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“Kähler manifolds with trivial canonical class.”

Bogomolov proves immediate consequences of the Calabi conjecture using

holomorphic tensors (without proving the Calabi-Yau).
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Bogomolov’s theorems in “Kähler manifolds with trivial canonical class.”

THEOREM: Let M be a compact Kaehler manifold with trivial first Chern

class. Then the Albanese map of M is a locally trivial fibration. Moreover,

some tensor power of a canonical bundle of M is trivial.

The argument is based on a local Torelli theorem of

Galina Tyurina (1938-1970).

THEOREM: (G. Tjurina, 1964) Let F be a local universal family of Kaehler

n-manifolds with trivial canonical bundle, and F
P−→ P(Hn(M,C)) a map

putting a [M ] ∈ F to the cohomology class represented by its holomorphic

volume form. Then P is locally an embedding.

REMARK: Stronger versions of this theorem were proved, in succession, by

Bogomolov, Tian, Todorov, etc.
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“The decomposition of Kähler manifolds with trivial canonical class”

THEOREM: (Bogomolov’s decomposition theorem) Let M be a com-
pact, Kaehler manifold with trivial canonical bundle. Then there exists a
finite covering M̃ of M which is is a product of Kaehler manifolds of
the following form:

M̃ = T ×M1 × ...×Mi ×K1 × ...×Kj,
with all Mi, Ki simply connected with trivial canonical bundle, T a torus,
Hp,0(Ki) = 0 for 0 < p < dimKi and Hp,0(Mi) = 0 (odd p), Hp,0(Mi) = C
(even 0 < p < dimMi), and all Mi are holomorphically symplectic.
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel transla-

tion along the connection preserves I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

DEFINITION: A holomorphically symplectic manifold is a complex man-

ifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed,

Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).
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Calabi-Yau theorem

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if π1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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EXAMPLES.

EXAMPLE: An even-dimensional complex vector space.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: T ∗CPn (Calabi).

REMARK: T ∗CP1 is a resolution of a singularity C2/±1.

EXAMPLE: Take a 2-dimensional complex torus T , then the singular locus
of T/±1 is of form (C2/±1) × T . Its resolution T̃/±1 is called a Kummer
surface. It is holomorphically symplectic.

REMARK: Take a symmetric square Sym2 T , with a natural action of T , and
let T [2] be a blow-up of a singular divisor. Then T [2] is naturally isomorphic
to the Kummer surface ˜T/±1.

DEFINITION: A complex surface is called K3 surface if it a deformation
of the Kummer surface.

THEOREM: (a special case of Enriques-Kodaira classification)
Let M be a compact complex surface which is hyperkähler. Then M is either
a torus or a K3 surface.
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Hilbert schemes

DEFINITION: A Hilbert scheme M [n] of a complex surface M is a clas-
sifying space of all ideal sheaves I ⊂ OM for which the quotient OM/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power SymnM .

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkähler sur-
face is hyperkähler.

EXAMPLE: A Hilbert scheme of K3 is hyperkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T [n]/T is a Kummer
K3-surface. For n > 2, it is called a generalized Kummer variety.

REMARK: There are 2 more “sporadic” examples of compact hyperkähler
manifolds, constructed by K. O’Grady. All known compact hyperkaehler
manifolds are these 2 and the three series: tori, Hilbert schemes of K3,
and generalized Kummer.
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The Teichmüller space and the mapping class group

Definition: Let M be a compact complex manifold, and Diff0(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by T̃eich the space of complex structures on M , and let Teich :=
T̃eich/Diff0(M). We call it the Teichmüller space.

Remark: Teich is a finite-dimensional complex space (Kodaira-Spencer-
Kuranishi-Douady), but often non-Hausdorff.

Definition: Let Diff+(M) be the group of oriented diffeomorphisms of M .
We call Γ := Diff+(M)/Diff0(M) the mapping class group. The coarse
moduli space of complex structures on M is a connected component of
Teich /Γ.

Remark: This terminology is standard for curves.

REMARK: For hyperkähler manifolds, it is convenient to take for Teich the
space of all complex structures of hyperkähler type, that is, holomor-
phically symplectic and Kähler. It is open in the usual Teichmüller space.

REMARK: To describe the moduli space, we shall compute Teich and Γ.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (b2 − 3,3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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Automorphisms of cohomology.

THEOREM: Let M be a simple hyperkähler manifold, and G ⊂ GL(H∗(M)) a
group of automorphisms of its cohomology algebra preserving the Pontryagin
classes. Then G acts on H2(M) preserving the BBF form. Moreover, the
map G−→O(H2(M,R), q) is surjective on a connected component, and
has compact kernel.

Proof. Step 1: Fujiki formula v2n = q(v, v)n implies that Γ0 preserves the
Bogomolov-Beauville-Fujiki up to a sign. The sign is fixed, if n is odd.

Step 2: For even n, the sign is also fixed. Indeed, G preserves p1(M), and (as
Fujiki has shown) v2n−2 ∧ p1(M) = q(v, v)n−1c, for some c ∈ R. The constant
c is positive, because the degree of c2(B) is positive for any Yang-Mills
bundle with c1(B) = 0.

Step 3: o(H2(M,R), q) acts on H∗(M,R) by derivations preserving Pontryagin
classes (V., 1995). Therefore Lie(G) surjects to o(H2(M,R), q).

Step 4: The kernel K of the map G−→G
∣∣∣H2(M,R) is compact, because it

commutes with the Hodge decomposition and Lefschetz sl(2)-action, hence
preserves the Riemann-Hodge form, which is positive definite.
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Computation of the mapping class group

Theorem: (Sullivan) Let M be a compact, simply connected Kähler mani-
fold, dimCM > 3. Denote by Γ0 the group of automorphisms of an algebra
H∗(M,Z) preserving the Pontryagin classes pi(M). Then the natural map
Diff+(M)/Diff0 −→ Γ0 has finite kernel, and its image has finite index
in Γ0.

Theorem: Let M be a simple hyperkähler manifold, and Γ0 as above. Then
(i) Γ0

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.

Proof: Follows from Sullivan and a computation of Aut(H∗(M,R)) done
earlier.

DEFINITION: Two groups G,G′ are called commensurable if G projects
with finite kernel to a subgroup of finite index in G′.

DEFINITION: An arithmetic group is a group which is commensurable to
an algebraic Lie group over integers.

COROLLARY: The mapping class group of a hyperkähler manifold is an
arithmetic group.
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The period map

Remark: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,
hence H2,0(M,J) is one-dimensional.

Definition: Let P : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map P : Teich −→ PH2(M,C) is called the period map.

REMARK: P maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2)× SO(b2 − 3,1)

THEOREM: Let M be a simple hyperkähler manifold, and Teich its Te-
ichmüller space. Then
(i) (Bogomolov) The period map P : Teich −→ Per is etale.
(ii) (Huybrechts) It is surjective.

REMARK: Bogomolov’s theorem implies that Teich is smooth. It is non-
Hausdorff even in the simplest examples.
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Hausdorff reduction

REMARK: A non-Hausdorff manifold is a topological space locally diffeo-

morphic to Rn.

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (D. Huybrechts) If I1, I2 ∈ Teich are non-separablee points,

then P (I1) = P (I2), and (M, I1) is birationally equivalent to (M, I2)

DEFINITION: Let M be a topological space for which M/ ∼ is Hausdorff.

Then M/ ∼ is called a Hausdorff reduction of M .

Problems:

1. ∼ is not always an equivalence relation.

2. Even if ∼ is equivalence, the M/ ∼ is not always Hausdorff.

REMARK: A quotient M/ ∼ is Hausdorff, if M −→M/ ∼ is open, and the

graph Γ∼ ∈M ×M is closed.
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Weakly Hausdorff manifolds

DEFINITION: A point x ∈ X is called Hausdorff if x 6∼ y for any y 6= x.

DEFINITION: Let M be an n-dimensional real analytic manifold, not nec-
essarily Hausdoff. Suppose that the set Z ⊂M of non-Hausdorff points is
contained in a countable union of real analytic subvarieties of codim > 2.
Suppose, moreover, that

(S) For every x ∈ M , there is a closed neighbourhood B ⊂ M of x and a
continuous surjective map Ψ : B −→ Rn to a closed ball in Rn, inducing a
homeomorphism on an open neighbourhood of x.

Then M is called a weakly Hausdorff manifold.

REMARK: The period map satisfies (S). Also, the non-Hausdorff points
of Teich are contained in a countable union of divisors.

THEOREM: A weakly Hausdorff manifold X admits a Hausdorff reduc-
tion. In other words, the quotient X/ ∼ is a Hausdorff. Moreover, X −→X/ ∼
is locally a homeomorphism.

This theorem is proven using 1920-ies style point-set topology.
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Birational Teichmüller moduli space

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: The period map Teichb
Per−→ Per is an isomorphism, for each

connected component of Teichb.

The proof is based on two results.

PROPOSITION: (The Covering Criterion) Let X
ϕ−→ Y be an etale

map of smooth manifolds. Suppose that each y ∈ Y has a neighbourhood

B 3 y diffeomorphic to a closed ball, such that for each connected component

B′ ⊂ ϕ−1(B), B′ projects to B surjectively. Then ϕ is a covering.

PROPOSITION: The period map satisfies the conditions of the Cov-

ering Criterion.
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Connected components of Teichmüller space

and the associated mapping class group ΓI

REMARK: (Kollar-Matsusaka, Huybrechts) There are only finitely many

connected components of Teich.

REMARK: The mapping class group Γ acts on the set of connected com-

ponents of Teich.

COROLLARY: Let ΓI be the group of elements of mapping class group

preserving a connected component of Teichmüller space containing I ∈ Teich.

Then ΓI is also an arithmetic group. Indeed, it has finite index in Γ.

THEOREM: The group ΓI maps to O(H2(M,Z)) injectively.
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Global Torelli theorem

DEFINITION: Let M be a hyperkaehler manifold, Teichb its birational Te-

ichmüller space, and Γ the mapping class group. The quotient Teichb /Γ is

called the birational moduli space of M .

REMARK: The birational moduli space is obtained from the usual moduli

space by gluing some (but not all) non-separable points. It is still non-

Hausdorff.

THEOREM: Let (M, I) be a hyperkähler manifold, and W a connected

component of its birational moduli space. Then W is isomorphic to Per/ΓI,

where Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) and ΓI is an arithmetic

group in O(H2(M,R), q).

A CAUTION: Usually “the global Torelli theorem” is understood as a the-

orem about Hodge structures. For K3 surfaces, the Hodge structure on

H2(M,Z) determines the complex structure. For dimCM > 2, it is false.
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The birational Hodge-theoretic Torelli theorem

DEFINITION: The birational Hodge-theoretic Torelli theorem is true

for M if ΓI (the stabilizer of a Torelli component in the mapping class group)

is isomorphic to O+(H2(M,Z), q).

REMARK: If a birational Hodge-theoretic Torelli theorem holds for M , then

any deformation of M is up to a bimeromorphic equivalence determined by

the Hodge structure on H2(M).

THEOREM: (Markman) The for M = K3[n], the group ΓI is a subgroup

of O+(H2(M,Z), q) generated by oriented reflections.

THEOREM: Let M = K3[n+1] with n a prime power. Then the (usual)

global Torelli theorem holds birationally: two deformations of a Hilbert

scheme with isomorphic Hodge structures are bimeromorphic. For

other n, it is false (Markman).
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