
ASIAN J. MATH. c© 1999 International Press

Vol. 3, No. 1, pp. 1–16, March 1999 001

MOMENT MAPS AND DIFFEOMORPHISMS∗

S. K. DONALDSON†

Atiyah and Bott pointed out, in [1], that the curvature of a connection on a bun-
dle over a surface can be viewed as the “momentum” corresponding to the action of
the gauge group. This observation, together with various extensions, has stimulated
a great deal of work and provides a conceptual framework to understand many phe-
nomena in Yang-Mills theory. Our purpose in this paper is to explore some similar
ideas in the framework of diffeomorphism groups. We begin by identifying a moment
map in a rather general setting, and then see how the ideas work in some more spe-
cific situations. We hope to show that the moment map point of view is useful, both
in understanding certain established results and also in suggesting new problems in
geometry and analysis. While these analytical questions are the main motivation for
the work, we will concentrate here on the formal aspects and will not make any serious
inroads on the analysis.

1. Identification of moment maps.

1.1. Volume-preserving diffeomorphisms. Suppose a Lie group G acts on a
symplectic manifold (M,Ω), preserving the symplectic form. A moment, or momen-
tum, map for the action is a map µ : M→ Lie(G)∗ with the following property. For
each element ξ in the Lie algebra Lie(G) the function 〈µ, ξ〉 on M has derivative

d〈µ, ξ〉 = iX(ξ)(Ω),

where X(ξ) is the vector field on M defined by the infinitesimal action of ξ. This is
to say that 〈µ, ξ〉 is a Hamiltonian function for the 1-parameter subgroup generated
by ξ.

Now consider the following set-up. Let S be a compact k-manifold with a fixed
volume form σ ∈ Ωk(S). Let (M, ω) be a symplectic manifold and let M be the
infinite-dimensional space of smooth maps from S to M , in some fixed homotopy
class. This may be considered as an infinite-dimensional manifold in the usual way:
the tangent space to M at a map f : S → M is the space of sections of the bundle
f∗(TM) over S. (We will ignore, in this paper, any foundational questions about
infinite dimensional manifolds.) Now M carries a natural symplectic form Ω: for
sections v, w of f∗(TM) we define

Ω(v, w) =
∫

S

ω(v, w)σ.

The Lie group G of volume-preserving diffeomorphisms of S acts on M by composition
on the right, preserving Ω, so we may seek a moment map for this action. Let us
suppose first that f∗([ω]) is zero in the de Rham cohomology H2(S) and that H1(S) =
0. Then for each f ∈ M we can make the following construction. We can, by
hypothesis, choose a 1-form a ∈ Ω1(S) such that f∗(ω) = da. Then for any vector
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field ξ on S we can define a pairing

〈a, ξ〉 =
∫

S

a(ξ)σ.

Suppose that ξ is in the Lie algebra of G: that is,

Lξ(σ) = d(iξ(σ)) = 0,

(here Lξ denotes the Lie derivative). Then the pairing 〈a, ξ〉 is independent of the
choice of a. For, since H1(S) = 0, any other choice a′ differs by the derivative of a
function, a′ − a = dg say, and

∫

S

(dg)(ξ)σ =
∫

S

dg ∧ (iξ(σ) =
∫

S

d(giξ(σ))− gd(iξ(σ)) = 0.

So in sum we have a well-defined linear map ξ 7→ 〈a, ξ〉 on the Lie algebra of G which
we denote by µ(f). Another way of expressing this is to say that the Lie algebra of G
is identified with ker d : Ωk−1(S) → Ωk(S) and we have a dual pairing of this space
and coker d : Ω0(S) → Ω1(S) which is isomorphic to the space ker d : Ω2(S) → Ω3(S)
in which f∗(ω) lives.

Proposition 1. If H1(S) = 0 and [ω] = 0 in H2(S) then the above construction
gives a map µ : M→ Lie(G)∗ which is a moment map for the action of G on (M,Ω).

To verify this, consider a map f : S → M , a section v of f∗(TM) over S and
a volume-preserving vector field ξ on S. Then, with µ defined as above, 〈µ, ξ〉 is a
function on M and d〈µ, ξ〉 is a 1-form on M, which we can evaluate on the tangent
vector v ∈ TMf . This is the derivative d

dtµ(ft)(ξ), where ft is a 1-parameter family
of maps from S to M with f0 = f and t-derivative v (all time- derivatives being
evaluated at t = 0). Now

d

dt
f∗t (ω) = d(iV (ω)),

so d
dtat = iV (ω) and

d

dt
µ(ft)(ξ) =

∫

S

iv(ω)(f∗(ξ)σ =
∫

S

ω(v, f∗(ξ)) = Ω(v, X(ξ)),

and this is precisely the identity required for a moment map.
We may vary the topological hypotheses in force above somewhat. First, if

f∗([ω]) 6= 0 in H2(S) we may fix a reference form ν in the de Rham cohomology
class and choose a so that f∗(ω)−ν = da. The calculation goes through as before and
we do get a moment map, but not an equivariant moment map, with respect to the
co-adjoint action. If H1(S) 6= 0 we may proceed in two ways. On the one hand there
is a Calabi homomorphism C from the group of volume-preserving diffeomorphisms
to the torus Hn−1(S;R)/Hn−1(S;Z). The kernel of C is a Lie group G0 whose Lie
algebra can be identified with the exact (n − 1)-forms, and our construction yields
a moment map for the action of this group. On the other hand, suppose that the
class [ω/2π] is an integral class in H2(M) so there is a unitary line bundle L over
M having a connection with curvature −iω. Suppose also that f∗(L) is trivial as a
complex line bundle over S. Let M̃ be the covering space of M consisting of pairs
(f, τ) where τ is a homotopy class of trivialisations of f∗(L), a Galois covering with
group H1(S;Z). Then for each point of M̃ we can choose a trivialisation of f∗(L)
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within the given homotopy class. The connection form in this trivialisation yields a
1-form a with da = f∗(ω) and our construction gives a moment map for the natural
action of G on M̃.

1.2. The symplectic case. Now consider the case when S is also a symplectic
manifold of dimension k = 2l, with symplectic form ρ. This gives rise to a volume
form σ = ρl/l! and so fits into the framework above, but we can write the relevant
moment map in a different way. The group of interest is now the group GSp of
symplectomorphisms of S.

For simplicity let us again assume that H1(S) = 0, so all symplectic vector
fields on S are Hamiltonian and the Lie algebra of the symplectomorphism group
can be identified with the functions on S modulo the constants, or equally with the
functions of integral zero. This carries an invariant L2 inner product which embeds
the Lie algebra naturally in its dual. Now let F be a function on S and ξF be the
Hamiltonian vector field which it generates. Following the notation of the previous
section, if f∗(ω) = da the pairing 〈a, ξF 〉 can be written

〈a, ξF 〉 = 1/l!
∫

S

a(ξF )ρl

= 1/l!
∫

S

a ∧ dF ∧ ρl−1,

= 1/l!
∫

S

Fda ∧ ρl−1

= 1/l!
∫

S

Ff∗(ω) ∧ ρl−1

=
∫

S

FHfσ = 〈F, Hf 〉,

where Hf is the function on S defined by

(2) Hfσ = f∗(ω) ∧ ρl−1.

This means that the moment map for the action of GSp is given simply by µ(f) = Hf .
Notice that Hf is defined locally, without any topological assumptions. In the case
when H1(S) 6= 0 the relevant group consists of the exact symplectomorphisms: the
kernel of the restriction of the Calabi map. To sum up we have

Proposition 3. The map f 7→ Hf is an equivariant moment map for the action
of the group of exact symplectomorphisms of S on M.

2. Brief recap of moment map geometry. We will quickly recall some
standard constructions, as background for the rest of the paper. For details we refer
to [7],[8]. In this exposition we have in mind primarily the case of finite-dimensional
manifolds, although of course all the formal aspects will go over immediately to infinite-
dimensional situations, of the kind we are considering in the body of this paper.

2.1. If µ is an equivariant moment map for the action of G on (M,Ω) one may
form the symplectic quotient

M//G = µ−1(0)/G.

This is a manifold if G acts freely on M and it inherits an induced symplectic form.
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Suppose now that M is a Kahler manifold, and Ω is the Kahler form. Suppose that
the action of G extends to an action of the complexified group Gc. Then, at least on
an open set of “stable points”, one has an identification

M//G = M/Gc.

This says that on an open set of stable points, each Gc-orbit meets the zero-set µ−1(0)
in a unique G-orbit. Using this identification, one sees that the symplectic quotient
has a natural Kahler structure.

2.2. The relation between the symplectic and complex quotients, and the role
of stability, is clarified by a flow that one can define on M in this Kahler situation,
provided that the Lie algebra of G has an invariant inner product. This means that
the moment map can be regarded as a map into the Lie algebra, rather than its dual.
This flow is defined by the equation

(4)
dx

dt
= IX(µ(x)),

for x(t) ∈ M. Here I denotes the usual action of complex multiplication on tangent
vectors in M. This is the gradient flow of the function ‖µ‖2 on M, one has:

d

dt
‖µ(x)‖2 = −‖X(µ(x))‖2.

This gradient flow clearly preserves the Gc-orbits in M. The stable points, which one
expects will form a dense open set, are those which flow down to the minimum of
the function: the zero set of µ. More generally one can study the stratification of M
defined by infimum of ‖µ‖2 on the Gc orbits.

2.3. Now consider the case when M is a hyperkahler manifold: so we have three
complex structures I, J,K satisfying the algebraic relations of the quaternions and
corresponding Kahler forms Ω1,Ω2,Ω3 defining the same Riemannian metric on M.
Suppose that the action of G preserves all this structure and we have equivariant
moment maps µ1, µ2, µ3 for the three symplectic forms. We can put these together
into a single map

µ : M→ Lie(G)∗ ⊗R3.

The hyperkahler quotient [7] is µ−1(0)/G and this inherits a hyperkahler structure.
The final fact we wish to record is less well-known: it is essentially implicit in the
work of Taubes [11], who studied the case of Yang-Mills theory over R4 where the
hyperkahler quotient of the space of all connections is the instanton moduli space. In
general, suppose that the Lie algebra of G has an invariant inner product and consider
the G-invariant function E = ‖µ‖2 on M. The gradient flow of this function is given
by

dx

dt
= IX(µ1(x)) + JX(µ2(x)) + KX(µ3(x)).

The minimum of E is obviously given by the zero-set of µ, and we want to focus now
on the other critical points. We associate to the problem an index d equal to the
dimension of the hyperkahler quotient, if this is nonempty. Thus, in finite dimensions:

d = dim(M)− 4 dimG.
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In suitable infinite-dimensional problems one interprets this as minus the Fredholm
index of a linear operator L. Given any point x ∈M the infinitesimal action is a linear
map ξ 7→ Xx(ξ) from Lie(G) to TMx. The operator L = Lx : H ⊗ LieG → TMx is
formed from this using the action of the quaternions:

L(ξ0 + iξ1 + jξ2 + kξ3) = Xx(ξ0) + IXx(ξ1) + JXx(ξ2) + KXx(ξ3).

If M is connected the index of Lx will not depend upon x. If x lies in the zero set
of µ the tangent space of the hyperkahler quotient at x can be identified (modulo a
suitable implicit function theorem) with the kernel of the adjoint of Lx.

Proposition 6. If d ≥ 0 then there are no strictly stable critical points of E on
M outside the minimum set µ−1(0).

We outline a proof of this proposition. The equation defining a critical point x
of E is

Lx(µ(x)) = 0.

So if µ(x) 6= 0, Lx has a non-trivial kernel. The hypothesis d ≥ 0 then imples that the
adjoint operator L∗ has a non-trivial kernel. The operator is H-linear, so the kernel is
a quaternionic vector space. Let v be an element of this kernel and H be the Hessian
of E at x, a quadratic form on TMx. A calculation shows that

H(v) + H(Iv) + H(Jv) + H(Kv) = 0.

So H cannot be positive definite, as asserted.
One can hope, at least in particular cases, to strengthen this statement to show

that H has a non-trivial negative subspace and further to get a lower bound on the
dimension, as in the work of Taubes.

3. Moduli spaces.

3.1. Special Lagrangian submanifolds. Suppose M is a complex n-manifold
with a non-vanishing holomorphic n- form θ ∈ Ωn,0(M). Suppose that in addition
M has a Kahler metric ω. Then a special Lagrangian submanifold P ⊂ M is, by
definition, a submanifold of (real) dimension n such that

(1) the restriction of θ to P is a real n-form:
(2) the restriction of ω to P is zero, i.e. P is a Lagrangian submanifold in the

ordinary sense of symplectic geometry.
These submanifolds were introduced by Harvey and Lawson [5] and have been

studied intensively, following the work of Strominger, Yau and Zaslow [10], in the
context of mirror symmetry [4],[6]. They may be fitted into our general picture as
follows. Consider a fixed compact n-manifold S with a volume form σ, and suppose
first that H1(S) = 0. Then the group of volume-preserving diffeomorphisms of S acts
on the space M of maps from S to M in a given homotopy class and we have identified
a moment map for the action above. A map f : S → M is a zero of the moment map
precisely when f∗(ω) = 0. Now the complex structure on M means that we can
regard M as an infinite dimensional complex manifold, via the complex structure on
the bundles f∗(TM), moreover Ω becomes a Kahler form on M. Consider now the
subset N ⊂ M consisting of maps f : S → M with f∗(θ) = σ. Note that such maps
are necessarily immersions. This subset N is clearly preserved by the action of G on
M. Moreover N is a complex submanifold of M. For, by definition, it is the zero-set
of the map f 7→ f∗(θ) − σ, which we can regard as mapping to the vector space of
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complex n-forms on S of integral 0. The derivative of this map, at a point f0 ∈ N , is
the linear map D,

D(v) = Lv(θ) = d(iv(θ)),

for v ∈ TMf0 = Γ(f∗(TM)). Here we have used the fact that dθ = ∂θ = 0. Now
D maps onto the forms of integral zero, so N is a submanifold, and moreover D is
complex linear, since θ has type (n, 0), so N is a complex submanifold. The zeros of
the moment map for the action of G on N are the “parametrised” immersed special
Lagrangian submanifolds of the given topological type, and the moduli space of special
Lagrangian submanifolds appears in this framework as the symplectic quotient N//G.

As it stands the discussion above misses the cases of most interest, because if
H1(S) = 0 the special Lagrangian submanifolds are isolated, and the moduli space
is just a discrete set. We can extend the set-up in the manner of 1.1 to allow non-
trivial H1 using the kernel G0 of the Calabi map. The symplectic quotient N//G0

is a torus bundle over the moduli space, V say, of special Lagrangian submanifolds,
with fibre T = H1(S;R)/H1(S;Z). The general moment map theory yields a Kahler
metric on N//G0. Unfortunately this is not quite the same as the space considered
in the Mirror symmetry literature, which is a bundle over V with fibre the dual torus
T ∗ = H1(S;R)/H1(S;Z).(However Hitchin has shown how to modify the construction
to fit in with the literature on the geometry of this latter space). In the special case
when n = 2, which we will discuss further below, the two spaces are the same since T
is then isomorphic to T ∗.

3.2. The symplectic case. There is a parallel discussion in the case when
M is a complex symplectic manifold, so there is a holomorphic symplectic form Θ ∈
H2,0(M). We call an (immersed) submanifold P ⊂ M (with dimRP = dimCM = n)
anLS-submanifold if it is Lagrangian with respect to the (real) symplectic form Re(Θ)
and symplectic with respect to the (real) symplectic form Im(Θ). (Of course we can
always replace Θ by iΘ, reversing the roles of the real and imaginary parts.) We
digress to point out the following example:

Example 7. Let Z be any complex manifold with H1(Z) = 0 and let M be
the total space of the cotangent bundle T ∗Z, with the canonical complex structure
and holomorphic symplectic form Θ. We consider those LS submanifolds P ⊂ T ∗Z
which are graphs of sections of the fibration T ∗Z → Z. The real part of Θ is the
canonical 2-form on T ∗Z, regarded as the real cotangent bundle, so the first condition
says that P is the graph of an exact 1-form dφ, where φ is a real-valued function on
Z. A litle thought shows that second condition asserts that i∂∂φ > 0 on Z, i.e. φ
is a Kahler potential. Thus the LS-graphs in T ∗Z can be identified with the Kahler
potentials modulo constants. There is a global variant of this which applies to any
complex manifold Z with a holomorphic line bundle L → Z. Let p : J1(L) → Z
be the bundle of 1-jets of sections of L and let U ⊂ J1(L) be the subset of jets of
non-vanishing sections. Let ML be the fibrewise quotient of U by the natural action
of C∗. Locally in Z we can trivialise L which identifies ML with the cotangent bundle,
and two different trivialisations induce the same 2-form on ML, so ML has a canonical
complex symplectic structure. Then the LS-sections of ML can be identified with the
Kahler metrics on M in the cohomology class c1(L).

Returning to the main theme, fix a real symplectic manifold (S, ρ) and consider
the set N of maps f : S → M with f∗(Θ) = iρ. Then, just as in the previous case, N
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is an infinite-dimensional complex manifold and the group GSp
0 of exact symplectomor-

phisms of S acts on N . Now suppose that M has in addition a Kahler form ω. So we
have three different symplectic forms on M : ω1 = Re(Θ), ω2 = Im(Θ), ω3 = ω. Then
N gets an induced Kahler structure and the Kahler quotient N//GSp

0 is a torus bundle
over the moduli space of submanifolds P ⊂ M which satisfy the three conditions

(7) ω1|P = 0 , ω2|P is nondegenerate , ω3|P ∧ ωn−1
2 = cωn

2 .

Here c is a constant determined by the homotopy class of the map, which we are
allowed to include since the constants act trivially as Hamiltonians. The general
theory tells us that this torus bundle over the moduli space inherits a natural Kahler
structure.

3.3. The hyperkahler case. In the case when M has real dimension 4 the
two discussions co-incide. It is natural also then to suppose that M is a hyperkahler
4-manifold, with three complex structures I, J,K giving an action of the quaternions,
and three Kahler forms ω1, ω2, ω3, with a symmetry under the group SO(3). From
either point of view the objects we are studying are, after a suitable rotation of the
complex structures, complex curves in M . We obtain then

Proposition 8. Suppose M is a hyperkahler 4-manifold and let α be a homology
class in H2(M ;Z). Suppose that ω2(α) = ω3(α) = 0 and ω1(α) > 0. There is
a hyperkahler metric on the moduli space of pairs (C, λ) where C is a smooth I-
holomorphic curve in the homology class α and λ is a holomorphic line bundle of
degree 0 over C.

This structure arises because the moduli space can be regarded as the hyperkahler
quotient of M by the group GSp

0 .

4. Minimising the norm of the moment map. Suppose again that S is a
symplectic manifold and M is Kahler. Then we are in the familar formal picture with
a mapping space M which is Kahler and a symmetry group GSp whose Lie algebra
admits an invariant inner product—the L2 norm. So we may ask how the circle of ideas
sketched in II.2 works in this context. On the one hand we may try to identify “orbits”
of the complexification and search for zeros of the moment map in these orbits. On
the other hand we can look at the gradient flow (4) of the norm of the moment map.
It is not clear whether this programme is sensible in general: for example the gradient
flow equation is not usually parabolic and one cannot be sure if solutions exist even
for a short time with smooth initial data. In this section we will examine a number
of cases when we do arrive at apparently sensible differential geometric problems.

4.1. Diffeomorphisms of surfaces. Suppose here that M is a compact Rie-
mann surface with a fixed metric ω, and that S is diffeomorphic to M . There is no
loss in supposing that the total areas of M, S are equal. Restrict attention to the
open set in M of oriented diffeomorphisms f : S → M . Any such f defines an area
form (f∗)−1(ρ) on the Riemann surface M which we can write as Jfω, where Jf is a
positive function on S. By definition, Jf determines f up to the action of GSp. The
gradient flow equation is

(9)
d

dt
ft = If∗(ξH(ft)),

where H(f) is the moment map—the function f∗(ω)/ρ on S —and ξH is the Hamil-
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tonian vector field of H. Thus H(f) is the composite of f with the real-valued function
J−1

f on S. The evolution equation can be written as an evolution equation for Jf . For
the image of the vector field ξH under f∗ is Igrad(J−1

f ) so

d

dt
Jft

= div(If∗(ξH(ft))) = divgrad(J−1
f ),

and J(t) = Jft satisfies the equation

(10)
d

dt
J = ∆(J−1),

where ∆ is the ordinary Laplace operator on M . Conversely, given a positive solution
J(t) of this equation (10), with J(0) = Jf0 , we can define a time-dependent vector
field on M ,

Xt = grad(J(t)),

and let ψt : M → M be the family of diffeomorphisms obtained from the integral
curves of Xt. Then the composites ft = ψt ◦ f0 satisfy (9). Now equation (10)
is parabolic and the maximimum principle implies that max(J) is decreasing and
min(J) is increasing. It is a straightforward exercise to show that, with any initial
data, solutions exist for all time and converge to constant functions. But maps with Jf

constant are just the area-preserving maps from S to M which are precisely the zeros
of the moment map (since the cosntants act trivially)—just what we would expect in
the general picture.

4.2. The reverse porous-medium equation. Here we ask what happens if
we vary the set-up above to allow maps which are not diffeomorphisms. Consider the
case when M = C, the complex plane, with its standard symplectic structure, and let
S be a compact surface with area form ρ. A map f : S → C can be written as f1 + if2

for real valued functions f1, f2 on S. We can also think of these maps as elements of
the complexification of the Lie algebra of functions on S under Poisson bracket, and
the equation (9) becomes

(11)

d

dt
f1 = {{f1, f2}, f2}

d

dt
f2 = {{f2, f1}, f1}

(Note that we may study the corresponding ODE for pairs of elements of any Lie
algebra.) The zeros of the moment map are pairs (f1, f2) with {f1, f2} = 0, and these
are just the maps which have a 1-dimensional image in C. Suppose that S is the double
of a manifold with boundary S+ and so has a fixed involution σ : S → S. Assume
this is compatible with the symplectic form, so σ∗(ρ) = −ρ. Restrict attention to the
set U of maps f : S → C with f ◦ σ = f and such that f maps the interior of S+

diffeomorphically to its image in C, a domain Ωf ⊂ C. We can define a function Jf

on Ωf in the same fashion as in (4.1), using the restriction of f to Σ+. The equation
(11) corresponds to the same equation (10) in the interior of Ωf , but this must be
supplemented by boundary conditions. Since the domain Ωf depends upon f we
encounter a “free boundary problem”. One can show that the appropriate equation is
just (10) where J−1 is viewed as a distribution on C—extended by zero outside Ωf .
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Now the function Jf is typically unbounded: for a generic map f of the kind we are
considering Jf = O(d−1/2) where d is the distance to the boundary of Ωf . If we write
U = J−2

f then, generically at least, U is smooth up to the boundary and vanishes
transversally there. Our equation can now be written in terms of U , and becomes

(12)
dU

dt
= −U ∆U − 1

2
|∇U |2,

where we have in mind that Ut is a positive function on a domain Ωt, vanishing on the
boundary, and the evolution of Ωt is determined by saying that the boundary moves
inwards with normal velocity |∇U |. This can be compared with the porous medium
equation, much studied in applied mathematics, which is

dU

dt
= −U∆U +

1
2
|∇U |2.

In this latter case the domain expands; the boundary moving outwards with normal
velocity |∇U |.

Now, modulo questions of smoothness on the boundary, if we are given a solution
of (12) we can recover a solution of (11) by integrating a time-dependent vector field
just as before. The zeros of the moment map do not lie inside the open set U we are
considering at present but clearly there are sequences fi of maps in U which converge
to zeros of the moment map. In terms of the functions Jf this corresponds to Jfi

→ Γ
as measures on C, where Γ is a measure supported on a 1-dimensional set |Γ| ⊂ C.
So we are lead to propose the following

Problem 13. For which initial data U0 is there a solution of the the free-
boundary problem (12) defined for t ∈ [0,∞), such that U

−1/2
t converges to a measure

supported on a 1-dimensional subset of C, as t →∞?
If such a solution does exist we interpret it as an integral curve of the gradient

equation (4), converging to a zero of the moment map.
For some initial data this question does have an affirmative answer. Let S be the

standard 2-sphere in R3 with the induced area form, and let x, y, z be the standard
Euclidean co-ordinates, so

{x, y} = z etc.,

generating a copy of the Lie algebra so(3) = su(2) inside C∞(S), and we can look for
solution of (11) inside so(3). The simplest solution is to take:

f1 = (2t)−1/2x, f2 = (2t)−1/2y,

which yields a solution of (12) with Ut supported on a disc of radius (2t)−1/2, and
given in this disc by:

U(w, t) = (2t)−1((4t)−1 − |w|2).
In this case the map ft converges to zero, and U−1/2 converges to 4πδ0. More

generally we have solutions:

f1 = (tanh(t/2) + coth(t/2)) x , f2 = (tanh(t/2)− coth(t/2))y

which yields functions Ut supported on ellipses and with U
−1/2
t converging to a mea-

sure supported on the segment [−2, 2] ⊂ C. One can also show, by reducing the



10 s. k. donaldson

equation to a linear, parabolic, equation, that (13) has an affirmative answer for any
circularly symmetric initial data.

However we cannot expect to find these solutions for all initial data. To see this
let G be the usual Green’s operator on C = R2

G(φ)(w) = (2π)−1

∫

R2
φ(w′) log |w − w′|dw′.

Then the equation (10) implies that

(14)
d

dt
G(Jt) = J−1;

in particular G(Jt) is non-decreasing everywhere and is constant outside the support
of J0. Suppose (13) has an affirmative answer for initial data U0, with support Ω0.
The restriction of G(U−1/2

0 ) is a harmonic function h0 on C \Ω0 and this extends to a
harmonic function h∞—the restriction of G(Γ)— on C\|Γ|. Moreover h∞ ≥ G(U−1/2

0 )
on its domain C \ |Γ|. One can construct examples of initial data where the function
h0 cannot be extended in this way, and other examples when the harmonic extension
is not bounded below by G(U−1/2

0 ), so for these examples the question has a negative
answer. A possibility is that these constraints on G(U−1/2

0 ) are both necessary and
sufficient conditions for a positive answer to (13).

4.3. Kahler metrics. Now suppose that M is a compact Kahler manifold of
complex dimension n and that the symplectic manifold S is diffeomorphic to M . We
restrict attention to the open set of diffeomorphisms f : S → M , so the case n = 1
was the topic of (4.1). As in that case, we can rewrite the gradient flow equation as an
equation for the 1-parameter family of symplectic forms χt = (f∗t )−1(ρ) on M . The
equation is

d

dt
χt = LI ξtχt,

where ξt is the Hamiltonian vector field of the function Ht defined by

Ht χn = ω ∧ χn−1,

with respect to the symplectic form χt. The case we wish to discuss now is when the
initial data χ0 is a positive form of type (1, 1)–that is, a second Kahler structure on the
complex manifold M . In this case the quantity LI ξ0χ0 can be written as i∂∂H0 so the
t-derivative of χt is again of type (1, 1). That is, the set of Kahler forms is preserved
by the gradient flow. The gradient equation can now be written as an equation for a
Kahler potential,

χt = χ0 + i∂∂φt,

and becomes

(15)
dφt

dt
= Ht =

ω ∧ (χ0 + i∂∂φt)n−1

(χ0 + i∂∂φt)n
,

which is parabolic. We arrive here at the point of view explained in [3]. We interpret
the set H0 of Kahler forms cohomologous to χ0 as the images of the fixed form ρ under
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the maps in a single complexified orbit in M. So the problem of finding a zero of the
moment map in a complexified orbit leads us to the following

Problem 16. Let (M, ω) be a Kahler manifold and let [χ0] be another Kahler
metric on M . Can one find a Kahler metric χ in the cohomology class [χ0] such that

(17) χn−1 ∧ ω = cχn,

where c is a constant?
The equation (17) is a nonlinear elliptic PDE of Monge-Ampere type for the

Kahler potential of χ. If the cohomology class of χ0 is the same as [ω] there is a trivial
solution, χ = ω, and for nearby cohomology classes one can use a the implicit function
theorem to find a solution. Moreover an argument using the maximum principle shows
that if a solution exists it is unique. However, the problem does not always have a
solution. To see this, notice first that if a solution does exist then the constant c
is determined topologically by the cohomology classes of the forms. Now consider a
solution of (17) at a fixed point in M . We can choose an basis for the tangent space
at this point which is orthonormal with respect to ω and in which χ is diagonal, with
diagonal entries λi. The condition is:

∑
λ−1

i = nc,

so ncλi ≥ 1 for each i. This means that ncχ − ω is a positive (1, 1) form on M .
Conversely if [ncχ− ω] is not a Kahler class then no solution can exist. For example
if M is a complex surface, n = 2, we may suppose that [ω]2 = 1 and write

[χ] = s[ω] + tη,

where η ∈ H2(M) with η2 = −1, η.[ω] = 0. Then the necessary condition is that:

2c[χ]− [ω] = (s2 − t2)−1( (s2 + t2)[ω] + 2st η ) > 0.

Now let R be the supremum of the set of parameters r such that [ω] + rη is a Kahler
class, and suppose that R < 1. Then taking χ = [ω] + tη where t is slightly less than
than R, we find that 2c[χ]− [ω] is not a Kahler class. Thus we conclude that if (16)
has a solution for all Kahler classes on a complex surface M then the Kahler cone of
M is a component of the entire positive cone for the intersection form i.e. the Kahler
cone consists of the (1,1) classes χ with χ2 > 0, χ.ω > 0. By the Nakai criterion this
is true precisely when M does not contain any curves of negative self-intersection. Of
course the obvious conjecture is that this necessary condition, [ncχ]− [ω] > 0, is also
sufficient for the existence of a solution to (16). One would expect that in cases when
this condition is violated the solution to the parabolic equation (15) will blow up over
some curves of negative self-intersection.

4.4. Surfaces in 4-manifolds. Here we will discuss cases when the maps in-
volved are immersions, rather than diffeomorphisms. We suppose that M is a complex
symplectic manifold of complex dimension 2m, with a holomorphic symplectic form
Θ, and consider the space N of maps f from our symplectic 2m manifold S to M with
f∗(Θ) = ρ. We consider the moment map gradient equation

(18)
df

dt
= If∗(ξf )
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where ξf is the Hamiltonian vector field of the function ω ∧ ρm−1/ρm on S, with
respect to the fixed symplectic form ρ. This evolution preserves N , by the discussion
of (3.2). We may regard the equation as an evolution equation for a 1-parameter
family of (immersed) LS submanifolds Pt ⊂ M : instantaneously the normal velocity
of Pt is the normal component of IX where X is the vector field on Pt obtained as
the Hamiltonian vector field on the symplectic manifold (Pt,Θ|Pt

). Thought of in this
way, the equation (18) becomes parabolic, so short-time solutions exist and one might
hope to prove that solutions exist for all time and converge to zeros of the moment
map: i.e. to submanifolds satisfying (7).

Now let us suppose that M has real dimension 4 and is hyperkahler, as in (3.3).
Then the potential limits of the flow (18) on the LS surfaces in M are complex curves
for an appropriate complex structure. Let us consider, more generally, the hyperkahler
picture. We return to the full space M of maps from S to M on which we have three
moment maps µ1, µ2, µ3 for the action of GSp. In line with the general theory, we
consider the functional

E(f) = ‖µ1‖2 + ‖µ2‖2 + ‖µ3‖2,
on the space M. The gradient flow of this functional is

(19)
df

dt
= If∗(ξ1) + Jf∗(ξ2) + Kf∗(ξ3).

Here the moment maps are functions on S:

Hi = f∗(ωi)/ρ,

and ξi is the Hamiltonian vector field of Hi on S. So, when restricted to the set of
maps N , this hyperkahler flow coincides with the flow (18) we considered before since
H2,H3 are constants on S in this case, and ξ2, ξ3 vanish. To clarify the geometrical
meaning of (19), recall that the Grassmannian of oriented 2-planes in a tangent space
TMp can be identified with a product of 2-spheres:

Gr2 = S(Λ2
+)× S(Λ2

−),

and the three Kahler forms ω1, ω2, ω3 provide a standard orthnormal basis for Λ2
+. So

if p lies in the image of a map f and if we write λ2 = H2
1 (p) + H2

2 (p) + H2
3 (p) then

Hi/λ are the three standard co-ordinates specifying the S(Λ2
+)-component Tf(S)+p of

the tangent space Tf(S)p ∈ Gr2. The Riemannian area form dA induced on S from
the metric on M is simply dA = λρ. So the total area of the image surface is

Area(f(S)) =
∫

S

λρ,

while the hyperkahler energy is

E(f) =
∫

S

λ2ρ.

(More precisely, the energy functional as we have defined it is given by the sum of L2

norms of the functions Hi− Ĥi, where Ĥi are their average values, determined by the
homotopy class of the map. This is because the constant Hamiltonians act trivially.
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However the two functionals differ by a constant.) Comparing the two integrals we
see that

(20) Area(f(S)) ≤
√

I
√

E(f),

where I is the integral of ρ, a constant in the problem. Equality holds in (20) if and
only if λ is a constant. The relation between area and hyperkahler energy is thus much
the same as the familar relation between length and energy of paths in a Riemannian
manifold. In particular we have an immediate corollary

Proposition 21. An immersion f : S → M is a critical point of the energy
functional E if and only if its image is a minimal surface in the ordinary sense and
the Riemannian area dA is a constant multiple of ρ.

In view of this, it is not surprising that the flow (19) is related to the mean-
curvature flow studied in Riemannian geometry. To see this, consider an immersion
f : S → M and the resulting “Gauss map” γf : S → S2, given by γf (x) = Tf(S)+f(x).
Suppose, without loss of generality, that at a given point x ∈ S, γ(x) = ω1, so there is
a preferred complex structure I on TMf(x), which has the property that tangent space
Tf(Sx) is a complex subspace. So we have an induced complex structure on TSx. The
derivative of the Gauss map γf at x is a R-linear map D : TSx → TS2

ω1
= Rω2+Rω3.

We can decompose D into a sum of a complex linear and complex anti-linear part
D = D′+D′′, using the standard complex structure on S2 and the complex structure
induced by I on TSx. Some calculation shows that mean curvature h of the image
surface f(S) at f(x) can be identified with D′ when we use the natural identification
of the normal bundle of f(S) at f(x)

(22) νf(S)
∼= TS∗ ⊗C TS2

ω1
.

Using this point of view one sees that the deformation vector field Iξ1 +Jξ2 +Kξ3 can
be decomposed into components tangential and normal to the surface f(S) where the
normal component is λh and the tangential component is the gradient in the ordinary
Riemannian sense of the function λ on f(S). So we may think of our flow as generating
a 1-parameter family of pairs (Pt, λt), where Pt is an immersed surface and λt is a
positive function on Pt: instantaneously Pt evolves by the mean curvature vector,
scaled by λ, while λ evolves by a variant of the equation studied in (4.1) above.

We may apply our general discussion from (2.3) of the stability of non-minimal
critical points of the norm of the hyperkahler moment map in this case. A critical
point is a parametrised minimal surface, and it is easy to see from the relation between
energy and area that this index is the same as the usual index in minimal surface
theory. The relevant linear operator is a map:

(23) D : C∞(S)0 ⊗R4 → Γ(f∗TM),

where C∞0 denotes the functions of integral zero. This is simply

(24) D(h0, h1, h2, h3) = f∗(ξ0) + If∗(ξ1) + Jf∗(ξ2) + Kf∗(ξ3),

where ξi is the Hamiltonian vector field of the function hi on the symplectic surface
(S, ρ). This is an elliptic operator, in fact the symbol is the same as that of the
Cauchy-Riemann operator on Σ with values in a vector bundle

V = C⊕ TΣ∗ ⊗C ν∗f ,
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where νf is the normal bundle of the immersion, regarded as a complex line bundle.
The index of this Cauchy-Riemann operator in the ordinary sense, but taking real
dimensions, is

2(c1(V ) + 2(1− g)) = −2e,

where e is the Euler number of the normal bundle. The index of D is thus -2e-4,
where we substract 4 for the constants C∞/C∞0 . Hence the index d in our problem
is d = (2e + 4). We obtain, from the general hyperkahler theory (Proposition 6), a
result which is related to a theorem of Micallef and Wolfson [9]

Proposition 26. Any compact, immersed, minimal surface in a hyperkahler 4-
manifold with normal Euler number e ≥ −2, and which is not a complex curve for
some complex structure on M , is not strictly stable.

Finally, we point out that although we have derived the energy functional and
evolution equation from the hyperkahler point of view the formulae above show that
they can be defined for maps from a surface into any oriented Riemannian 4-manifold.
This is rather similar to the case of Yang-Mills theory on a 4-manifold: when the
manifold is hyperkahler the Yang-Mills functional can be viewed as the norm of the
hyperkahler moment map, but the functional makes sense for general manifolds.

4.5. Symplectic forms on 4-manifolds. We will now discuss a hyperkahler
version of the case studied in (4.3), so we let M be a (compact) hyperkahler 4-manifold
and suppose that S is a symplectic 4-manifold diffeomorphic to M . For simplicity we
suppose that ρ is cohomologous to f∗(ω1). We consider the set M of diffeomorphisms
from S to M . This is hyperkahler, with a hyperkahler moment map for the action
of the symplectomorphism group GSp. On M we have an energy functional E in the
scheme of (2.3). As before this can be expressed in terms of the induced symplectic
form χ = (f∗)−1(ρ) on M . If we write χ.ωi = gi, using the standard inner product
given by the fixed metric on M , then the energy is given by:

(27) E(χ) =
∫

M

g2
1 + g2

2 + g2
3

|χ ∧ χ| dV,

where dV is the standard Riemannian volume form on M . That is

(28) E(χ) =
∫

M

|χ+|2
|χ ∧ χ|dV.

Here, as usual, χ+ is the self-dual part of χ with respect to the fixed metric on M . The
absolute minimum of E is attained when χ = ω, and we know that any higher critical
points cannot be strictly stable, since one readily sees that the relevant index d is 0.
The hyperkahler gradient equation goes over to a certain parabolic evolution equation
on the space of symplectic forms on M . This suggests the possibility of applications to
symplectic topology. Let S be the space of symplectic forms on M , in the cohomology
class [ω1]. A priori this could be disconncted, i.e. there could be different deformation
classes of symplectic structure. If one could build up a calculus of variations for the
energy functional E on S one would hope to show that each connected component
contains a local minimum of E. But we know that the only strictly stable critical
point is the standard structure ω1, suggesting that in fact S should be connected.

Of course there are a great many ways in which this programme could fail: one
would certainly need to consider critical points “at infinity” in S. Let us just observe
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that the energy functional does give some control of the symplectic form. If we write

|χ+| = |χ ∧ χ|1/2 |χ+|
|χ ∧ χ|1/2

,

we obtain
∫

M

|χ+|dV ≤
(∫

M

|χ ∧ χ|dV.

∫

M

|χ+|2
|χ ∧ χ|dV

)1/2

=
(∫

M

χ ∧ χ . E(χ)
)1/2

= ([ω1]2 E(χ)1/2.

On the other hand |χ−| < |χ+| pointwise, since χ ∧ χ > 0. So we deduce that the L1

norm of χ is bounded by a fixed multiple of E(χ)1/2. Thus any minimising sequence
for E has a subsequence which converges weakly, to some closed current on M .

Notice that again the final expression (28) for the functional E does not involve
the hyperkahler structure explicitly, so one can try to extend at least some of the ideas
to more general 4-manifolds.
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