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‘“‘Kahler manifolds with trivial canonical class.”

®. A, BOFTOMOJI10B

K3JEPOBbl MHOI'OOBPA3HUA C TPUBHAJIbHbBIM
KAHOHHYECKHM KJIACCOM

B paGore ycTanosJeH 3akOH ABOHCTBeHHOCTH AJs rojgomopdHbx dopMm Ha
MHOroo0pasnax ¢ HyJeBhIM KaHOHHYECKHM KJaccoM. DTO Mo3BOAHT 3¢ deKTuBHO
OMHCAaTh roJoMopiHEe H MepoMopgHLie oToOpaxeHHA MeXAYy HHMH, a TakxKe
nokasatk yreepxaende Kanabu (°) o6 oroOpaxkeHHn AnsGaHese.

Bsepenue

[lesnp Hactosime# pa6oTel — n0KasaTh yTBepxiaenne Kanabu (*) o crpyk-
TYype KOMINAKTHBIX K3JeDOBbIX MHOr006pa3uil ¢ HyJJeBBIM KAHOHHUYECKHM KJIac-
com. Kanabu npuBoaut B (®) cxeMy BO3MOKHOTO /0Ka3aTeJbCTBA CBOErO
OCHOBHOTO pe3y./bTaTa, KOTOpas ONHPAeTCA Ha HCclelloBaHHe HeIHHeHHBIX
HHTerpo-AudpepeHuHanbHbIX YpaBHeHUI U B JaJbHeHlIeM, HaCKOJbKO HaM
MU3BECTHO, He Obljia NpoBejeHa HH caMHM aBTOpoM, HH Kak-aubo ente. Hc-
noJib3ysi ABoHcTBeHHOCTh Ceppa, 0Ka3aJoCh BO3MOKHEIM JI0Ka3aTh CTPYKTYP-
Hoe yTBepxkiaenue Kanabu, He 3aTparupasi BOnpoca O CIPaBEeIJHBOCTH €ro
yTBepKIeHHH auddepeHlnalbHO-TeOMETPHYECKOr0 Xapakrepa. IJTOT pe-

Bogomolov proves immediate consequences of the Calabi conjecture using
holomorphic tensors (without proving the Calabi-Yau).
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Bogomolov’s theorems in “Kahler manifolds with trivial canonical class.”

THEOREM: Let M be a compact Kaehler manifold with trivial first Chern
class. Then the Albanese map of M is a locally trivial fibration. Moreover,
some tensor power of a canonical bundle of M is trivial.

The argument is based on a local Torelli theorem of
Galina Tyurina (1938-1970).

THEOREM: (G. Tjurina, 1964) Let F be a local universal family of Kaehler
n-manifolds with trivial canonical bundle, and F N P(H™*(M,C)) a map
putting a [M] € F to the cohomology class represented by its holomorphic
volume form. Then P is locally an embedding.

REMARK: Stronger versions of this theorem were proved, in succession, by
Bogomolov, Tian, Todorov, etc.
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“The decomposition of Kahler manifolds with trivial canonical class”

O pa3J/ioXeHHH K3JepPOBBIX MHOI00Gpa3nii C TPHBHAJbHBIM
KaHOHHYECKHM KJIacCOM

®. A. BoromouaoB (Mocksa)
Beepenue

Pa6ora comepxur pal yTBepKAeHHH O Pas3/loXeHHH B TpOH3BelleHHe
K3J1epOBBIX MHOrooGpasuii u 06 HX 0ToOpaxKeHHAX. PeayabTaThl MOJYUYEHE C
NOMOIILIO Nlepexoa, onHcanuoro B [b], or rosoMopdHEIX hopM crenHasLHOTO
BHIa X caoeHusiM. [TonytHo B § 2 nau orser Ha Bonpoc K. ¥YeHno o MHoroog-
pasusix ¢ [(K) =1, KoTopble HMEIOT YHHPAIlHOHAJIbHEIA THI K3J1epOoBa MHOTO-
otipasus ¢ K=0. Asrop Gaarogapes A. H. TiopHHy 3a ApYKECKYIC TTOMOIILb.

B paborax [1], [5] nokasana compsameHHOCThb mpoctpaHers H'(Q7) n
H°(Q"-") #ma KoMTaKTHOM K3JepoBoM MHoTooGpaszun M™ ¢ K(M)=0 u kak
ClIeICTBHE — HEBLIPOKJEHHOCTE TomoMOopdHEIX dopm Ha M" Crenywowmas
TeopeMa obobutaer Teopemy u3 [1], [2] o pasnoxkenuu muorooGpasus M"
B TIOJIYIIPAMOE NpOM3BedeHHe IPH oToOpaxenun Anbbanese.

Teopema 1. [Hycre M"—rkaseposo romnaxrHoe mHo2006pasue,
K(M*) =0, E~c=T" — nodnyuox kacateavnoz2o nyuxa raxoi, uro A"E™=C.

Toeda ynusepcarsnas Hakpeisarouas M* pacnadaercs 8 npamoe npousse-
N
Oderue M*=Q™ X R ™, 20e T(Q™) =E™

THEOREM: (Bogomolov’s decomposition theorem) Let M be a com-
pact, Kaehler manifold with trivial canonical bundle. Then there exists a

finite covering M of M which is is a product of Kaehler manifolds of
the following form:

M=Tx M x..xMxKyx..xKj

with all M;, K; simply connected with trivial canonical bundle, T" a torus,
HPO(K;,) =0 for 0 < p < dimK, and HPO(M,) = 0 (odd p), HPO(M;) = C
(even 0 < p < dim M;), and all M; are holomorphically symplectic.
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Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations T oJ = —J oI = K, such that g is Kahler for I, J, K.

REMARK: This is equivalent to VI =VJ = VK = 0: the parallel transla-
tion along the connection preserves I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
Wy .= Q(I,); Wy .= g(']7)’ WK = g(K7)

DEFINITION: A holomorphically symplectic manifold is a complex man-
ifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkahler manifolds are holomorphically symplectic. Indeed,
QR =wj+ v—1wg is a holomorphic symplectic form on (M, ).
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Calabi-Yau theorem

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A hyperkdahler manifold M is called simple if 7{(M) = O,
H29(M) =C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be simple.
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EXAMPLES.

EXAMPLE: An even-dimensional complex vector space.
EXAMPLE: An even-dimensional complex torus.
EXAMPLE: A non-compact example: T*CP"™ (Calabi).
REMARK: T*CP! is a resolution of a singularity C2/+1.

EXAMPLE: Take a 2-dimensional complex torus 7', then the singular locus
of T/+1 is of form (C2/4+1) x T. Its resolution T/+1 is called a Kummer
surface. It is holomorphically symplectic.

REMARK: Take a symmetric square Sym? T, with a natural action of T, and
let TI2] be a blow-up of a singular divisor. Then T2l is naturally isomorphic
to the Kummer surface 7' /+1.

DEFINITION: A complex surface is called K3 surface if it a deformation
of the Kummer surface.

THEOREM: (a special case of Enriques-Kodaira classification)
Let M be a compact complex surface which is hyperkahler. Then M is either
a torus or a K3 surface.

3
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Hilbert schemes

DEFINITION: A Hilbert scheme MM of a complex surface M is a clas-
sifying space of all ideal sheaves I C O,; for which the quotient O,;/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power Sym™ M.

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkahler sur-
face is hyperkahler.

EXAMPLE: A Hilbert scheme of K3 is hyperkahler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T[”]/T IS a Kummer
K3-surface. For n > 2, it is called a generalized Kummer variety.

REMARK: There are 2 more ‘sporadic’” examples of compact hyperkahler
manifolds, constructed by K. O'Grady. All known compact hyperkaehler
manifolds are these 2 and the three series: tori, Hilbert schemes of K3,
and generalized Kummer.

O]



Global Torelli Theorem M. Verbitsky

The Teichmuller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diffg(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Teich the space of complex structures on M, and let Teich =
Teich/ Diffg(M). We call it the Teichmuller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-
Kuranishi-Douady), but often non-Hausdorff¥.

Definition: Let Diff4 (M) be the group of oriented diffeomorphisms of M.
We call I := Diff . (M)/ Diffo(M) the mapping class group. The coarse
moduli space of complex structures on M is a connected component of
Teich /T".

Remark: This terminology is standard for curves.
REMARK: For hyperkahler manifolds, it is convenient to take for Teich the
space of all complex structures of hyperkahler type, that is, holomor-

phically symplectic and Kahler. It is open in the usual Teichmuller space.

REMARK: To describe the moduli space, we shall compute Teich and I.
10
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,;7°" = cq(n,n)"™, for some primitive integer quadratic form
g on H2(M,Z), and ¢ > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by the Fujiki’'s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

Aa(n, 1) = /Xn AnAQTTIAT L

1 _ e
_n (/ n/\Q”_l/\Q”> (/ nAQPAQ" 1)
n X X

where €2 is the holomorphic symplectic form, and A\ > 0.

Remark: ¢ has signature (b, — 3,3). It is negative definite on primitive
forms, and positive definite on (Q2,Q,w), where w is a Kahler form.

11
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Automorphisms of cohomology.

THEOREM: Let M be a simple hyperkahler manifold, and G C GL(H*(M)) a
group of automorphisms of its cohomology algebra preserving the Pontryagin
classes. Then G acts on HQ(M) preserving the BBF form. Moreover, the
map G — O(H?(M,R),q) is surjective on a connected component, and
has compact kernel.

Proof. Step 1: Fujiki formula v2"™ = g(v,v)" implies that g preserves the
Bogomolov-Beauville-Fujiki up to a sign. The sign is fixed, if n is odd.

Step 2: For even n, the sign is also fixed. Indeed, G preserves p1 (M), and (as
Fujiki has shown) v2" 2 A p1 (M) = q(v,v)" ¢, for some ¢ € R. The constant
c is positive, because the degree of c>(B) is positive for any Yang-Mills
bundle with ¢1(B) = 0.

Step 3: o(H2(M,R),q) acts on H*(M,R) by derivations preserving Pontryagin
classes (V., 1995). Therefore Lie(G) surjects to o(H2(M,R),q).

Step 4: The kernel K of the map G — G‘HQ(M R) IS compact, because it
commutes with the Hodge decomposition and Lefschetz si(2)-action, hence
preserves the Riemann-Hodge form, which is positive definite. =

12
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kahler mani-
fold, dimg M > 3. Denote by g the group of automorphisms of an algebra
H*(M,Z) preserving the Pontryagin classes p;,(M). Then the natural map
Diff L (M )/ Diffp — g has finite kernel, and its image has finite index
in I p.

Theorem: Let M be a simple hyperkahler manifold, and g as above. Then
(i) FO)HQ(MZ) is a finite index subgroup of O(H?2(M,7Z),q).

(ii) The map My — O(H?2(M,Z), q) has finite kernel.

Proof: Follows from Sullivan and a computation of Aut(H*(M,R)) done
earlier. m

DEFINITION: Two groups G,G’ are called commensurable if G projects
with finite kernel to a subgroup of finite index in G’.

DEFINITION: An arithmetic group is a group which is commensurable to
an algebraic Lie group over integers.

COROLLARY: The mapping class group of a hyperkahler manifold is an
arithmetic group.
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The period map

Remark: For any J € Teich, (M, J) is also a simple hyperkahler manifold,
hence H29(M,J) is one-dimensional.

Definition: Let P : Teich — PH2(M,C) map J to a line H20(M,J) ¢
PH2(M,C). The map P: Teich — PH?2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l € PH?(M,C) | q¢(l,1) =0,q(l,1) > O.
It is called the period space of M.

REMARK: Per = SO(bs — 3,3)/S0(2) x SO(by — 3,1)

THEOREM: Let M be a simple hyperkahler manifold, and Teich its Te-
ichmuller space. Then

(i) (Bogomolov) The period map P : Teich — Per is etale.

(ii) (Huybrechts) It is surjective.

REMARK: Bogomolov's theorem implies that Teich is smooth. It is non-
Hausdorff even in the simplest examples.
14
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Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeo-
morphic to R"™.

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by =z ~ y) if for any open sets V3 xz, U3y, UNV # 0.

THEOREM: (D. Huybrechts) If I;, I» € Teich are non-separablee points,
then P(I1) = P(I»), and (M, I71) is birationally equivalent to (M, I»)

DEFINITION: Let M be a topological space for which M/ ~ is Hausdorff.
Then M/ ~ is called a Hausdorff reduction of M.

Problems:
1. ~ iIs not always an equivalence relation.
2. Even if ~ is equivalence, the M/ ~ is not always Hausdorff.

REMARK: A quotient M/ ~ is Hausdorff, if M — M/ ~ is open, and the
graph '~ € M x M is closed.
15
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Weakly Hausdorff manifolds
DEFINITION: A point z € X is called Hausdorff if z 4 y for any y #= .

DEFINITION: Let M be an n-dimensional real analytic manifold, not nec-
essarily Hausdoff. Suppose that the set Z C M of non-Hausdorff points is
contained in a countable union of real analytic subvarieties of codim > 2.
Suppose, moreover, that

(S) For every x € M, there is a closed neighbourhood B C M of x and a
continuous surjective map W : B — R"™ to a closed ball in R", inducing a
homeomorphism on an open neighbourhood of =x.

Then M is called a weakly Hausdorff manifold.

REMARK: The period map satisfies (S). Also, the non-Hausdorff points
of Teich are contained in a countable union of divisors.

THEOREM: A weakly Hausdorff manifold X admits a Hausdorff reduc-
tion. In other words, the quotient X/ ~ is a Hausdorff. Moreover, X — X/ ~
IS locally a homeomorphism.

This theorem is proven using 1920-ies style point-set topology.
16
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Birational Teichmuller moduli space

DEFINITION: The space Teich, := Teich / ~ is called the birational Te-
ichmuller space of M.

THEOREM: The period map Teichy Pel per is an iIsomorphism, for each

connected component of Teichy,.

The proof is based on two results.

PROPOSITION: (The Covering Criterion) Let X -2 Y be an etale
map of smooth manifolds. Suppose that each y € Y has a neighbourhood
B > y diffeomorphic to a closed ball, such that for each connected component

B' ¢ o~1(B), B’ projects to B surjectively. Then ¢ is a covering.

PROPOSITION: The period map satisfies the conditions of the Cov-
ering Criterion.

17
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Connected components of Teichmuller space
and the associated mapping class group [;

REMARK: (Kollar-Matsusaka, Huybrechts) There are only finitely many
connected components of Teich.

REMARK: The mapping class group ' acts on the set of connected com-
ponents of Teich.

COROLLARY: Let 'y be the group of elements of mapping class group
preserving a connected component of Teichmuller space containing I € Teich.

Then [ is also an arithmetic group. Indeed, it has finite index in I.

THEOREM: The group '; maps to O(H?(M,Z)) injectively.

18



Global Torelli Theorem M. Verbitsky

Global Torelli theorem

DEFINITION: Let M be a hyperkaehler manifold, Teich, its birational Te-
ichmiller space, and ' the mapping class group. The quotient Teichy /T is
called the birational moduli space of M.

REMARK: The birational moduli space is obtained from the usual moduli
space by gluing some (but not all) non-separable points. It is still non-
HausdorfF.

THEOREM: Let (M,I) be a hyperkahler manifold, and W a connected
component of its birational moduli space. Then W is isomorphic to Per/I";,
where Per = SO(by — 3,3)/5S0(2) x SO(bo — 3,1) and I; is an arithmetic
group in O(H?(M,R),q).

A CAUTION: Usually *“the global Torelli theorem” is understood as a the-
orem about Hodge structures. For K3 surfaces, the Hodge structure on
H?(M,7) determines the complex structure. For dim¢ M > 2, it is false.
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T he birational Hodge-theoretic Torelli theorem

DEFINITION: The birational Hodge-theoretic Torelli theorem is true
for M if ; (the stabilizer of a Torelli component in the mapping class group)
is isomorphic to O (H?2(M,Z),q).

REMARK: If a birational Hodge-theoretic Torelli theorem holds for M, then
any deformation of M is up to a bimeromorphic equivalence determined by
the Hodge structure on H2(M).

THEOREM: (Markman) The for M = K3[”], the group Iy is a subgroup
of Ot (H?2(M,Z),q) generated by oriented reflections.

THEOREM: Let M = K31l with n a prime power. Then the (usual)
global Torelli theorem holds birationally: two deformations of a Hilbert
scheme with isomorphic Hodge structures are bimeromorphic. For
other n, it is false (Markman).
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