 
~ .  

2.2. The existence o f  a fami ly  o f  transversals 

Let ~ be an oriented contact structure in an oriented manifold M. An oriented 
transversal # to ~ is said to be positive or negative according to the sign of the 
orientation of M defined by ~ and f. 

L e m m a  2.2.1. Let K be a compact space, M be an oriented 3-manifold, it, t e K,  be 
a family of  oriented contact structures on M,  and 4at: I ~ M,  t e K, be a family of  
embeddings. Then C~ to (a t, t ~ K, there exists a .family of  embeddings c~, with 
~P ~ lot = (~t ]ol, t e K, which consists o f  any o f  the following: (a) positive transversals, (b) 
negative transversals, (c) legendrian (i.e. tangent to contact structures) curves. 

Proof  Any family of legendrian curves can be Ca-approximated by a family of 
positive as well as negative transversals (see, for example, [l]), with the same 
endpoints. Hence it is enough to prove the existence of the legendrian C~ - 
mation. First consider the case when M = ~3 and 4, = fo for all t e K .  The 
structure ~o can be defined in cartesian coordinates (x, y, z) by the l-form dz - ydx. 
Denote by lr and p projections (x, y, z) w-~ (x, y) and (x, y, z) ~ z, respectively. The 
desired legendrian family ~ :  I ~ ~3, t e K  will be constructed by the following 
procedure which we call the legendrization. First take a family of wave fronts 7t, 
t e K, which C~ the projections ~ o q~t (see Fig. 5). Denote by k,(u), 
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t ~ K, u ~ I, the slope of the tangent line to ~t at the point 7t(u). The family of 
legendrian curves ~t: I ~ ~3, t ~ K, with fronts 7 ,  t e K, C~ q~t, t ~ K, if 
and only if the family of  functions kt: I ~  ~ is C~ to p o ~b t, t ~ K. It is clear 
that  this proper ty  can be satisfied for all t ~ K, if the number  of cusps of fronts ~t, 
t ~ K, is sufficiently large. If ~b t, t e K, was already legendrian near c3I then we can 
make ~t coincide with 4) t near c~l for all t ~ K. 

Consider now the case of general M. Denote  by B the unit ball in ~3 with the 
s tandard contact  structure ~o. There exists a finite number  of  points 
0 = U 0 < U 1 < . . .  < U, = 1 and a family h~, t~K, i  = 1 . . . . .  n, of contact  embed- 
dings B--*M such that  hi(B)~cbt([Ui_l,  Ui] ), t~K ,  i = 1  . . . . .  n. Con-  
sequently applying the legendrization procedure to (otlEv .... u,~, t ~K ,  for 
i =  1 . . . . .  n we will get the desired approximation.  

2.3. Construction of  a contact structure near the 2-skeleton of  a 
general simplicial complex 

A compact  simplicial complex P c ~3 will be called general if no two faces or a face 
and an edge with a mutual  vertex are contained in one plane. For  a general 
simplicial complex P we denote by ~(P) the minimal angle between non-incident 
1- or 2-simplices which have a mutual  vertex. Denote  by d(P) the maximal 
diameter of  a simplex of P and by 6(P) the minimal distance between two 0-, 1- or 
2-simplices without  mutual  vertices. 

Proposition 2.3.1. There exists a sequence of general subdivisions Pi of P such that 
d(Pi) ~ 0 while 6(Pi) /d(P i) and 7(Pi) are bounded below by a positive e > O. 

Proof Consider  a fine cubic subdivision of P and triangulate this subdivision 
without  creating new vertices. N o w  take a pattern 3 x 3 • 3 of  this subdivision, 
move its 64 vertices into general position and extend the perturbat ion periodically 
to the entire subdivision. It is clear that  the described procedure allows us to obtain 
an arbitrarily fine subdivision with an fi priori bounded  number  of shapes of 
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simplices and of stars of vertices and hence with an fi priori lower bound for ~ and 
6/d. 

Proposition 2.3.2. Let ~ be a two-dimensional foliation on the closure lJ of 
a bounded domain U c ~s. Let K be a compact space and L be its closed subset. Let  
(t, t ~ K, be a family of  2-plane distributions on tJ transversal to Y .  Suppose that ~t is 
contact near a closed A c U for  all t ~ K and is contact everywhere for t ~ L. Suppose 
that for  any leaf V of  ~ and any leaf ( o f  the foliation V~,, t 6 K, we have 
~zl(~,A c~( )=0 .  Then there exists a family ~'t, t 6 K ,  of  contact structures on tJ such 
that ~'t coincides with (t on A for all t ~ K and coincides with ~ everywhere for t ~ L. 

Recall that  all contact  structures we consider are supposed to be positive. 

Proof  For  t 6 K let Gt be the one-dimensional  tangent to ~, foliation on U formed 
by all leaves of  foliations V~<, when V runs through all leaves of  ~ .  In ~3 with the 
s tandard structure (0, defined by the one-form d z -  ydx, we denote by 5# the 
legendrian foliation by lines parallel to the y-axis. Let us take a covering 
U S  ~ u [  = L? cont inuously depending on t ~ K  and such that  U[, i = 1 . . . . .  N, 
consists of whole leaves of G~ and there exists a (continuously depending on t ~ K) 
embedding hi: U I ~  3 with (h l )*5 ~ = Gtlu. ,. In coordinates induced by the 
embedding hi the distribution ~tltJt can be defined by a 1-form 
Pt(x, y, z) dx + Qt(x, y, z) dz. When a point (x, y, z) moves  along a leaf K of G~ the 
point  (P~(x, y, z), Q~(x, y, z)) draws a curve ? '  in ~2. The contactness of ~ means that  
for any t e K and any leaf ~ of G t the curve fi is nowhere tangent to rays from the 
origin. Because of the condit ion ~ ( f ,  A c~ f )  = 0, the distribution (t is allowed to 
be per turbed at least near  one end of any intervals of { \ A .  Hence the required 
proper ty  of ~ can be easily satisfied and we will get the desired family (~ of contact  
structures by consequent  per turbat ions  of ~, on U~ for i -- 1 . . . . .  N. 

A 2-plane distribution ~ on a compact  A = ~3 defines the Gauss  mapping  
Gr A---~S 2. The number  ]!~11 = maxx~A Ildg(x)ll will be called the norm of the 
distribution 4. 

Note 2.3.3. Suppose that  for A, B, e > 0 the norm of plane distr ibution tangent  to 
J~from 2.3.2 is less than A, the minimal  angle between 4, and ~ is greater than  e, 
and the diameter  of U is less than B. Then the above construct ion allows us to 
construct  ~'~, t ~ K ,  to satisfy the inequality I1~',11 5 I1~,11 + D where C and 
D depend only on A, B and e. 

L e m m a  2.3.4. Let K be a compact space and L its closed subset. Let  it, t ~ K,  be 
a family of  distributions defined near a compact B c ~a which are contact near closed 
A ~ B for t ~ K and are contact everywhere for t ~ L. Then there exists a general 
simplicial complex P ~ B and a family of  distributions ~'e, t e K, with the following 
properties: 
(1) ~'t is C~ to it, t E K ;  
(2) ('t coincides with it on A for t e K and everywhere for t e L ;  
(3) there exists e > 0 depending only on ct(P) and 6 (P) /d (P)  such that ~'t, t ~ K ,  is 
contact in e" d(P)-neighborhood o f  the 2-skeleton of  P; 
(4) U ~'r[[ _-< C [t i t  [[ + D, t e K,  for universal constants C and D. 
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Proof We can choose a general simplicial complex P = B and its subcomplex 
Q = A such that  for all t e K the distribution it is still defined on P and contact  on 
Q. We can suppose moreover  that each simplex of P \ Q  has at most one face 
belonging to Q. 

Let N = m a x , ~  II ~, II + 1, fi = 6(P), d = d(P), o~ = ~(P), k = 6/d. According to 
2.3.1 we can make d arbitrarily small without changing e and k. Denote by 7(Jz I , ~zz) 
the angle between two planes or  lines ~1 and rt 2 in N3. Consider a covering ~J~ K~ 
of K such that  for each i = 1 . . . . .  p and for any t, t ' ~ K~ and x c P, 

0~ 
o;(r ~t,(x)) < l-g" (*) 

Because of the extension character of the assertion of 2.3.4, we can suppose that (,) 

holds for all t, t '  ~ K. Let us call a 1- or  2-simplex a of P \  Q special if ;~(a, ~t(x)) < 

for some t e K, x e a. If d is sufficiently small for example, d < , then for any 

non-special simplex a, any point  x belonging to a 3-simplex incident to a and any 
t e K we have 

y(ff, ~t(X)) > g .  (**) 

Near  each simplex a of P \ Q  of dimension < 2 consider a foliation ~ by planes 
whict, are perpendicular to ~t(x) for some t e K, x e a, parallel to a if dim a = 1 and 
perpendicular to a if dim a = 2. 

Given foliations ~ , ,  we will construct using 2.3.2 the required perturbat ion 
~'t of ~t, t e K ,  in three steps. First we change it in a ne ighborhood of all special 
simplexes and all vertices which do not belong to special simplexes. The hypotheses 
of 2.3.2 are satisfied because special simplexes are isolated and any simplex has at 
most  one face belonging to Q. Consequently we now extend the perturbat ion to 
a ne ighborhood of  non-special 1- and 2-simplexes. It is easy to see that hypotheses 
of 2.3.2 will be fulfilled in the ed-neighborhood of a nonspecial simplex a if 

K .  c~ K . 2 ~  
e <  2-sin ~ for d i m a = l  and if e < ~ - s m  ~ for d i m a = 2 .  Note  that by 2.3.3 

we can control  the increase of  the norm of 3,, t ~ K, through the described three 
perturbations. Thus there exists a constant  C such that in each step the norm of the 
resulting family of distributions is < CN. Choosing d sufficiently small we can 

distributions C -close enough to r t e K, to satisfy inequalities (.) make perturbed o 
and (**). So we can apply previous arguments  at each step as well as at the 
beginning. 

2.4. Two simple lemmas 

In this section we formulate two simple assertions. 
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Lemma 2.4.1. Let a be a 3-simplex o f  diameter d. Then for any 2 > 0 there exists an 
embedded ball B ~ a such that its boundary 8B is contained in 2-neighborhood o f  (3a 
and the normal curvatures o f  t?B are everywhere > 82/(422 + d2). 

Lemma 2.4.2. Let S ~ Ea be an embedded 2-sphere with all normal curvatures 
> K > 0 and let ~ be a contact structure near S with II~ll < K. Then ~ is almost 

horizontal near S. 

3. Proof of  2.6.1 

3.1. The extension theorem 

Theorem 2.6.1 follows immediately from the following: 

Theorem 3.1.1. Let M be a compact 3-manifold and let A, A ~ M, be a closed subset 
such that M \ A  is connected. Let  K be a compact space and L, L c K, a closed 
subspace. Let  ~,  t e K ,  be a family o f  2-plane distributions which are contact 
everywhere for t e L  and are contact near A for t e K .  Suppose there exists an 
embedded 2-disc A c M \ A  such that ~ is contact near A and (A, (t) is equivalent to 
the standard overtwisted disc (A, Go)for all t e K. Then there exists a family ~'t, t ~ K, 
o f  contact structures on M such that ~'t coincides with ~t near A for t e K and coincides 
with d t everywhere for t e L .  Moreover ~',, t e K can be connected with ~,, t c K by 
a f ixed on A • K ~ M x L homotopy through families of  distributions. 

The proof  of 3.1.1 is contained in the next three sections. 

3.2. The contactization with holes 

Lemma 3.2.1. Under the hypotheses o f  3.1.1 there exist disjoint 3-balls 
B 1 . . . . .  B u c M \ ( A  u A) and a family o f  distributions ~t, t e K ,  on M such that 
(1) ~'t coincides with ~ on A u A for t e  K and everywhere for t e L ;  
(2) ~t, t e K ,  is contact on M \ u  Int B~; 
(3) ~'t, t e K ,  is almost horizontal near OB i, i = 1 . . . . .  N; 
(4) ~t is C~ to ~t, t e K .  
(5) (Bi, ~t) for t E L  and i = 1 . . . . .  N is isomorphic to a convex ball in (~3, (o). 

Proof  Because this is an extension problem, it is enough to consider the case when 
M is a compact  domain in ~3. Now we can apply 2.3.4 and find a family ~',, t e K, 
defined on a general simplicial complex P containing M with the following 
properties: 

a) ( t  coincides with ~t on a subcomplex Q D A u A for t e K  and coincides with it 
everywhere for t e L; 
b) there exists an e > 0 which does not depend on d = d(P) and such that ~t, t e K, 
is contact  in e. d-neighborhood of the 2-skeleton of P;  

8e 
c) il~',ll < d(4~2 + 1)' t ~ K .  
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Let ~1 . . . . .  aN be the sequence of all 3-simplices of P \ Q .  By 2.4.1 for each 
i = 1 . . . . .  N there exists a ball B i c ~r i whose boundary  ~B~ is contained in the 
ed-neighborhood of 0a and has all normal  curvatures greater than 

8e 
Now, applying 2.4.2, w see that ~'t, t ~ K, is almost  horizontal near 0B~ 

d(4e 2 + 1)' 

f o r i =  1 . . . . .  N. 

3.3. Making  one hole 

We now want to connect balls B 1 , . . . ,  B N from 3.2.1 to get contact  structures on 
M with only one hole. 

Lemma 3.3.1. Let ~t, t ~ K, be the family constructed in 3.2. l. Denote by ~.~ the 
foliation (~Bi) L induced by ~t on OB i (t ~ K,  i = 1 . . . .  , N). Let ~ be the foliation on 
the boundary o f  a small neighborhood of  the standard overtwisted disc A (see 2.16) and 
let B be the 3-ball. Then there exists a family of  embeddings ht: B ~ M \  A, t E K, such 
that for  all t ~ K,  ht(B ) ~ ~)~= 1 Bi u A and the foliation G t = (ht(OB)) L induced by ~t 
on the sphere ht(~B ) is homeomorphic to the connected sum Jt ~ # (  # .u= 1 ~ ) ; f o r  t ~ L 
the embedding h t defines a contact isomorphism of(B,  (1) and (h,(B), it). 

Proof  Let M 1 = M \ ( ~  Int B~ w A). Let Bo, B o ~ A, be the ball in M~ such that 
the foliation (c3B0) L is homeomorphic  to off. Let M'I = M ~ I n t  B o. Let us orient 

N ~tlM'~ if it is possible or somehow orient ~, near ~)~=o 0B~ if ~IM,~ is not orientable. 
Let us connect the north pole of 0(( with the south pole of ~ by an embedded 
curve {o c M'I and then consequently for i = 1 . . . . .  N - 1 connect  the north pole 
of Y~ with the south pole of ~ + 1 by embedded disjoint curves {~ c M'I.  If ~ [M'~ is 
unorientable, we should take care that the orientation of ~',[.U~,~B. could be 
extendable on ~'tl0~,~B.~e. ,. In view of  2.2.1 we can make all f~, i = 0  . . . . .  N, 
transverse to the contact  structure ~'t, t ~ K. Taking the connected sum of balls B~, 
i = 0 . . . . .  N, along transversals (i ,  i = 1 . . . . .  N, we will get the desired family of 
embedded balls h , ( B ) ~  M \ A ,  t E K .  The structure ~tIh,(B) for t ~ L  can be easily 
arranged to be s tandard because of the special choice of balls B 1 . . . . .  B u. 

Note 3.3.2. Because of the foliation # ~= ~ ~ t, t ~ K, is almost horizontal, it can be 
defined up to a homeomorph i sm by the family of ho lonomy diffeomorphisms 
~,: I--*I ,  t ~ K .  Hence the family of foliations G~, t ~ K ,  is homeomorphic  to 
~ # J ~ ( r  t ~ K .  For  t e L  the diffeomorphism ~, has no interior fixed points but 
for t ~ K \ L  it can have isolated interior fixed points. 

3.4. The model 

Let /3:[0, 1] ~ ( -  zc/4, re/4) be a function with isolated zeros and with /3(0), 
/3(1) < 0. Let 7a be a curve in the plane with coordinates (p, z) as shown in Fig. 6 
and S a c  ~3 be the surface of revolution of 7p around the z-axis. Let (1 be the 
s tandard overtwisted contact  structure in t~ 3 (see 1.3). In cylindric coordinates 
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(p, qS, z) it is defined by the equat ion 

cos p dz - ps in  p dq~ = 0 .  

Denote  by Yt~ the foliation (Sp)c, induced on S, by ~1 (see Fig. 7). If/~ has no zeros 
then Yt'p is homeomorph ic  to ~ .  

Proposition 3.4.1. Let ft: I--* I, t e K,  be a family of  diffeomorphisms with isolated 
f i xed  points inside, f ixed  at 0I and satisfyin9 the condition f ( x )  > x near •I. Let 
y,(x) = ~/4  (f~(x) - x) for t s K ,  x e l .  9,(0), 9,(1) < O for  all t e K .  Then the family 
~ot ,  t ~ K,  is topologically equivalent to the family ~Xf # ~ (ft), t ~ K. 

Z 

2, 

-2 

Fig. 6 

S 

Fig. 7 
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According to 2.1.3.1, it is enough to show that ~'~, and ~ # g ( f , ) ,  t~K,  have 
coinciding families of diagrams. It is straightforward to check this. 

3.5. End of  proof o f  3.1.1 

In view of 3.2.1 and 3.3.1 there exists a family of distributions ~'t, t e K ,  and a family 
of embeddings ht: B ~ M \ A ,  t e K ,  such that ~t is C~ to it, t e K ;  ~t coincides 
with ~, on A for t e K and coincides with ~t everywhere for t~ L; ~', is contact 
outside of ht(B ) c M \  A, t e K; and the foliation (ht(~B)) L, t e K, is homeomorphic 
to ~'~#~(~p) where ~bt: I--+I is a diffeomorphism with finite number of fixed 
points. By 3.4.1 the family H#~,~(~bt), tEK,  is topologically equivalent to the 
family ~ , ,  t 6K ,  for a family of functions fit: [ - 1, 1] ~ ( - ~/4, ~/4), t e K ,  with 
finite number of zeros. But the structure ~1 which induces the foliation He~ on the 
sphere Sp, is extended to the ball bounded by S,,, t~K.  Hence by 2.1.5.1 we 
conclude that the family ~'t, t e K, of contact structures near ht(OB ) which induces 
the family of foliations (h~(~B)) L are extendable to ht(OB ) as a family ~ ,  t e K ,  of 
contact structures. The extension can be made to guarantee the existence of the 
required homotopy between families ~, t e K, and ('t, t e K. Note that in view of 
3.3.1, (h,(B), ~)  is isomorphic for t e L  to the standard overtwisted ball (B, (~). But 
our construction provides the same property for (ht(B), ~'t), t eL .  Hence we can 
choose ~t = ~'t for t eL .  

4. Discussion 

In this section I discuss some related notions and open questions around the 
subject of the paper. 

4.1. CR structure, compatible with a contact structure 

Denote by Conv(M) the space of strictly pseudoconvex CR-structures on M. 
A strictly pseudoconvex CR structure on M generates the canonical positive 
contact structure on the oriented manifold M, by the distribution of complex 
tangent lines. This defines the projection p: Cony(M) ~ Cont(M). It was proved in 
[2] that p is a homotopy equivalence. In particular, any contact structure on 
3-manifolds can be complexified in the above sense. 

4.2. h-tillable and s-tillable contact manifolds 

A (positive) contact structure ~ on an oriented 3-manifold M is called holomorphi- 
cally tillable (or h-tillable) if there exists a two-dimensional complex manifold 
W with pseudoconvex boundary M such that the CR structure on its boundary 
defines the original contact structure 3. 
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A (positive) contac t  s t ructure  on an or iented 3-manifold M is called symplecti- 
cally tillable (or s-tillable) if there exists a four-dimensional  symplect ic  manifold  
W which has M as its or iented b o u n d a r y  such that  the symplectic form is 
nondegenera te  on the contac t  dis t r ibut ion.  

Deno te  by Conth(M) and ConV(M)  the spaces of h-tillable and  s-tillable contact  
s tructures respectively. 

By a theorem of H. Graue r t  (see [6]), we have Conth(M) ~ C o n t ' ( M )  and by 
a theorem of M. G r o m o v  and the au thor  (see [9] and  [3])  the intersect ion 
ContS(M) ~ Cont~ is empty.  

I p roved  recently (see [3])  that  the only h-tillable contac t  s t ructure  on S 3 is the 
s t anda rd  one. In [4] I showed that  this is not  true in higher dimensions.  

4.3. Open questions 

Question 4.3.1. It is true that  C o n t ' ( M )  = Conth(M)? 

Question 4.3.2. Is it true that  C o n t ( M )  = Cont~ u ConP(M)?  In par t icular ,  if 
a contac t  s t ructure violates Bennequin 's  inequal i ty  (see [1] and  [3]), is it necessar-  
ily overtwisted? 

Question 4.3.3. Which  3-manifolds admit  s- or  h-tillable contac t  structures? 
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