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ON GUAN’S EXAMPLES OF SIMPLY CONNECTED NON-KAHLER
COMPACT COMPLEX MANIFOLDS

By FEDOR A. BOGOMOLOV

Abstract. The article contains a construction of compact complex symplectic manifolds which are
simply connected and don’t admit Kahler structure. The manifolds obtained are essentially the same
as were constructed by Guan, but the construction itself is geometrically more transparent.

0. Introduction. The first examples of compact complex symplectic mani-
folds which are non-Kahler were constructed by D. Guan in a series of preprints
[3], [4], [5]. In particular, he constructed simply connected manifolds with the
above property, thus disproving the conjecture of A. Todorov [7].

Guan’s results indicate the importance of finding simple criteria which distin-
guish Kahler and non-Kahler compact complex symplectic manifolds. The failure
of Todorov’s conjecture notwithstanding, it still may be the case that there is a
purely topological criterion which does this. For example, it might turn out that
the multiplication structure on the second cohomology group and the triviality
of secondary cohomological operations distinguish Kahler and non-Kahler man-
ifolds of the above type.

The main idea of Guan’s first approach is to apply the Beauville-Fujiki con-
struction via symmetric powers ([1], [2]) to a non-Kahler Kodaira surface [6].
Guan’s construction is purely geometrical, but the proof of its consistency is
based on some calculations. The aim of this article is to provide a geometrical
explanation of the calculations involved and arithmetical constraints imposed on
the initial data in Guan’s construction.

Acknowledgments. I wish to thank D. Guan, Y. Siu and G. Tian for helpful
discussions. I am very grateful to J. Cheeger for his generous help in preparation
of the manuscript.

1. Kodaira surfaces. The class of Kodaira surfaces is described in [6].
Here I will present a summary of this description, omitting the proofs.

Any Kodaira surface can be obtained in the following way: Let us take a line
bundle L over an elliptic curve E with c1(L) = m 6= 0. Denote the complement
of zero section in L by L�. The group C� acts freely and fiberwise on L�. The
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nonzero element of the Lie algebra of C� defines a nondegenerate holomorphic
field eL on L�. There is a C� invariant nondegenerate holomorphic (2,0)-form w
on L� defined by the following property: (w(eL)) = !1. Here !1 is a holomorphic
(1,0)-form induced from the projection of L� on elliptic curve E. Let Z 2 C� be
a discrete cocompact subgroup. Define the Kodaira surface S as a quotient L�

=Z.
It is a compact surface S which is a fibration with elliptic fiber C�

=Z = EL over
E. The form w defines a holomorphic nondegenerate form on S which we will
denote also by w.

There is a natural holomorphic action of EL on S. Moreover the canonical
class of S is trivial, and the global holomorphic form w on S is invariant under
the action of EL.

Topologically, S has a structure of a principal fibration over T3 with S1 as
a fiber. It is a principal fibration. The bundle L is associated to S1 bundle over
E, which defines a homogeneous norm function on L and L�. Thus we obtain a
projection, L�

=Z ! R�

=Z = S1
0. Therefore S has a presentation as a product of a

nontrivial principal S1-bundle over E and a circle S1
0. The product E� S1

0 will be
denoted as T3. The circle S1 above is a subgroup of EL.

Thus S is a principal holomorphic EL fibration over E with a projection pE.
It is also a principal S1 fibration over T3 with a projection pT = pspT where
ps: T3 ! E contracts S1

0.
The first homology group, H1(S, Z), is isomorphic to Z3 + Zm and the funda-

mental group of S is a cyclic central extension of H1(S, Z). In fact the surface
S is completely described by the elliptic curves E, EL and m = c1(L) > 0. The
latter will be also called the first Chern class of the elliptic fibration and will be
denoted as c1(ES

L) or simply c1.
Apart from this we shall need the following simple facts about Kodaira sur-

faces:
1. The only compact complex curves on S are the fibers of the projection pE.
2. Any smooth compact complex surface V with a surjective projection onto

S is non-Kahler. In fact, such a surface is also an elliptic fibration with the first
cohomology group H1(V , R) of odd rank.

We can construct a similar manifold of higher dimension starting from a set
of n line bundles Li over E with the first Chern classes c1(Li) = ci

1. Let H be
a fiber product of L�

i over E. We can factorize H by a natural action of Zn and
obtain a compact complex manifold Sn = H=Zn. The manifold Sn is naturally
fibered over E with a fiber T which is a product of n copies of EL.

LEMMA 1.1. Assume that the elements Li define a sublattice of rank one in PicE
and at least one of ci

1 6= 0. Then the manifold Sn has a finite nonramified covering
Sc

n which is a product of a Kodaira surface S and a torus T0, where T 0 is isogenious
to the product on n� 1 copies of EL.

Proof. A natural fiberwise map ni: Li ! Ln
i induces a nonramified covering

ni: L�

i ! Ln�
i . The latter is C� equivariant. Thus we can assume that all Li
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are isomorphic via a translation on E by taking an appropriate collection of ni.
Therefore, Li becomes a trivial bundle being lifted on L�

1 and the trivialization is
compatible with C�-actions on Li and L�

1. Therefore Sn has a nonramified covering
which is a direct product of L�

1=Z and a torus which is a product of the curves
EL.

Remark 1.2. The situation is quite different if the bundles Li define inde-
pendent classes in the group PicE. All proper complex subvarieties of Sn are
contained in the fibers T 0 in the opposite case when the bundles Li correspond to
linearly independent classes in PicE.

2. Desingularization of a symmetric power of the surface. Guan’s con-
struction begins with a surface S with c1(L) = m > 2. Suppose r > 2 is a
number dividing m. From this data we construct a complex symplectic manifold
of dimension 2r � 2.

Consider the r-symmetric power Sr S of S. It is a singular complex variety
which has a standard Douady desingularization, S[r]. The points of S[r] corre-
spond to zero-dimensional subschemes of S having length r.

PROPOSITION 2.1. The complex manifold S[r] has the following properties:

(1) It is a complex compact manifold and carries a nondegenerate holomor-
phic form.

(2) It has an abelian fundamental group equal to H1(S, Z).

(3) It is fibered over T3 with smooth irreducible fibers.

(4) The natural projection pt: S[r] ! T3 induces an isomorphism of
�1(S[r])=Zm and �1(T3).

Proof.
(1) S[r] is a canonical resolution of Sr S (see [1]) and hence it has a nonde-

generate holomorphic (2,0)-form w. The latter is induced from the holomorphic
(2,0)-form on S by the natural symmetrization.

(2) The map pT : S ! T3 induces a map pt: S[r] ! T3 since T3 has a
structure of an abelian group. The surface S fibers over T3 and a locality of
the desingularization implies that the same holds for the projection pt of S[r].
Therefore, S[r] is fibered over T3 with a smooth fiber.

Similarly there exists the projection pe: S[r] ! E and pe = pspt.
(3) Since r > 1 the fundamental group �1(Sr S) coincides with the abelian-

ization of �1(S). It also coincides with the fundamental group of the smooth part
of Sr S. Hence �1(S[r]) = �1(Sr S).

(4) The natural map of �1(S) into �1(Sr S) is defined by choosing any co-
ordinate map of S into Sr and then applying symmetrization. Hence, the map
pt�: �1(S[r]) ! �1(T3) coincides with the abelianization of the corresponding
map for S.
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There is a natural diagonal action of EL on S[r]. This action is locally free
since the action of EL on S is free. It is also a fiberwise action for pe since it is
fiberwise on S. For a similar reason, the action of S1 � EL on S[r] is fiberwise
for the projection pT .

Let us denote p�1
t (0) by Mr and p�1

e (0) by Wr. The latter is a smooth complex
manifold with a locally free action of EL. The holomorphic vector field eL tangent
to the orbits of EL is dual to the holomorphic one form induced from E under pe.
Therefore, eL coincides with the kernel of the restriction of w to Wr. Similarly,
the tangent field es of the action of S1 coincides with the kernel of w on Mr.

3. Construction. Let us take the quotient Wr=EL. It is a complex compact
variety with quotient singularities. The form w induces a holomorphic (2,0)-form
w0 on the part of Wr=EL corresponding to the free orbits of EL.

There exists a compact complex manifold Q with the surjective map pq: Q !
Wr=EL of the degree r2 that p�qw0 is a nonsingular closed holomorphic (2.0)-form
on Q. The proof of the existence of such a manifold is the most nontrivial part of
Guan’s construction. Here we shall use a different argument to prove the existence
of Q.

We begin with the manifold Mr which is a real manifold of dimension 4r�3.
Consider the quotient Rr = Mr=S1. We shall show that this is a compact complex
variety with quotient singularitues and a map pr: Rr ! Wr=EL of degree r. The
manifold Q can be obtained as a cyclic r-covering of Rr which is ramified only
at the singular points of Rr.

On the local manifold transversal to the orbit of S1 there is a natural complex
symplectic form which is nondegenerate and closed.

Remark 3.1. If the action of S1 on Mr is free, then the quotient space Mr=S1

is a complex manifold with a natural holomorphic symplectic structure. Unfortu-
nately, in our case the action is not free since some points of S[r] have nontrivial
cyclic stabilizers.

Instead of S[r], let us take a direct product X of r-copies of the surface S.
In the same way, the preimage X0 of 0 2 T3 will have a free action of S1. The
quotient variety NR = X0=S1 is a complex symplectic variety, since the diagonal
action of S1 on X0 is free in this case.

LEMMA 3.2. Let x 2 Mr be a point with a nonzero stabilizer. Then the stabilizer
is a cyclic group Zl where l divides r and the set of Zl-invariant points is a union
of Bl � Mr, dimRBl = 4r=l� 3.

Proof. The group Zl 2 S1 stabilizes the scheme x 2 S[r] of length r pro-
vided the latter consists of translations by Zl of the scheme of length r=l. These
translations are parametrized by a variety S[r=l] with a real dimension 4r=l. The
restriction of the projection pT gives rise to a fibering of S[r=l] over T3. Hence
the subvariety Bl � S[r=l] has real dimension 4r=l� 3.
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Remark 3.3. Since S[r=l] is smooth, all the components of Bl are smooth
subvarieties of Mr. The map of pl

t: S[r=l] ! T3 is a combination of pt for r=l
and a multiplication by l on T3. Hence Bl is in fact isomorphic to the union of
l3 copies of Mr=l.

COROLLARY 3.4. Since codimRBl in Mr is strictly greater than 2 for any l,
�1(Mr) = �1(Mr �

S
l Bl). From the exact homotopy sequence for the fibration of

S[r] over T3 we obtain that �1(Mr) = Zm and is equal to the torsion subgroup in
H1(S).

Remark 3.5. The generator of �1(Mr) can be represented by the smallest orbit
S1
=Zr under the diagonal action of S1. Since the fundamental group is abelian,

we can consider its elements as oriented circles without fixing an initial point.
The generator coincides with the image of the composition of coordinate

imbedding of S1 into Sr S1 and into S[r]. The space Sr S1 is a fibration over S1

with a ball Dr�1 as a fiber. The projection ps on S1 arises from the group structure
on S1. The orbit S1

=Zr projects isomorphically on S1 and hence represents the
same class e as the coordinate circle. The free orbit of S1 represents the class re.

Notation. We shall denote as M̃ the open subvariety Mr �
S

l Bl.
The action of S1 on M̃ is free, and we denote the quotient M̃=S1 by R̃. It is

a smooth open submanifold of Rr with a complex symplectic structure induced
by wM.

LEMMA 3.6. �1(R̃) = Zr.

Proof. Indeed, there is a surjective map of �1(M̃) = Zm onto �1(R̃) and the
kernel of it is generated by the class re. Hence �1(R̃) = Zm=re = Zr.

COROLLARY 3.7. There exists a nonramified Zr-covering R0 of R̃ which is an
open simply connected symplectic complex manifold.

We now have to show that there is a natural smooth compacitification Q of
R0 which is a ramified covering of Rr.

Consider now the structure of Mr and Wr in the neighborhood of a nonfree
orbit. Let (S1

=Zl)x be a nonfree orbit of S1 in Mr and Ux be its small S1-invariant
neighborhood in Mr. Let Dx be a transversal ball to (S1

=Zl)x in Mr. The action
of S1 on Ux induces a natural map qx: Dx� S1 ! Ux. This map is a nonramified
cyclic Zl-covering of Ux.

The ball Dx has a natural complex symplectic structure induced by the form
w, since the tangent field es to the orbits of S1 coincides with the kernel of w on
Mr. This structure is invariant under the action of Zl on Dx. Therefore, Dx=Zl has
a natural structure of local complex space.

The above complex structures are compatible on the intersection of the quo-
tients for different S1-orbits in Mr since they correspond to the same form w.
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Thus, Rr has a structure of complex variety, with Dx=Zl being a neighborhood of
a point.

The ball Dx is also transversal to the orbits of El in the space UL
x which is

the El-orbit of Ux in Wr. If G is a stabilizer in EL on the EL-orbit of (S1
=Zl)x

then Zl � G and G is a finite abelian group with a complex action on Dx. The
local complex structure of Wr=EL coincides with Dx=G.

LEMMA 3.8. The projection map pR: Rr ! Wr=EL is a finite map of compact
complex spaces of degree r.

Proof. We have to check that pR is complex locally, but pr coincides locally
with a map Dx=Zl ! Dx=G where G is a finite group of complex transformations
of Dx and Zl � G. The map pR is surjective since Mr intersects all EL-orbits in
WL. Let S1

0 be a complementary subgroup to S1 in EL. We have a natural action
of S1

0 on Wr=S1. There is also a natural projection ps: Wr=S1 ! S1
0, p�1

s (0) = Rr.
The generic orbit of the diagonal action of S1

0 on Wr=S1 maps with the degree
r into S1

0. Therefore, the degree of pR: Rr ! Wr=EL is equal to r.

Remark 3.9. The map pR is nonramified over the open subvariety M̃ � Mr

corresponding to the free orbits of EL in Wr.
In order to show the existence of natural ramified r-covering of Rr we have to

prove that the map px: Dx ! Dx=Zl can be constructed from Dx=Zl in a canonical
way.

LEMMA 3.10. Suppose that nonfree orbits of Zl in Dx constitute a complex
subset F of codimension more than 1. Then:

(1) F=Zl coincides with the set of singular points Sing � Dx=Zl.

(2) �1(Dx=Zl � Sing) = Zl.

(3) Dx coincides with holomorphic envelope of Dx � F.

Proof. Indeed, (2) and (3) follow from the codimension condition for F, and
(1) follows from the fact that the action of Zl is topologically linear near x.

COROLLARY 3.11. The subset F in our case corresponds to the quotient
S

l Bl=S1

and has a complex codimension > 1. Therefore, the map px is canonically defined
by Dx=Zl itself. In particular the maps pxi are compatible on the intersection of
Dxi=Zli for different xi, li.

LEMMA 3.12. The intersection of R̃ and Dx=Zl is equal to Dx=Zl � Sing. The
cyclic universal covering R0 of R̃ induces the universal covering Dx�F ! Dx=Zl�

Sing.

Proof. According to the construction the covering px: Dx�S1 ! Ux is induced
from the universal Zl covering of Dx=Zl � Sing. Therefore, �1(Dx=Zl � Sing) is
generated by the image of a perturbed orbit (S1

=Zl)x in Ux.
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In a similar way the group �1(R̃) is generated by a perturbed orbit S1
=Zr and

the map �1(Dx=Zl � Sing) ! �(R̃) is a monomorphism, Zl ! Zr. Hence, the
Zr-cyclic covering R0 induces a Zl-covering Dx � F ! Dx=Zl � Sing.

We can consider now a variety Q obtained as a Zr-cyclic ramified covering
of Rr. In order to do this we complete the local neighborhood Dx � F in R0 as
Dx. This completion is canonical and the completions are compatible on the open
parts of the intersections of Dxi�F for different xi. Therefore we obtain a smooth
complex manifold Q as a ramified cyclic Zr-covering of Rr.

LEMMA 3.13. The manifold Q is simply connected and has a natural complex
symplectic structure.

Proof. Indeed, R0 is simply connected and the real codimension of its com-
plement in Q is greater than 1. Therefore Q is also simply connected.

The form w induces a complex symplectic structure on R0 and on any of the
complex balls Dx. Since the symplectic structures induced on these varieties are
compatible we obtain the holomorphic nondegenerate (2.0)-form ! on Q.

Thus, we have constructed a compact complex symplectic simply connected
manifold Q.

4. Absence of Kahler structure. Let us notice first that Q has a holomor-
phic projection on Wr=EL of degree r2. Thus it is exactly the manifold constructed
by Guan [5].

Guan gave a proof that Q does not admit a Kahler structure, but I would like
to present here a more geometrical argument. Namely, it turns out that Q contains
surfaces which are non-Kahler and the structure of complex submanifolds in Q
is interesting enough to be considered.

Let X be a product of r copies of S and pX,E: X ! E be a natural projection.
Define NE as a p�1

X,E(0). It is a complex manifold with a diagonal action of EL

and a holomorphic (2,0)-form w0 obtained as a restriction of the holomorphic
(2,0)-form on X invariant under symmetric group. The vector field tangent to the
orbits of EL coincides with the kernel of w0 and the action of EL on NE is free.
Therefore, the quotient variety N = NE=EL has a nondegenerate holomorphic
(2,0)-form !

0.

LEMMA 4.1. There is a natural meromorphic projection pN : N ! Wr=EL.

Proof. Indeed, there is a proper finite map of N to the variety Vr=EL, where
Vr is a preimage of 0 2 E under a natural projection p0T : Sr S ! E. On the other
hand, Vr=EL and Wr=EL are naturally bimeromorphically equivalent, since the
equivalences between Sr S and S[r], Vr and Wr respectively are EL-equivariant.

Remark 4.2. The manifold NR constructed in the previous section is a cyclic
nonramified Zr-covering of N. This follows from the argument of lemma 3.8.
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LEMMA 4.3. There is a structure of toric fibration on N with the following
properties:

(1) Its fiber T is isomorphic to a product of r� 1 copies of the curve EL.

(2) Its base is a torus T0 isomorphic to a product of r� 1 copies of the curve
E0.

(3) The fibration is described by r�1 integer vectors vi = (�m,�m, : : : , 0,�m,
: : : , 0), where 0 stands on ith and r� 1th places.

Proof. The inital variety X is a fibration over the product TE of r copies of
the curve E. The fiber T 0 is a product of r copies of EL and X is a principal T 0

fibration. It can be described by a diagonal scalar matrix ci,j
1 = 0 for i 6= j and

ci,i
1 = m. The variety N � X is a fibration with T 0 as a fiber. The base T0 � TE

is also a product of r � 1 elliptic curves E0. The same holds for N=EL with
T = T 0

=EL as a fiber. The quotient T = T 0

=EL is isomorphic to the product of
r � 1 copies of E0. The only problem now is how to make the choice of the
representation of T as a product. We choose first r � 1 coordinates in TE as
coordinates in T .

We can also choose the basis of elliptic curves Ei in T0 as (0, : : : , x, 0, : : :�x)i,
where x 2 E0 and it is nontrivial for the ith and rth coordinates in the presentation
of T0 in the standard product TE of r-copies of E0.

The fibration of N is described by Chern classes ci,j
1 in these coordinates.

Here every series ci,j
1 , j 2 (1, : : : , r � 1) describes the restriction of T-fibration

over the elliptic curve Ei corresponding to all the other coordinates but xi being
constant.

The fibration T 0 is described by the series (0, : : : , m, : : : , m)i and the quotient
N with T = T 0

=EL as a fiber corresponds to (� m,�m, : : : , 0,�m, : : : 0)i.
Elliptic curves parallel to Ei are parametrized by the points t 2 T0=Ei. Denote

the preimage of Ei,t � T0 in N as Nt.

LEMMA 4.4. If r > 2 and t 2 T0=Ei is a torsion point then Nt has a finite
nonramified covering isomorphic to a product of Kodaira surface and r� 2 copies
of EL.

Proof. Indeed, the restriction of Lj to Ei,t is equivalent to the translation of Li

by the jth coordinate of t. Therefore, if t is a torsion point the restriction of bundles
Lj generate a subgoup of rank 1 in PicEi,t. Hence we can apply Lemma 1.1.

Remark 4.5. We can similarly describe Kodaira surfaces in the preimage of
any elliptic curve in T0.

LEMMA 4.6. If r � 3 then the manifold N contains Kodaira surfaces and the
latter constitute a dense subset in N.

Proof. Since torsion points constitute a dense subset in T=Ei, the set of
nonintersecting Kodaira surfaces is dense in N due to the previous lemma.
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COROLLARY 4.7. The manifold Q contains a surface V which has a meromor-
phically surjective map onto some Kodaira surface. Indeed, we can take a Kodaira
surface S in N passing through a point x 2 N such that the map of S into WL=EL

is a meromorphic imbedding and pN(x) is well defined and is a smooth point of
WL=EL. We can also assume that pN(x) lies outside of the ramification locus of the
projection of Q onto Wl=El. We can take as V the preimage of pN(S) in Q.

LEMMA 4.8. The manifold Q does not admit a Kahler structure.

Proof. It contains a surface V (may be singular) which has a finite meromor-
phic surjective map on S0 by the above construction.

Now the lemma follows from the following general statement.

LEMMA 4.9. The smooth complex manifold M does not admit a Kahler structure
if it contains a singular compact complex surface V with a meromorphic surjection
onto a Kodaira surface.

Proof. Indeed if V is nonsingular then it is non-Kahler and therefore M cannot
be Kahler. If V is singular then we can desingularize V by a sequence of blow
ups on M with smooth centers. But if M was Kahler then the resulting variety M0

obatined from M by a sequence of blow ups also must be Kahler. On the other
hand, it contains a nonsingular model of V which is not Kahler. This yields a
contradiction.

To be more precise, it is sufficient to blow up points and smooth curves on
M in order to desingularize V . It follows from a general theorem of H. Hironaka,
but in our case it is easy to make the blow up procedure explicit.

COROLLARY 4.10. The variety Q constructed in Section 3 is a simply connected
complex symplectic manifold which does not admit a Kahler metric.

Remark 4.11. In fact, we do not need to deal with a complicated process of
resolving singularities in our particular case.

By taking a generic enough Kodaira surface S � N we can achieve that the
image S0 � Wr=EL will be a nonsingular surface. The surface S0 is a blowing up
of S at one point. We can also assume that S0 does not intersect the ramification
locus of the projection Q ! Wr=EL. Thus we can actually construct a nonsingular
surface V � Q with a surjective map on the Kodaira surface S.
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