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1. Introduction 

Let M be a symplectic manifold with symplectic form o- and let T be a torus 
which acts on M in a Hamiltonian way. That is, there is given a linear map X 
>-~Jx from the Lie algebra t of T to the space of smooth functions on M, such 
that 

(1.1) For each X ~ t  the infinitesimal action of X on M is given by the 
Hamiltonian vector field X of the function Jx, and 

(1.2) The functions Jx, Xcl  are in involution. 

The mapping J :  M ~ t *  defined by 

(1.3) <X,J(m))=Jx(m), mcM, XeI 

is called the momentum mapping of the Hamiltonian T-action. Given (1.1), the 
condition (1.2) just means that T acts along the fibers of J. 

For the basic definitions and properties of non-commutative Hamiltonian 
group actions, see [AM].  The results of this paper can easily be extended to 
Hamiltonian actions of arbitrary compact connected Lie groups, by applying 
our results to the action of its maximal toms and using the equivariance of the 
momentum mapping. For some more details, see the remarks at the end of 
Sect. 2. 

We will assume throughout this paper that the momentum map is proper, 
that is J I(U) is compact for each compact subset U of t*. 

Now let r be a regular value of J, that is T,,J: TmM-~t* is surjective 
for all meYe=J 1(4 ). Then Ye is a smooth submanifold of M, compact  because 
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J is proper, and the action of T on Yr is locally free. Writing i~ for the 
inclusion Y~---,M, the T-orbits are just the leaves of the null-foliation of i*a. So 
the orbit space Mr I~/T, called the reduced phase space, is provided with a 
unique symplectic form ar such that 

(1.4) * - "* p~ a~ -- t~ a 

where p~_ denotes the projection Y~M~.  
However, in general the foliation of Y~ by 

because the (finite) stabilizer groups 
T-orbits is not a fibration 

(1.5) Y~= {geT; gm=m} 

may not be locally constant 1. As a result M~ may not be a smooth manifold. 
But its singularities are of a relatively mild nature. Let F~ be the finite sub- 
group of 7" generated by all T,,, me Yr Then we have the diagram 

(1.6) 

ig r~ 

1 P ~ \ ~  , q~" 

Me = Ye/T 

where r~: ~ - , Z ~  is a finite branched covering and qe:Z~---,M~ is a principal 
T/F~-bundle. This exhibits Z~ and M~ as V-manifolds in the sense of Satake [S]. 
Such manifolds, although not necessarily smooth, do carry differentiable struc- 
tures like differential forms, smooth bundles, etc. In particular a~ is a well- 
defined symplectic form on Me, see [W3]. For our purpose it is also important 
that the de Rham theorem holds on M~, that is the de Rham cohomology 
(defined in terms of differential forms on M~) is canonically isomorphic to the 
Cech cohomology of M~. 

Now let ~o be a fixed regular value of J and let { vary in a convex open 
~0-neighborhood U of regular values. Introduce a T-invariant connection for 
the fibration J: J I(U)~U, which can be obtained by averaging an arbitrary 
connection for J over T. Note that the connections for J form an affine space, 
and that T acts along the fibers of J. Through meY~o draw the horizontal 
curves lying over the straight lines through ~0. This defines a T-equivariant 
projection 

(1.7) i1: J ~ '(U)--~ Yr 

such that for each ~eU the restriction 111Y~: Yr is a T-equivariant diffeo- 
morphism. This induces a smooth family of diffeomorphisms M~--+M~o which 
allows us to identify the cohomology groups of M~ with the ones of the fixed 
space M~o. Because two such local trivializations differ by maps which are 
homotopic to the identity, this identification of H*(M~) with H*(Mr ) is 
canonical. In particular this allows us to compare the cohomology classes 
[aJeHZ(Mr IR) for various ~eU. 

If T is a maximal torus in a simple compact connected Lie group G and T acts on a coadjoint 
orbit of G in g*, then this phenomenon does actually occur unless G is of type A 
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On the other hand the principal T/Q-bundle qr Z ~ M ~  is, up to equiva- 
lence, given by an element vr162 T/Q); here _V denotes the sheaf of germs of 
continuous V-valued functions. The short exact sequence 

(1 . s )  o - -  , A~ , t~  ox,, T / ~  . . . . . . .  ~ o,  

with 

(1.9) A~={X~I;  exp XeF~} 

being equal to the integral lattice of T/Q, leads to the isomorphism 

(1.i0) 0 , H~(M~,T/Fe)--~-~ H2(Mr162 

because the sheaf t is fine and therefore HJ(M~,t)=0 for j=1 ,2 .  So the fiber 
bundle q~: Z(-~M~ is equally characterized by the element c=6(v~)e 
H2!M~,A~), called the Chern class of the bundle. As a topological class, 
e is constant as a function of ~eU. Indeed, the above T-equivariant 
trivialization of J shows that Ar for all ~ U .  Secondly, @-,6(v~) is con- 
tinuous and takes values in the fixed lattice 

H2(Mr A e) = H2(M~, Ar H2(Mr A~o) 

in H2(Mr t). We are now able to formulate our main result. 

1.1 Theorem. Let ~,~o~t * lie in the same connected component C of the set of 
regular values of the momentum map J. Then 

(1.11) [G~] = [%,3  + <c, ~ - ~o> 

where c~HZ(M~,A~) denotes the (common) Chern class of the fibrations 
q; : Z ~ M c ,  #c C, amt we have used the canonical identification q[ the H2(M~,IR) 
along any ~-path in C from go to ~. 

The proof of Theorem 1.1 will be given in Sect. 2. In Sect. 3 we discuss its 
Corollary that the push forward of the canonical measure on M under the 
momentum map J is a measure on t* which has a piecewise polynomial density 
(assuming that J has regular points in each connected component of M). This 
Corollary was conjectured in some very stimulating discussions with Atiyah 
and Guillemin, and was the starting point for our paper. In turn, if M is 
compact, the property that J,(dm) has a piecewise polynomial density leads to 
an explicit formula (4.6) for the oscillatory integral 

(1.12) ~ e i<x'J(m)> din, X@I.  
M 

In the case that T acts on a coadjoint orbit as in footnote ~ this is a well- 
known formula of Harish-Chandra [HI. He obtained this formula as a con- 
sequence of the computation of the radial part of the G-invariant differential 
operators on .q. Conversely the formula for the radial part can be obtained 
from the formula (1.12) using the theory of Fourier integrals. For the relation 
with the characters of irreducible representations of G, see Kirillov [K]. His 
first proof is close to our approach, see the last remark in our Sect. 2. 
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Another application of Theorem 1.1 appears if M actually is a Ktihler 
manifold with Ktihler form equal to or. Assuming that [-a]6HZ(M, 2~) there is a 
holomorphic line bundle L over M with Chern class [a]. Assuming that T acts 
holomorphically on L one gets a (finite dimensional) representation p of T on 
the space of holomorphic sections of L. Now assume that T acts freely on the 
inverse image under J of a connected component C of the set of regular values 
of J. Take ~ in C which moreover is integral in the sense that 

(1.13) t ~--+exp 2rt i ( log t, {) 

defines a (1-dimensional) representation pc of T. The main theorem of [GS2] 
states that in this situation [ a J  is equal to the Chern class of a holomorphic 
line bundle Lr over M~ and that the space of holomorphic sections of Q is 
canonically isomorphic to the space of (p~,p)-intertwining mappings. In partic- 
ular its dimension is equal to the multiplicity of p~ in p. 

On the other hand the Hirzebruch-Riemann-Roch formula 2 states that 

(1.14) ~ ( --  1) j dim HJ(M~, L e, ) = ~ zce t'~ 
Mg 

where r~ denotes the Todd class of the tangent bundle of M~ (regarded as a 
complex vector bundle). Being a topological class r e does not vary for ~ in C, 
and the conclusion is that the restriction of (1.14) to the integral values in C is 
a polynomial in { of degree less than or equal to dime(Me). 

Under suitable positivity conditions the Kodaira vanishing theorem gives 
that HJ(Mr162 for j > 0 ,  so in the case (1.14) is a formula for the multi- 
plicity of pC in p, which therefore is a polynomial3 when restricted to the set of 
all integral { e C. 

We finally mention that the principle of Theorem 1.1 has been applied 
before by Weinstein [W2], [W3]. He considers the circle action of the geodesic 
flow on the tangent bundle of a Riemannian manifold all of whose geodesics 
are closed. Here [a~]--+0 as ~--+0, so that [~rl] =c  if we write t*=lR. This leads 
to a strong conclusion about the Riemannian volume of the manifold. In this 
way Theorem 1.1 can be regarded as a more or less straightforward general- 
ization of the basic idea of [W2], [W3]. 

2. Proof of  the Theorem 

For simplicity, write Y=Y~o. Using the mapping r/ of (1.7) we get a triv- 
ialization 

(2.1) J •  I (U)--+Ux Y 

2 In this form the Hirzebruch-Riemann-Roch formula does not hold for K~ihler V-manifolds, 
being the reason for the assumption that T acts freely on J ~(C). However, both [GS2] and the 
Hirzebruch-Riemann-Roch formula can probably be modified for Kfihler-V-manifolds, making that 
we could drop the assumption that T acts freely on J t ( C )  

3 More generally, if T acts only effectively on M then the Lefschetz fixed point formula (applied 
to the T-action on M) implies that the multiplicity of & in p is polynomial in r for those ~ C  
which are congruent modulo the weight lattice of T/Fr For the Lefschetz fixed point formula with 
fixed manifolds rather than fixed points see [AS] 
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which allows us to replace M by U x Y. Because of the T-equivariance of q, T 
acts only in the second componen t  in a way which does not depend on the 
first component .  Note  that  in this tr ivialization the m o m e n t u m  m a p  is equal to 
project ion onto  the first component .  All M~ = Ye/T are now identified with Y/T. 
Writing F = Q  (which does not depend on ~eU)  all Z~=YjF get identified 
with Z = Y/F, which is a principal T/F-bundle over  Y/T. The only object which 
now still depends on ~ is o-e, determined by 

(2.2) p* ~r~ = i~ c~. 

Here p is the project ion Y--+ Y/T and ie:y>-+(~,y) the embedding  of Y in U x Y 
at the level 3. 

For  2e t*  we denote by ~a differentiation in the direction of the constant  
vector  field .~. Write )~=(2,0) for the horizontal  vector  field in U x Y over Z 
Then 

(2.3) ,~)* (?~ ar = (~,(p* cr~) = ~?).(i* a) = i~(Y~cr) 

= i*(d(2~ a)) = d(i*(2~ ~)). 

Here 2g. denotes the Lie derivative with respect to the vector  field v; the 4th 
identity follows because do-=0.  

For  each me Y,, 

(2.4) (~r : ).~--.i*()7 ~ a),, 

belongs to (t*)* = t ,  so this defines a t-valued l - form :~: on I<. Tak ing  inner 
product  with the infinitesimal act ion )? of X e t  we get 

(2.5) ( ) (  J :~, 2),,  = (3~ _l (2_5 or)),, = (dJx),,(2m)= (X, 2) 

because 3 ? J a = - d J ~  (this convent ion has to be taken if ~dpjAdqj  is the 
symplectic form in the (p,q)-space). Relation (2.5) then expresses that  the 
restriction of a,, to t x t*, considered as a subspace of T,,,M under the map  
(X, 2)~--.()?,,, 2~,), is equal to the s tandard  symptectic form on t x t*. 

Because :~ is obviously T-(hence F-) invariant  there is a unique I-valued 1- 
form fl~ on Z = Y/F such that 

(2.6) r* fie = ~" 

here r is the project ion Y~ Y/F. But now (2.5) exhibits fi{ as a connect ion form 
for the principal T/F-fibration q: Z--+Y/T. As a consequence 

(2.7) dfl~=q*(2~, d%=p*f2r 

for a uniquely determined dosed  I-valued 2-form f2r on the V-manifold Y/T, 
called the curvature of the Ker(fi)-connection in the fiber bundle  q. Collecting 
(2.3), (2.4) and (2.7) we get 

(2.8) {2~--,p* (?x a~)} = {2~--+(p* f2~, 2) } 
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and using that p is a submersion this in turn implies that 

(2.9) { 2~--* #~.or = {2~-0(f2~ 2) }. 

On the other hand the general theory of connections (see for instance I-L]) 
tells that the cohomology class of the curvature of the connection is equal to 
the Chern class of the bundle, hence 

(2.10) ?~[crr 2), independent of ~. 

This proves Theorem 1.1. 

Remarks. In the case of a Hamiltonian action of a non-abelian compact 
connected Lie group G on a symplectic manifold/f/ ,  with momentum mapping 
J: M--*g* we can make the following reduction. By means of an inner product, 
which is invariant under the adjoint action, we identify g with g* intertwining 
the adjoint with the coadjoint action. Then, if ~ is a regular value of J, its 
centralizer in G is a maximal torus T in G. The Lie algebra t of T is a local 
cross section for the adjoint action. Therefore M = J  ~l(lreg) is a symplectic 
submanifold of/~/, invariant under the T-action. The T-action on M is Hamil- 
tonian with momentum mapping J equal to JIM. So the reduced phase space 
at ~ for the G-action on AT/ is equal to the reduced phase space at r for the T- 
action on M. The cohomology class of its symplectic form therefore depends 
linearly on r when we restrict ~ to a connected component of the regular set in 
the Lie algebra of a maximal torus. On the other hand the equivariance of the 
momentum mapping makes it constant along the (co-)adjoint orbits. Put 
together this gives a complete descrition on the regular set in g* in the non- 
abelian case as well. 

As pointed out to us by Alan Weinstein, it is interesting to apply this to 
the left action of G on /~/= T* G, the cotangent bundle of G. Identifying T* G 
with G xg* using the left-trivialization, the momentum mapping J:  G 
x ,q*-*q* is equal to 

(2.11) j :  (g,~)t_,tAdg 1(~). 

The reduced phase spaces are the complex flag manifolds G/Gr with Gr the 
stabilizer of ~ for the coadjoint action. If ~ is regular then Gr is a maximal 
torus T in G and Ea~]~H2(G/T) is equal to the image of [~]6H1(T) via the 
"transgression": HI(T)~H2(G/T) for the fibration G--*G/T. This example of 
our Theorem 1.1 occurs already for instance in the exposition of Serre [Se] of 
the Borel-Weil theorem. 

3. The Push Forward of the Liouville Measure 

In this section we assume that M is connected, which is not a serious restric- 
tion because we can simply restrict the discussion to connected components of 
M. Secondly we may replace T by TIT M where 

/3.1) TM= (3 Tm 
m E M  
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denotes the common stabilizer of all elements of M. The effect of this is that 
n o w  

(3.2) ~ T m={l}, 
rn~M 

that is T acts effectively on M. 
Recall that locally there are only finitely many possibilities for the Tin, 

meM. For any closed subgroup S of T the fixed point set Fix(S) is a closed 
symplectic submanifold of M. This can be seen using the equivariant Darboux 
lemma, see [Wl] .  Collecting the Fix(S)'s which are not open we get a locally 
finite collection of closed submanifolds of codimension > 2, whose complement 
we denote by M'. If on the other hand Fix(S) is open then, being also closed 
and M being connected, Fix(S)=M, that is S=-{1} in view of (3.2). So m6M' 
means that mq~Fix(S) for all S + {1}, or T m = {1 }. We have proved 

3.1 Lemma. The assumptions that M is connected and that T acts effectively on 
M imply that the set M' on which T acts fi'eely is equal to the complement o[" a 
locally finite union oJ" closed symplectic submanifi)lds of codimension >2. In 
particular M' is open, connected, dense, and M \ M '  has measure O. Also T,,J is 
surjective .for all m~ M'. 

After these preparatory remarks we consider now the following measures 

1 
dm is the Liouville measure of (M. or), defined by the volume form - -  " 
2n = d i m M .  n! ~r, 

(3.3) dt is the normalized Haar  measure on T; write / = d i m  T. 

dX is the corresponding Lebesgue measure on t. 

d~ is the dual Lebesgue measure on t*. 

The assumption that J is proper implies that the push forward J,(dm) of 
dm under J is a measure in t* (Regarding measures as continuous linear forms 
on the space of compactly supported continuous functions, J ,  is equal to the 
transposed of J*, which is the pull back of functions by J). The additional 
assumptions that M is connected and T acts effectively on M imply in view of 
Lemma 3.1 that 

(3.4) J,(dm) = f  d~ 

for a locally integrable function f on i*. Of course f is smooth at the regular 
values ~ of J and using the Fubini theorem one gets that f(~) is equal to the 
volume of Y~=J 1(~) with respect to the quotient of dm by J*d~. In turn, 
dm/J*d~ is locally given by the 2n-1=2(n- I )+l - form 

1 
(3.5) (i~ a)" I ACO 

(n--l)~ 

(signs are irrelevant for measures), where u) is an l-form which on the T-orbits 
takes the value _+1 on an l-tuple ()(~, ...,)(~) such that dX(X1, ...,z~'l)= 1. 

However, the trivialization (2.1) showed that the T-action locally does not 
depend on ~ which shows that p~(M'c~ Y~)= M~ is equal to the complement of a 
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finite union of closed symplectic (V-)submanifolds of M~ of codimension >2. 
Because p~: M'r~ Y ~ M ~  is a principal T-fibration we get in view of (3.5) and 
the convention that vo l (T)=l  that the volume of M'c~Y~ is equal to the % 

volume of M~ with respect to its Liouville measure. Because the complements 
have measure zero we have proved 

3.2 Proposition. Let M be connected and T act effectively on M. Then the 
density f of J,(dm) satisfies 

1 f 1 . l \  
(3.6) .f(~-)= i ~ ( a ~ ) " - ' =  \ IMp] '  (n---l))[aJ / 

Ma 

Jor each regular value ~ of J. Here M~ has been given the orientation of (a~)" l 
and [ M J  denotes the corresponding orientation class in H 2 , o(Ma, 7Z). 

Combining (3.6) with (1.11) now immediately yields 

3.3 Corollary. f is a polynomial (of  degree < n - l )  on each connected com- 
ponent of the set of regular values of the momentum map. 

4. An Oscillatory Integral 

In this section we assume that M is connected, T acts effectively on M, and 
moreover that M is compact. As already observed in the introduction of Sect. 
3, Fix(T) is a finite union of compact connected symplectic submanifolds M i of 
even codimension 2n~>0. More precisely, near each moeM J there is a canoni- 
cal system of coordinates (Pl , . . . ,G,q~ ... .  ,qn) in which the T-action is linear. 
That means that we can arrange these coordinates such that the Hamilton 
functions Jx have the following standard quadratic form 

(4.1) Jx(m) = Jx(mo) + ~ (Djk(X) (p2 k ~- q2)/2. 
k=l 

Here the coefficients m;k(X) depend linearly on Xet,  that is O2iket*. Note that 
these objects are well-defined and constant along each M r. 

The fact that the corresponding Hamilton vector fields generate an action 
of T implies that necessarily 

(4.2) O)jk(X)~2n7Z if XeKer  exp, 

that is 
1 

(4.3) 2Jk = i cojg 

is a weight of T. In fact, providing the real (p, q)-space with a multiplication by 
i, called J, such that cr(J', ') is an inner product (for the standard symplectic 
form ~dPkAdqk this means that qk=pkoJ), the 2~k are the weights for the 
complex linear representation of T on the tangent space of M at m o. It is also 
obvious that Mj is the set of (p,q) such that pk=qk=O if 2~k+0, SO 

(4.4) n ;= # {k; 2;a#O }. 
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We will enumerate the weights such that 

(4.5) )'ik 4:0 for k = 1 . . . . .  nj. 

With these conventions made we can now state the 

4.1 Theorem 4. 7he inverse Fourier transform of J,(dm) is given by 

(4.6) ~ e i <x, J~)> dm = ~ vol(mj) e i <x. J~M:> 

M : 1--i ((X, ;tak)/2=) 
k = l  

jbr X ~ t  such that 

(4.7) (X,  2j~)#:0 Jbr all k = l  ... .  ,nj (all j). 

Here J(Mj) denotes the common value o/' J on Mj. 

Proof. Application of the method of stationary phase (see for instance [H6],  
Sect. 3.2) yields 

(4.8) .( e ''<x'J~ d m = ~  v~ ei'<x'JIM")> Cfl(t), 
M , ( t l " ,  

\2rril ~=1 

where t is a real parameter  and f coincides on I R \  {0} with a Schwartz 
function. Observe that all higher terms in the asymptotic expansion vanish, 
because in the local coordinates introduced before the phase function is qua- 
dratic and the amplitude (being the Jacobi determinant of the local coor- 
dinates) is equal to 1. 

Now choose Xe{ such that (4.7) holds and such that {exptX; t e ~ }  is a 
closed subgroup of T (isomorphic to a circle). The set of these X is dense in t, 
and since both left and right hand side of (4.6) are smooth in X (on the set of 
X satisfying (4.7)) it is sufficient to prove (4.6) for such X. 

Now Corollary 3.3 for circte actions yields that the left hand side in (4.8), as 
a function of t, is equal to the inverse Fourier transform of a compactly 
supported piecewise polynomial functions on IR. Multiplying by (it) N, N suf- 
ficiently large, the first summand in the right hand side becomes smooth at the 
origin. The left hand side stays smooth, so (it)uf(t) is a smooth Schwartz 
function on IR. 

However, on the Fourier transform side multiplication by (iO N acts as 
( d ) N  
di  and we get that the Fourier transform of (it)sf(t)  is equal to a linear 

combination of derivatives of ~-functions (situated at the points (X ,J(Mj) ) ) .  
Combining with the smoothness we get ~((it)Nf(t))=O, hence ( i t )s f ( t )~O, or 
f ( t )=O  for t+0 .  Reading (4.8) now for t = l  completes the proof. 

Remarks. Clearly the right hand side of (4.6) extends to a smooth function of X 
on t, and even to a complex analytic function on t| because the left hand 
side does. Also the identity (4.6) extends to Xet |  

4 See "Note added in proof" on page 268 
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Secondly, (4.6) shows that J,(dm) is completely determined by the weights 
2jk, the volumes of the fixed point manifolds M r and the values of J on these. 
The formulas (1.11) and (3.6) for the density of J,(dm) suggest a relation 
between these data and the topological properties of the fibration q~ in (1.6). 

Finally, from (4.6) or directly, one can derive that the locus of singularities 
of J,(dm) (being the set of singular values of J) is a union of pieces of affine 
hyperplanes, going through the points J(Mj) and spanned by l - 1  of the ~Jjk. 
(The pieces themselves have piecewise linear boundaries.) This fits in with the 
description of the image of J as the convex hull of the points J(Mj) in t*, see 
[A] and [GS1]. 
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Note Added in Proof 

Formula (4.6) is only correct if the fixed points are isolated. In the general case, for % strictly less 
than n, the factor in front of e '<x' '~M~> gets additional terms, which are rational in X and 
homogeneous of degree - ( % + 1 )  up to - n .  We hope to give a more precise determination of 
these terms at another occasion. 


