

## On Guan's examples of simply connected non-Kahler compact complex manifolds

Bogomolov, Fedor, 1946-

American Journal of Mathematics, Volume 118, Number 5, October 1996, pp. 1037-1046 (Article)

Published by The Johns Hopkins University Press DOI: 10.1353/ajm.1996.0038

For additional information about this article http://muse.jhu.edu/journals/ajm/summary/v118/118.5bogomolov.html

## ON GUAN'S EXAMPLES OF SIMPLY CONNECTED NON-KAHLER COMPACT COMPLEX MANIFOLDS

By FEDOR A. BOGOMOLOV

*Abstract.* The article contains a construction of compact complex symplectic manifolds which are simply connected and don't admit Kahler structure. The manifolds obtained are essentially the same as were constructed by Guan, but the construction itself is geometrically more transparent.

**0. Introduction.** The first examples of compact complex symplectic manifolds which are non-Kahler were constructed by D. Guan in a series of preprints [3], [4], [5]. In particular, he constructed simply connected manifolds with the above property, thus disproving the conjecture of A. Todorov [7].

Guan's results indicate the importance of finding simple criteria which distinguish Kahler and non-Kahler compact complex symplectic manifolds. The failure of Todorov's conjecture notwithstanding, it still may be the case that there is a purely topological criterion which does this. For example, it might turn out that the multiplication structure on the second cohomology group and the triviality of secondary cohomological operations distinguish Kahler and non-Kahler manifolds of the above type.

The main idea of Guan's first approach is to apply the Beauville-Fujiki construction via symmetric powers ([1], [2]) to a non-Kahler Kodaira surface [6]. Guan's construction is purely geometrical, but the proof of its consistency is based on some calculations. The aim of this article is to provide a geometrical explanation of the calculations involved and arithmetical constraints imposed on the initial data in Guan's construction.

Acknowledgments. I wish to thank D. Guan, Y. Siu and G. Tian for helpful discussions. I am very grateful to J. Cheeger for his generous help in preparation of the manuscript.

**1. Kodaira surfaces.** The class of Kodaira surfaces is described in [6]. Here I will present a summary of this description, omitting the proofs.

Any Kodaira surface can be obtained in the following way: Let us take a line bundle L over an elliptic curve E with  $c_1(L) = m \neq 0$ . Denote the complement of zero section in L by  $L^*$ . The group  $C^*$  acts freely and fiberwise on  $L^*$ . The

Manuscript received May 1, 1995.

American Journal of Mathematics 118 (1996), 1037-1046.

nonzero element of the Lie algebra of  $C^*$  defines a nondegenerate holomorphic field  $e_L$  on  $L^*$ . There is a  $C^*$  invariant nondegenerate holomorphic (2,0)-form won  $L^*$  defined by the following property:  $(w(e_L)) = \omega_1$ . Here  $\omega_1$  is a holomorphic (1,0)-form induced from the projection of  $L^*$  on elliptic curve E. Let  $Z \in C^*$  be a discrete cocompact subgroup. Define the Kodaira surface S as a quotient  $L^*/Z$ . It is a compact surface S which is a fibration with elliptic fiber  $C^*/Z = E_L$  over E. The form w defines a holomorphic nondegenerate form on S which we will denote also by w.

There is a natural holomorphic action of  $E_L$  on S. Moreover the canonical class of S is trivial, and the global holomorphic form w on S is invariant under the action of  $E_L$ .

Topologically, *S* has a structure of a principal fibration over  $T^3$  with  $S^1$  as a fiber. It is a principal fibration. The bundle *L* is associated to  $S^1$  bundle over *E*, which defines a homogeneous norm function on *L* and  $L^*$ . Thus we obtain a projection,  $L^*/Z \to R^*/Z = S_0^1$ . Therefore *S* has a presentation as a product of a nontrivial principal  $S^1$ -bundle over *E* and a circle  $S_0^1$ . The product  $E \times S_0^1$  will be denoted as  $T^3$ . The circle  $S^1$  above is a subgroup of  $E_L$ .

Thus S is a principal holomorphic  $E_L$  fibration over E with a projection  $p_E$ . It is also a principal  $S^1$  fibration over  $T^3$  with a projection  $p_T = p_s p_T$  where  $p_s$ :  $T^3 \rightarrow E$  contracts  $S_0^1$ .

The first homology group,  $H_1(S, Z)$ , is isomorphic to  $Z^3 + Z_m$  and the fundamental group of S is a cyclic central extension of  $H_1(S, Z)$ . In fact the surface S is completely described by the elliptic curves  $E, E_L$  and  $m = c_1(L) > 0$ . The latter will be also called the first Chern class of the elliptic fibration and will be denoted as  $c_1(E_L^S)$  or simply  $c_1$ .

Apart from this we shall need the following simple facts about Kodaira surfaces:

1. The only compact complex curves on S are the fibers of the projection  $p_E$ .

2. Any smooth compact complex surface V with a surjective projection onto S is non-Kahler. In fact, such a surface is also an elliptic fibration with the first cohomology group  $H_1(V, R)$  of odd rank.

We can construct a similar manifold of higher dimension starting from a set of *n* line bundles  $L_i$  over *E* with the first Chern classes  $c_1(L_i) = c_1^i$ . Let *H* be a fiber product of  $L_i^*$  over *E*. We can factorize *H* by a natural action of  $Z^n$  and obtain a compact complex manifold  $S_n = H/Z^n$ . The manifold  $S_n$  is naturally fibered over *E* with a fiber *T* which is a product of *n* copies of  $E_L$ .

LEMMA 1.1. Assume that the elements  $L_i$  define a sublattice of rank one in PicE and at least one of  $c_1^i \neq 0$ . Then the manifold  $S_n$  has a finite nonramified covering  $S_n^c$  which is a product of a Kodaira surface S and a torus T', where T' is isogenious to the product on n - 1 copies of  $E_L$ .

*Proof.* A natural fiberwise map  $n_i: L_i \to L_i^n$  induces a nonramified covering  $n_i: L_i^* \to L_i^{n*}$ . The latter is  $C^*$  equivariant. Thus we can assume that all  $L_i$ 

are isomorphic via a translation on E by taking an appropriate collection of  $n_i$ . Therefore,  $L_i$  becomes a trivial bundle being lifted on  $L_1^*$  and the trivialization is compatible with  $C^*$ -actions on  $L_i$  and  $L_1^*$ . Therefore  $S_n$  has a nonramified covering which is a direct product of  $L_1^*/Z$  and a torus which is a product of the curves  $E_L$ .

*Remark* 1.2. The situation is quite different if the bundles  $L_i$  define independent classes in the group *PicE*. All proper complex subvarieties of  $S_n$  are contained in the fibers T' in the opposite case when the bundles  $L_i$  correspond to linearly independent classes in *PicE*.

**2. Desingularization of a symmetric power of the surface.** Guan's construction begins with a surface S with  $c_1(L) = m > 2$ . Suppose r > 2 is a number dividing m. From this data we construct a complex symplectic manifold of dimension 2r - 2.

Consider the r-symmetric power  $S^r S$  of S. It is a singular complex variety which has a standard Douady desingularization, S[r]. The points of S[r] correspond to zero-dimensional subschemes of S having length r.

**PROPOSITION 2.1.** The complex manifold S[r] has the following properties:

(1) It is a complex compact manifold and carries a nondegenerate holomorphic form.

(2) It has an abelian fundamental group equal to  $H_1(S, Z)$ .

(3) It is fibered over  $T^3$  with smooth irreducible fibers.

(4) The natural projection  $p_t: S[r] \to T^3$  induces an isomorphism of  $\pi_1(S[r])/Z_m$  and  $\pi_1(T^3)$ .

## Proof.

(1) S[r] is a canonical resolution of  $S^r S$  (see [1]) and hence it has a nondegenerate holomorphic (2,0)-form w. The latter is induced from the holomorphic (2,0)-form on S by the natural symmetrization.

(2) The map  $p_T: S \to T^3$  induces a map  $p_t: S[r] \to T^3$  since  $T^3$  has a structure of an abelian group. The surface S fibers over  $T^3$  and a locality of the desingularization implies that the same holds for the projection  $p_t$  of S[r]. Therefore, S[r] is fibered over  $T^3$  with a smooth fiber.

Similarly there exists the projection  $p_e: S[r] \rightarrow E$  and  $p_e = p_s p_t$ .

(3) Since r > 1 the fundamental group  $\pi_1(S^r S)$  coincides with the abelianization of  $\pi_1(S)$ . It also coincides with the fundamental group of the smooth part of  $S^r S$ . Hence  $\pi_1(S[r]) = \pi_1(S^r S)$ .

(4) The natural map of  $\pi_1(S)$  into  $\pi_1(S^r S)$  is defined by choosing any coordinate map of S into S<sup>r</sup> and then applying symmetrization. Hence, the map  $p_{t*}$ :  $\pi_1(S[r]) \rightarrow \pi_1(T^3)$  coincides with the abelianization of the corresponding map for S. There is a natural diagonal action of  $E_L$  on S[r]. This action is locally free since the action of  $E_L$  on S is free. It is also a fiberwise action for  $p_e$  since it is fiberwise on S. For a similar reason, the action of  $S^1 \subset E_L$  on S[r] is fiberwise for the projection  $p_T$ .

Let us denote  $p_t^{-1}(0)$  by  $M_r$  and  $p_e^{-1}(0)$  by  $W_r$ . The latter is a smooth complex manifold with a locally free action of  $E_L$ . The holomorphic vector field  $e_L$  tangent to the orbits of  $E_L$  is dual to the holomorphic one form induced from E under  $p_e$ . Therefore,  $e_L$  coincides with the kernel of the restriction of w to  $W_r$ . Similarly, the tangent field  $e_s$  of the action of  $S^1$  coincides with the kernel of w on  $M_r$ .

**3. Construction.** Let us take the quotient  $W_r/E_L$ . It is a complex compact variety with quotient singularities. The form *w* induces a holomorphic (2,0)-form *w'* on the part of  $W_r/E_L$  corresponding to the free orbits of  $E_L$ .

There exists a compact complex manifold Q with the surjective map  $p_q: Q \to W_r/E_L$  of the degree  $r^2$  that  $p_q^*w'$  is a nonsingular closed holomorphic (2.0)-form on Q. The proof of the existence of such a manifold is the most nontrivial part of Guan's construction. Here we shall use a different argument to prove the existence of Q.

We begin with the manifold  $M_r$  which is a real manifold of dimension 4r-3. Consider the quotient  $R_r = M_r/S^1$ . We shall show that this is a compact complex variety with quotient singularitues and a map  $p_r$ :  $R_r \to W_r/E_L$  of degree r. The manifold Q can be obtained as a cyclic r-covering of  $R_r$  which is ramified only at the singular points of  $R_r$ .

On the local manifold transversal to the orbit of  $S^1$  there is a natural complex symplectic form which is nondegenerate and closed.

*Remark* 3.1. If the action of  $S^1$  on  $M_r$  is free, then the quotient space  $M_r/S^1$  is a complex manifold with a natural holomorphic symplectic structure. Unfortunately, in our case the action is not free since some points of S[r] have nontrivial cyclic stabilizers.

Instead of S[r], let us take a direct product X of r-copies of the surface S. In the same way, the preimage  $X_0$  of  $0 \in T^3$  will have a free action of  $S^1$ . The quotient variety  $N_R = X_0/S^1$  is a complex symplectic variety, since the diagonal action of  $S^1$  on  $X_0$  is free in this case.

LEMMA 3.2. Let  $x \in M_r$  be a point with a nonzero stabilizer. Then the stabilizer is a cyclic group  $Z_l$  where l divides r and the set of  $Z_l$ -invariant points is a union of  $B_l \subset M_r$ , dim<sub>R</sub> $B_l = 4r/l - 3$ .

*Proof.* The group  $Z_l \in S^1$  stabilizes the scheme  $x \in S[r]$  of length r provided the latter consists of translations by  $Z_l$  of the scheme of length r/l. These translations are parametrized by a variety S[r/l] with a real dimension 4r/l. The restriction of the projection  $p_T$  gives rise to a fibering of S[r/l] over  $T^3$ . Hence the subvariety  $B_l \subset S[r/l]$  has real dimension 4r/l - 3.

1040

*Remark* 3.3. Since S[r/l] is smooth, all the components of  $B_l$  are smooth subvarieties of  $M_r$ . The map of  $p_l^l$ :  $S[r/l] \to T^3$  is a combination of  $p_t$  for r/l and a multiplication by l on  $T^3$ . Hence  $B_l$  is in fact isomorphic to the union of  $l^3$  copies of  $M_{r/l}$ .

COROLLARY 3.4. Since  $codim_R B_l$  in  $M_r$  is strictly greater than 2 for any l,  $\pi_1(M_r) = \pi_1(M_r - \bigcup_l B_l)$ . From the exact homotopy sequence for the fibration of S[r] over  $T^3$  we obtain that  $\pi_1(M_r) = Z_m$  and is equal to the torsion subgroup in  $H_1(S)$ .

*Remark* 3.5. The generator of  $\pi_1(M_r)$  can be represented by the smallest orbit  $S^1/Z_r$  under the diagonal action of  $S^1$ . Since the fundamental group is abelian, we can consider its elements as oriented circles without fixing an initial point.

The generator coincides with the image of the composition of coordinate imbedding of  $S^1$  into  $S^r S^1$  and into S[r]. The space  $S^r S^1$  is a fibration over  $S^1$  with a ball  $D^{r-1}$  as a fiber. The projection  $p_s$  on  $S^1$  arises from the group structure on  $S^1$ . The orbit  $S^1/Z_r$  projects isomorphically on  $S^1$  and hence represents the same class e as the coordinate circle. The free orbit of  $S^1$  represents the class re.

**Notation.** We shall denote as  $\tilde{M}$  the open subvariety  $M_r - \bigcup_l B_l$ .

The action of  $S^1$  on  $\tilde{M}$  is free, and we denote the quotient  $\tilde{M}/S^1$  by  $\tilde{R}$ . It is a smooth open submanifold of  $R_r$  with a complex symplectic structure induced by  $w_M$ .

LEMMA 3.6.  $\pi_1(\tilde{R}) = Z_r$ .

*Proof.* Indeed, there is a surjective map of  $\pi_1(\tilde{M}) = Z_m$  onto  $\pi_1(\tilde{R})$  and the kernel of it is generated by the class *re*. Hence  $\pi_1(\tilde{R}) = Z_m/re = Z_r$ .

COROLLARY 3.7. There exists a nonramified  $Z_r$ -covering R' of  $\tilde{R}$  which is an open simply connected symplectic complex manifold.

We now have to show that there is a natural smooth compacitification Q of R' which is a ramified covering of  $R_r$ .

Consider now the structure of  $M_r$  and  $W_r$  in the neighborhood of a nonfree orbit. Let  $(S^1/Z_l)_x$  be a nonfree orbit of  $S^1$  in  $M_r$  and  $U_x$  be its small  $S^1$ -invariant neighborhood in  $M_r$ . Let  $D_x$  be a transversal ball to  $(S^1/Z_l)_x$  in  $M_r$ . The action of  $S^1$  on  $U_x$  induces a natural map  $q_x$ :  $D_x \times S^1 \to U_x$ . This map is a nonramified cyclic  $Z_l$ -covering of  $U_x$ .

The ball  $D_x$  has a natural complex symplectic structure induced by the form w, since the tangent field  $e_s$  to the orbits of  $S^1$  coincides with the kernel of w on  $M_r$ . This structure is invariant under the action of  $Z_l$  on  $D_x$ . Therefore,  $D_x/Z_l$  has a natural structure of local complex space.

The above complex structures are compatible on the intersection of the quotients for different  $S^1$ -orbits in  $M_r$  since they correspond to the same form w. Thus,  $R_r$  has a structure of complex variety, with  $D_x/Z_l$  being a neighborhood of a point.

The ball  $D_x$  is also transversal to the orbits of  $E_l$  in the space  $U_x^L$  which is the  $E_l$ -orbit of  $U_x$  in  $W_r$ . If G is a stabilizer in  $E_L$  on the  $E_L$ -orbit of  $(S^1/Z_l)_x$ then  $Z_l \subset G$  and G is a finite abelian group with a complex action on  $D_x$ . The local complex structure of  $W_r/E_L$  coincides with  $D_x/G$ .

LEMMA 3.8. The projection map  $p_R: R_r \to W_r/E_L$  is a finite map of compact complex spaces of degree r.

*Proof.* We have to check that  $p_R$  is complex locally, but  $p_r$  coincides locally with a map  $D_x/Z_l \to D_x/G$  where G is a finite group of complex transformations of  $D_x$  and  $Z_l \subset G$ . The map  $p_R$  is surjective since  $M_r$  intersects all  $E_L$ -orbits in  $W_L$ . Let  $S_0^1$  be a complementary subgroup to  $S^1$  in  $E^L$ . We have a natural action of  $S_0^1$  on  $W_r/S^1$ . There is also a natural projection  $p_s$ :  $W_r/S^1 \to S_0^1, p_s^{-1}(0) = R_r$ .

The generic orbit of the diagonal action of  $S_0^1$  on  $W_r/S^1$  maps with the degree r into  $S_0^1$ . Therefore, the degree of  $p_R$ :  $R_r \to W_r/E_L$  is equal to r.

*Remark* 3.9. The map  $p_R$  is nonramified over the open subvariety  $\tilde{M} \subset M_r$  corresponding to the free orbits of  $E_L$  in  $W_r$ .

In order to show the existence of natural ramified *r*-covering of  $R_r$  we have to prove that the map  $p_x: D_x \to D_x/Z_l$  can be constructed from  $D_x/Z_l$  in a canonical way.

LEMMA 3.10. Suppose that nonfree orbits of  $Z_l$  in  $D_x$  constitute a complex subset F of codimension more than 1. Then:

- (1)  $F/Z_l$  coincides with the set of singular points  $Sing \subset D_x/Z_l$ .
- (2)  $\pi_1(D_x/Z_l Sing) = Z_l.$
- (3)  $D_x$  coincides with holomorphic envelope of  $D_x F$ .

*Proof.* Indeed, (2) and (3) follow from the codimension condition for F, and (1) follows from the fact that the action of  $Z_l$  is topologically linear near x.

COROLLARY 3.11. The subset F in our case corresponds to the quotient  $\bigcup_l B_l/S^1$ and has a complex codimension > 1. Therefore, the map  $p_x$  is canonically defined by  $D_x/Z_l$  itself. In particular the maps  $p_{x_i}$  are compatible on the intersection of  $D_{x_i}/Z_{l_i}$  for different  $x_i, l_i$ .

LEMMA 3.12. The intersection of  $\tilde{R}$  and  $D_x/Z_l$  is equal to  $D_x/Z_l - Sing$ . The cyclic universal covering R' of  $\tilde{R}$  induces the universal covering  $D_x - F \rightarrow D_x/Z_l - Sing$ .

*Proof.* According to the construction the covering  $p_x: D_x \times S^1 \to U_x$  is induced from the universal  $Z_l$  covering of  $D_x/Z_l - Sing$ . Therefore,  $\pi_1(D_x/Z_l - Sing)$  is generated by the image of a perturbed orbit  $(S^1/Z_l)_x$  in  $U_x$ .

1042

In a similar way the group  $\pi_1(\tilde{R})$  is generated by a perturbed orbit  $S^1/Z_r$  and the map  $\pi_1(D_x/Z_l - Sing) \to \pi(\tilde{R})$  is a monomorphism,  $Z_l \to Z_r$ . Hence, the  $Z_r$ -cyclic covering R' induces a  $Z_l$ -covering  $D_x - F \to D_x/Z_l - Sing$ .

We can consider now a variety Q obtained as a  $Z_r$ -cyclic ramified covering of  $R_r$ . In order to do this we complete the local neighborhood  $D_x - F$  in R' as  $D_x$ . This completion is canonical and the completions are compatible on the open parts of the intersections of  $D_{x_i} - F$  for different  $x_i$ . Therefore we obtain a smooth complex manifold Q as a ramified cyclic  $Z_r$ -covering of  $R_r$ .

LEMMA 3.13. The manifold Q is simply connected and has a natural complex symplectic structure.

*Proof.* Indeed, R' is simply connected and the real codimension of its complement in Q is greater than 1. Therefore Q is also simply connected.

The form w induces a complex symplectic structure on R' and on any of the complex balls  $D_x$ . Since the symplectic structures induced on these varieties are compatible we obtain the holomorphic nondegenerate (2.0)-form  $\omega$  on Q.

Thus, we have constructed a compact complex symplectic simply connected manifold Q.

4. Absence of Kahler structure. Let us notice first that Q has a holomorphic projection on  $W_r/E_L$  of degree  $r^2$ . Thus it is exactly the manifold constructed by Guan [5].

Guan gave a proof that Q does not admit a Kahler structure, but I would like to present here a more geometrical argument. Namely, it turns out that Q contains surfaces which are non-Kahler and the structure of complex submanifolds in Q is interesting enough to be considered.

Let X be a product of r copies of S and  $p_{X,E}$ :  $X \to E$  be a natural projection. Define  $N_E$  as a  $p_{X,E}^{-1}(0)$ . It is a complex manifold with a diagonal action of  $E_L$  and a holomorphic (2,0)-form w' obtained as a restriction of the holomorphic (2,0)-form on X invariant under symmetric group. The vector field tangent to the orbits of  $E_L$  coincides with the kernel of w' and the action of  $E_L$  on  $N_E$  is free. Therefore, the quotient variety  $N = N_E/E_L$  has a nondegenerate holomorphic (2,0)-form  $\omega'$ .

LEMMA 4.1. There is a natural meromorphic projection  $p_N: N \to W_r/E_L$ .

*Proof.* Indeed, there is a proper finite map of N to the variety  $V_r/E_L$ , where  $V_r$  is a preimage of  $0 \in E$  under a natural projection  $p'_T$ :  $S^r S \to E$ . On the other hand,  $V_r/E_L$  and  $W_r/E_L$  are naturally bimeromorphically equivalent, since the equivalences between  $S^r S$  and S[r],  $V_r$  and  $W_r$  respectively are  $E_L$ -equivariant.

*Remark* 4.2. The manifold  $N_R$  constructed in the previous section is a cyclic nonramified  $Z_r$ -covering of N. This follows from the argument of lemma 3.8.

LEMMA 4.3. There is a structure of toric fibration on N with the following properties:

(1) Its fiber T is isomorphic to a product of r - 1 copies of the curve  $E_L$ .

(2) Its base is a torus  $T_0$  isomorphic to a product of r - 1 copies of the curve  $E_0$ .

(3) The fibration is described by r-1 integer vectors  $v_i = (-m, -m, ..., 0, -m, ..., 0)$ , where 0 stands on ith and r - 1th places.

*Proof.* The initial variety X is a fibration over the product  $T_E$  of r copies of the curve E. The fiber T' is a product of r copies of  $E_L$  and X is a principal T' fibration. It can be described by a diagonal scalar matrix  $c_1^{i,j} = 0$  for  $i \neq j$  and  $c_1^{i,i} = m$ . The variety  $N \subset X$  is a fibration with T' as a fiber. The base  $T_0 \subset T_E$  is also a product of r - 1 elliptic curves  $E_0$ . The same holds for  $N/E_L$  with  $T = T'/E_L$  as a fiber. The quotient  $T = T'/E_L$  is isomorphic to the product of r - 1 copies of  $E_0$ . The only problem now is how to make the choice of the representation of T as a product. We choose first r - 1 coordinates in  $T_E$  as coordinates in T.

We can also choose the basis of elliptic curves  $E_i$  in  $T_0$  as  $(0, ..., x, 0, ...-x)_i$ , where  $x \in E_0$  and it is nontrivial for the *i*th and *r*th coordinates in the presentation of  $T_0$  in the standard product  $T_E$  of *r*-copies of  $E_0$ .

The fibration of N is described by Chern classes  $c_1^{i,j}$  in these coordinates. Here every series  $c_1^{i,j}, j \in (1, ..., r-1)$  describes the restriction of *T*-fibration over the elliptic curve  $E_i$  corresponding to all the other coordinates but  $x_i$  being constant.

The fibration T' is described by the series  $(0, ..., m, ..., m)_i$  and the quotient N with  $T = T'/E_L$  as a fiber corresponds to  $(-m, -m, ..., 0, -m, ..., 0)_i$ .

Elliptic curves parallel to  $E_i$  are parametrized by the points  $t \in T_0/E_i$ . Denote the preimage of  $E_{i,t} \subset T_0$  in N as  $N_t$ .

LEMMA 4.4. If r > 2 and  $t \in T_0/E_i$  is a torsion point then  $N_t$  has a finite nonramified covering isomorphic to a product of Kodaira surface and r - 2 copies of  $E_L$ .

*Proof.* Indeed, the restriction of  $L_j$  to  $E_{i,t}$  is equivalent to the translation of  $L_i$  by the *j*th coordinate of *t*. Therefore, if *t* is a torsion point the restriction of bundles  $L_j$  generate a subgoup of rank 1 in  $PicE_{i,t}$ . Hence we can apply Lemma 1.1.

*Remark* 4.5. We can similarly describe Kodaira surfaces in the preimage of any elliptic curve in  $T_0$ .

LEMMA 4.6. If  $r \ge 3$  then the manifold N contains Kodaira surfaces and the latter constitute a dense subset in N.

*Proof.* Since torsion points constitute a dense subset in  $T/E_i$ , the set of nonintersecting Kodaira surfaces is dense in N due to the previous lemma.

1044

COROLLARY 4.7. The manifold Q contains a surface V which has a meromorphically surjective map onto some Kodaira surface. Indeed, we can take a Kodaira surface S in N passing through a point  $x \in N$  such that the map of S into  $W_L/E_L$  is a meromorphic imbedding and  $p_N(x)$  is well defined and is a smooth point of  $W_L/E_L$ . We can also assume that  $p_N(x)$  lies outside of the ramification locus of the projection of Q onto  $W_L/E_L$ . We can take as V the preimage of  $p_N(S)$  in Q.

LEMMA 4.8. The manifold Q does not admit a Kahler structure.

*Proof.* It contains a surface V (may be singular) which has a finite meromorphic surjective map on S' by the above construction.

Now the lemma follows from the following general statement.

LEMMA 4.9. The smooth complex manifold M does not admit a Kahler structure if it contains a singular compact complex surface V with a meromorphic surjection onto a Kodaira surface.

*Proof.* Indeed if V is nonsingular then it is non-Kahler and therefore M cannot be Kahler. If V is singular then we can desingularize V by a sequence of blow ups on M with smooth centers. But if M was Kahler then the resulting variety M' obtained from M by a sequence of blow ups also must be Kahler. On the other hand, it contains a nonsingular model of V which is not Kahler. This yields a contradiction.

To be more precise, it is sufficient to blow up points and smooth curves on M in order to desingularize V. It follows from a general theorem of H. Hironaka, but in our case it is easy to make the blow up procedure explicit.

COROLLARY 4.10. The variety Q constructed in Section 3 is a simply connected complex symplectic manifold which does not admit a Kahler metric.

*Remark* 4.11. In fact, we do not need to deal with a complicated process of resolving singularities in our particular case.

By taking a generic enough Kodaira surface  $S \subset N$  we can achieve that the image  $S' \subset W_r/E_L$  will be a nonsingular surface. The surface S' is a blowing up of *S* at one point. We can also assume that S' does not intersect the ramification locus of the projection  $Q \to W_r/E_L$ . Thus we can actually construct a nonsingular surface  $V \subset Q$  with a surjective map on the Kodaira surface *S*.

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, 251 MERCER STREET, NEW YORK, NY 10012–1185

## REFERENCES

- A. Beauville, Variétés kähleriennes dont la premiére classe de Chern est nullee, J. Differential Geometry 18 (1983), 755–782.
- [2] A. Fujiki, On the De Rham cohomology groups of compact Kähler Symplectic manifolds, Adv Stud. Pure Math. (Tokyo, Japan) vol. 10 (T. Oda, ed.), North-Holland, Amsterdam, 1987, pp. 105– 165.
- [3] D. Guan, Examples of compact holomorphic symplectic manifolds which admit no Kähler structure, Geometry and Analisys on Complex Manifolds—Festschrift for Professor Kobayashi S. 60th Birthday, World Scientific, Teaneck, NJ, 1994, pp. 63–74.
- [4] \_\_\_\_\_\_, Examples of compact holomorphic symplectic manifolds which are not Kahlerian III, preprint, 1994.
- [5] \_\_\_\_\_\_\_ Examples of compact holomorphic symplectic manifolds which are not Kahlerian II, *Invent.* Math (to appear).
- [6] K. Kodaira, On the structure of compact analytic surfaces II, Amer. J. Math. 88 (1966), 682-721.
- [7] A. Todorov, Every holomorphic symplectic manifold admits Kahler metric, preprint, 1991.