

Integral transforms in non-abelian Hodge theory

Tony Pantev

University of Pennsylvania

Conference in honour of Fedor Bogomolov's 65th birthday September 1-4, 2011 Laboratory of Algebraic Geometry, HSE, Steklov Mathematical Institute, RAS, Moscow

University of Pennsylvania

00 000	0000000000

■ joint with R.Donagi and C.Simpson

University of Pennsylvania

- joint with R.Donagi and C.Simpson
- functoriality of non-abelian Hodge theory

University of Pennsylvania

- joint with R.Donagi and C.Simpson
- functoriality of non-abelian Hodge theory
- Hodge correspondence and the six operations

- joint with R.Donagi and C.Simpson
- functoriality of non-abelian Hodge theory
- Hodge correspondence and the six operations
- pushing forward twistor D-modules

- joint with R.Donagi and C.Simpson
- functoriality of non-abelian Hodge theory
- Hodge correspondence and the six operations
- pushing forward twistor D-modules
- applications

Non-abelian Hodge correspondence

Pure non-abelian Hodge correspondence without ramification:

University of Pennsylvania

Non-abelian Hodge correspondence

Pure non-abelian Hodge correspondence without ramification:

Theorem: [Corlette-Simpson] Let $(X, \mathcal{O}_X(1))$ be a smooth complex projective variety. Then there is a natural equivalence of dg \otimes -categories:

$$\mathbf{nah}_X : \begin{pmatrix} \text{finite rank } \mathbb{C}-\\ \text{local systems}\\ \text{on } X \end{pmatrix} \xrightarrow{\cong} \begin{pmatrix} \text{finite rank } \mathcal{O}_X(1)-\\ \text{semistable } \text{Higgs}\\ \text{bundles on } X \text{ with}\\ ch_1 = 0 \text{ and } ch_2 = 0 \end{pmatrix}$$

Basic functoriality:

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

University of Pennsylvania

Basic functoriality: The non-abelian Hodge correspondece is compatible **[Simpson]** with the formalism of Grothendieck's six operations:

< □ > < A > >

Basic functoriality: The non-abelian Hodge correspondece is compatible **[Simpson]** with the formalism of Grothendieck's six operations:

< □ > < ---->

Basic functoriality: The non-abelian Hodge correspondece is compatible **[Simpson]** with the formalism of Grothendieck's six operations:

nah_X respects \otimes ;

Basic functoriality: The non-abelian Hodge correspondece is compatible **[Simpson]** with the formalism of Grothendieck's six operations:

nah_X respects \otimes ;

nah_X respects internal RHoms;

University of Pennsylvania

< □ > < ---->

Basic functoriality: The non-abelian Hodge correspondece is compatible **[Simpson]** with the formalism of Grothendieck's six operations:

- **nah**_X respects \otimes ;
- **nah**_X respects internal RHoms;
- if $f : X \to Y$ is a morphism of smooth projective varieties, then f^* intertwines nah_Y and nah_X ;

< □ > < ---->

Basic functoriality: The non-abelian Hodge correspondece is compatible **[Simpson]** with the formalism of Grothendieck's six operations:

- **nah**_X respects \otimes ;
- **nah**_X respects internal RHoms;
- if $f : X \to Y$ is a morphism of smooth projective varieties, then f^* intertwines \mathbf{nah}_Y and \mathbf{nah}_X ;
- if f is smooth, then Rf_* intertwines nah_X and nah_Y .

< □ > < ---->

Basic functoriality: The non-abelian Hodge correspondece is compatible **[Simpson]** with the formalism of Grothendieck's six operations:

- **nah**_X respects \otimes ;
- **nah**_X respects internal RHoms;
- if $f : X \to Y$ is a morphism of smooth projective varieties, then f^* intertwines \mathbf{nah}_Y and \mathbf{nah}_X ;
- if f is smooth, then Rf_* intertwines nah_X and nah_Y .

Note: The hardest part is the compatibility with pushforwards

Image: A math a math

Functoriality of the correspondence (ii) General functoriality:

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣へで

University of Pennsylvania

- **General functoriality:**
- **Problem:** Show that the non-abelian Hodge correspondence is compatible with arbitrary pullback and pushforwards.

< □ > < ---->

General functoriality:

Problem: Show that the non-abelian Hodge correspondence is compatible with arbitrary pullback and pushforwards.

Note: If $f : X \to Y$ is a general morphism, then the application of any of $f_*f_!$, f^* , or $f^!$ to a local system will result in a general (regular holonomic) *D*-module.

< □ > < ---->

General functoriality:

Problem: Show that the non-abelian Hodge correspondence is compatible with arbitrary pullback and pushforwards.

Note: If $f : X \to Y$ is a general morphism , then the application of any of $f_*f_!$, f^* , or $f^!$ to a local system will result in a general (regular holonomic) D-module.

not necessarily smooth or proper

General functoriality:

Problem: Show that the non-abelian Hodge correspondence is compatible with arbitrary pullback and pushforwards.

Note: If $f : X \to Y$ is a general morphism, then the application of any of $f_*f_!$, f^* , or $f^!$ to a local system will result in a general (regular holonomic) *D*-module.

< □ > < ---->

General functoriality:

Problem: Show that the non-abelian Hodge correspondence is compatible with arbitrary pullback and pushforwards.

Note: If $f : X \to Y$ is a general morphism, then the application of any of $f_*f_!$, f^* , or $f^!$ to a local system will result in a general (regular holonomic) *D*-module.

Conclusion: To achieve general functoriality we must extend the non-abelian Hodge correspondence to objects with singularities.

< □ > < ---->

General functoriality:

Problem: Show that the non-abelian Hodge correspondence is compatible with arbitrary pullback and pushforwards.

Note: If $f : X \to Y$ is a general morphism, then the application of any of $f_*f_!$, f^* , or $f^!$ to a local system will result in a general (regular holonomic) *D*-module.

Conclusion: To achieve general functoriality we must extend the non-abelian Hodge correspondence to objects with singularities. Such an extension - the theory of twistor *D*-modules - was developed and studied extensively in the works of Sabbah and Mochizuki.

Some applications of functoriality (i)

The compatibility of **nah** with arbitrary pullbacks and pushforwards is a powerful tool: it allows us to convert complicated questions about *D*-modules to geometric questions about coherent sheaves.

< 🗇 🕨

Some applications of functoriality (i)

Example: (Non-degenerate representations of Kähler groups) Simpson used the compatibility of **nah** with pushforwards and a deformation theory calculation for coherent sheaves to construct projective manifolds whose fundamental groups admit a non-rigid, non-factorizable representations which do not come from variations Hodge structures. Such examples are of central importance in understanding the Shafarevich uniformization conjecture.

< □ > < ---->

Some applications of functoriality (ii)

Example: (Construction of Hecke eigensheaves) In a joint work with Donagi we use the general compatibility with pushforwards to construct a geometric Langlands type equivalence as a conjugation of a Fourier-Mukai transform with two non-abelian Hodge correspondences. We also use the compatibbility to show that the the equivalence intertwines Hecke and tensorization symmetries.

Some applications of functoriality (iii)

Example: (Construction of Fourier-Mukai kernels) One can use the general compatibility to construct a Fourier-Mukai kernel for the stratified Mukai flop and to check the Bondal-Orlov orthogonality conditions for this kernel and thus prove the Bondal-Orlov "K-equivalence implies D-equivalence" conjecture in this case.

< 🗇 🕨

Tamely ramified non-abelian Hodge theory

Theorem: [Mochizuki] Let $(X, \mathcal{O}_X(1))$ be smooth projective, and let $D \subset X$ be an effective divisor. Suppose that we have a closed subvariety $Z \subset X$ of codimension ≥ 3 , such that X - Z is smooth and D - Z is a normal crossing divisor. Then there is a canonical equivalence of dg \otimes -categories:

finite rank tame parabolic \mathbb{C} - nah_{X,D} local systems on (X, D)

finite rank locally abelian tame parabolic Higgs bundles on (X, D)which are $\mathcal{O}_{X}(1)$ semistable and satisfy $parch_1 = 0$ and $parch_2 = 0$

Let $f : X \to Y$ be a projective morphism, $R \subset Y$ - a normal crossing divisor, and $K = f^{-1}(R)$. Assume

University of Pennsylvania

Let $f : X \to Y$ be a projective morphism, $R \subset Y$ - a normal crossing divisor, and $K = f^{-1}(R)$. Assume

• $H \cup K \subset X$ - a normal crossing divisor;

Image: A mathematical states and a mathem

Let $f: X \to Y$ be a projective morphism, $R \subset Y$ - a normal crossing divisor, and $K = f^{-1}(R)$. Assume

• $H \cup K \subset X$ - a normal crossing divisor;

• $f: H \rightarrow X$ is smooth;

University of Pennsylvania

Image: A math a math

Let $f: X \to Y$ be a projective morphism, $R \subset Y$ - a normal crossing divisor, and $K = f^{-1}(R)$. Assume

• $H \cup K \subset X$ - a normal crossing divisor;

• $f: H \to X$ is smooth;

Problem: Understand the push-forward and pull-back of tame parabolic local systems and Higgs bundles under such a map *f*.

Image: A matrix

Let $f: X \to Y$ be a projective morphism, $R \subset Y$ - a normal crossing divisor, and $K = f^{-1}(R)$. Assume

• $H \cup K \subset X$ - a normal crossing divisor;

• $f: H \to X$ is smooth;

Problem: Understand the push-forward and pull-back of tame parabolic local systems and Higgs bundles under such a map f. **Note:**

Image: A matrix

Let $f: X \to Y$ be a projective morphism, $R \subset Y$ - a normal crossing divisor, and $K = f^{-1}(R)$. Assume

• $H \cup K \subset X$ - a normal crossing divisor;

• $f: H \to X$ is smooth;

Problem: Understand the push-forward and pull-back of tame parabolic local systems and Higgs bundles under such a map f. **Note:**

The compatibility of **nah** with pull-backs is automatic once f* is defined correctly,

Image: A math a math

Let $f: X \to Y$ be a projective morphism, $R \subset Y$ - a normal crossing divisor, and $K = f^{-1}(R)$. Assume

• $H \cup K \subset X$ - a normal crossing divisor;

• $f: H \to X$ is smooth;

Problem: Understand the push-forward and pull-back of tame parabolic local systems and Higgs bundles under such a map f. **Note:**

The compatibility of nah with pull-backs is automatic once f* is defined correctly, (e.g. by using stacks or by using the locally abelian condition);

Image: A match a ma

Let $f: X \to Y$ be a projective morphism, $R \subset Y$ - a normal crossing divisor, and $K = f^{-1}(R)$. Assume

• $H \cup K \subset X$ - a normal crossing divisor;

• $f: H \to X$ is smooth;

Problem: Understand the push-forward and pull-back of tame parabolic local systems and Higgs bundles under such a map f. **Note:**

- The compatibility of **nah** with pull-backs is automatic once f* is defined correctly,
- For the compatibility of **nah** with push-forwards we will need an algebraic formula for f_{*} in terms of Higgs bundles.

Results

Compatibility of nah and f_* (i)

Suppose

University of Pennsylvania

Suppose

 $(\mathbf{V}_{\bullet}, \nabla)$ - a tame parabolic local system on (X, H + K);

University of Pennsylvania

Suppose

 $(\mathbf{V}_{\bullet}, \nabla)$ - a tame parabolic local system on (X, H + K);

 $({\bf E_{\bullet}},\theta)$ - a tame locally abelian parabolic Higgs bundle with ${\rm parch_1}=0,~{\rm parch_2}=0;$

Image: A match a ma

Suppose

 $(\mathbf{V}_{\bullet}, \nabla)$ - a tame parabolic local system on (X, H + K);

 $({\bf E_{\bullet}},\theta)$ - a tame locally abelian parabolic Higgs bundle with ${\rm parch_1}=0,~{\rm parch_2}=0;$

Assume that $\operatorname{nah}((\mathbf{V}_{\bullet}, \nabla)) = (\mathbf{E}_{\bullet}, \theta)$ (i.e. these two objects are related by a tame harmonic bundle $(E, \overline{\partial}_E, \theta, h)$ on $X - (H \cup K)$).

Image: A match a ma

Suppose

 $(\mathbf{V}_{\bullet}, \nabla)$ - a tame parabolic local system on (X, H + K);

 $({\bf E_{\bullet}},\theta)$ - a tame locally abelian parabolic Higgs bundle with ${\rm parch}_1=0,~{\rm parch}_2=0;$

Assume that $\operatorname{nah}((V_{\bullet}, \nabla)) = (E_{\bullet}, \theta)$

Set $U = X - (H \cup K)$, V = Y - R, $g : U \rightarrow V$, and consider for each k the L^2 push-forward

$$F^k := R^k f_{*,L^2}(\mathbb{L},h)$$

of $(\mathbf{V}_{\bullet}, \nabla)$.

Tony Pantev

Integral transforms

University of Pennsylvania

・ロト ・ 日 ・ ・ ヨ ・ ・

Suppose

 $(\mathbf{V}_{\bullet}, \nabla)$ - a tame parabolic local system on (X, H + K);

 $({\bf E_{\bullet}},\theta)$ - a tame locally abelian parabolic Higgs bundle with ${\rm parch}_1=0,~{\rm parch}_2=0;$

Assume that $\operatorname{nah}((V_{\bullet}, \nabla)) = (E_{\bullet}, \theta)$

Set $U = X - (H \cup K)$, V = Y - R, $g : U \rightarrow V$, and consider for each k the L^2 push-forward

$$F^k := R^k f_{*,L^2}(\mathbb{L},h)$$

of $(\mathbf{V}_{\bullet}, \nabla)$. Here $\mathbb{L} = [(\mathbf{V}_{\alpha})|_U]^{\nabla}$. Note: This is independent of α .

Results

Compatibility of nah and f_* (ii)

Remark:

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへで

University of Pennsylvania

Results

Compatibility of nah and f_* (ii)

Remark:

• One can check that F^k is a tame harmonic bundle;

University of Pennsylvania

Remark:

- One can check that F^k is a tame harmonic bundle;
- One can check that F^k is compatible with middle extensions and D-module push-forward.

University of Pennsylvania

< □ > < ---->

Remark:

- One can check that F^k is a tame harmonic bundle;
- One can check that F^k is compatible with middle extensions and D-module push-forward.

Question: What is the tame parabolic Higgs bundle on (Y, R) corresponding to F^k ? Can this Higgs bundle be computed purely algebraically?

< □ > < ---->

Remark:

- One can check that F^k is a tame harmonic bundle;
- One can check that F^k is compatible with middle extensions and D-module push-forward.

Question: What is the tame parabolic Higgs bundle on (Y, R) corresponding to F^k ? Can this Higgs bundle be computed purely algebraically?

General principle: Jost-Yang-Zuo The Higgs bundle corresponding to F^k should be given by the L^2 holomorphic push-forward of $(\mathbf{E}_{\bullet}, \theta)_{|U}$.

Image: A math a math

An analytic formula

Our first result is a confirmation of the general principle:

University of Pennsylvania

An analytic formula

Our first result is a confirmation of the general principle:

Theorem: [Donagi-P-Simpson] F^k is the harmonic bundle corresponding to the L^2 holomorphic push-forward

 $\left(\mathbb{R}^{k}f_{*}(\Omega^{\bullet}_{X/Y}(E),\theta)_{L^{2}},\varphi\right)$

Tony Pantev Integral transforms University of Pennsylvania

An analytic formula

Our first result is a confirmation of the general principle:

Theorem: [Donagi-P-Simpson] F^k is the harmonic bundle corresponding to the L^2 holomorphic push-forward

$\left(\mathbb{R}^{k}f_{*}(\Omega^{\bullet}_{X/Y}(E),\theta)_{L^{2}},\varphi\right)$

Note: This is essentially contained in Jost-Yang-Zuo. They have an addittional hypothesis (that the local monodromy of ∇ is compact) which is unnecessary.

< 🗇 🕨

An algebraic formula

Our main result is an alebraic formula computing the push-forward parabolic Higgs bundle directly:

< □ > < ---->

An algebraic formula

Our main result is an alebraic formula computing the push-forward parabolic Higgs bundle directly:

Theorem: [Donagi-P-Simpson] F^k is the harmonic bundle corresponding to the tame locally abelian parabolic Higgs bundle $(\mathbf{H}_{\bullet}, \varphi)$, where

$$\mathbf{H}_{\boldsymbol{\alpha}} = \mathbb{R}^{k} f_{*} \left(\Omega^{\bullet}_{X/Y} \left(W_{-2(\bullet^{\mathsf{ver}})} \mathbf{E}_{0^{\mathsf{ver}}, \boldsymbol{\alpha}^{\mathsf{hor}}} \right), \theta \right)$$

University of Pennsylvania

Weight filtrations

Here $W_{n \cdot H_i} \mathbf{E}_{\mathbf{c}}$ is the weight filtration relative to H_i defined as follows:

University of Pennsylvania

Weight filtrations

Here $W_{n \cdot H_i} \mathbf{E}_{\mathbf{c}}$ is the weight filtration relative to H_i defined as follows:

Given a component H_i of H consider the nilpotent operator $N : \bigoplus_{a \in \text{weights}(\mathbf{E}_c)}{}^i \text{gr}_a \mathbf{E}_c \to \bigoplus_{a \in \text{weights}(\mathbf{E}_c)}{}^i \text{gr}_a \mathbf{E}_c$ which is the nilpotent part of $\bigoplus_{i=1}^{i} \text{gr}_a \operatorname{Res}_{H_i} \theta$.

Weight filtrations

Here $W_{n \cdot H_i} \mathbf{E}_{\mathbf{c}}$ is the weight filtration relative to H_i defined as follows:

- Given a component H_i of H consider the nilpotent operator $N : \bigoplus_{a \in weights(\mathbf{E}_c)}{}^i \operatorname{gr}_a \mathbf{E}_c \to \bigoplus_{a \in weights(\mathbf{E}_c)}{}^i \operatorname{gr}_a \mathbf{E}_c$ which is the nilpotent part of $\bigoplus_{a \in weights(\mathbf{E}_c)}{}^i \operatorname{gr}_a \mathbf{E}_{\mathbf{E}_c}$
- Take the monodromy weight-filtration for N and pull it back to $\mathbf{E}_{\mathbf{c}}$ under the natural map $\mathbf{E}_{\mathbf{c}} \rightarrow (\imath_{H_{i}*} \oplus {}^{i}\mathrm{gr}_{a} \mathbf{E}_{\mathbf{c}})$.

The compatibility of **nah** with pushforwards follows from the higher order Kähler identities: the D and D'' Laplacians on a harmonic bundle are proportional.

University of Pennsylvania

Basic case:

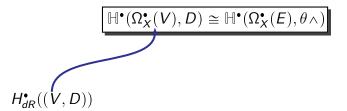
University of Pennsylvania

Basic case: There is a canonical isomorphism of de Rham and Dolbeault cohomology:

$$\mathbb{H}^{\bullet}(\Omega^{\bullet}_{X}(V),D) \cong \mathbb{H}^{\bullet}(\Omega^{\bullet}_{X}(E),\theta \wedge)$$

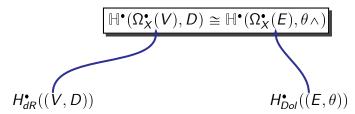
University of Pennsylvania

Basic case: There is a canonical isomorphism of de Rham and Dolbeault cohomology:



University of Pennsylvania

Basic case: There is a canonical isomorphism of de Rham and Dolbeault cohomology:



University of Pennsylvania

Basic case: There is a canonical isomorphism of de Rham and Dolbeault cohomology:

$$\mathbb{H}^{\bullet}(\Omega^{\bullet}_{X}(V), D) \cong \mathbb{H}^{\bullet}(\Omega^{\bullet}_{X}(E), \theta \wedge)$$

Here

•
$$(V, D)$$
 is a \mathbb{C} -local system, and
• $(E, \theta) = \mathbf{nah}_X(V, D)$ is the corresponding Higgs bundle,

University of Pennsylvania

Basic case: There is a canonical isomorphism of de Rham and Dolbeault cohomology:

$$\mathbb{H}^{\bullet}(\Omega^{\bullet}_{X}(V),D) \cong \mathbb{H}^{\bullet}(\Omega^{\bullet}_{X}(E),\theta\wedge)$$

General case:

University of Pennsylvania

Basic case: There is a canonical isomorphism of de Rham and Dolbeault cohomology:

$$\mathbb{H}^{\bullet}(\Omega^{\bullet}_{X}(V),D) \cong \mathbb{H}^{\bullet}(\Omega^{\bullet}_{X}(E),\theta \wedge)$$

General case: There non-abelian Hodge correspondence on Y gives a canonical quasi-isomorphism of de Rham and Dolbeault pushforwards:

$$\mathsf{nah}_{Y}: \left(\mathbb{R}^{\bullet}f_{*}(\Omega^{\bullet}_{X/Y}(V), D), \nabla\right) \xrightarrow{\cong} \left(\mathbb{R}^{\bullet}f_{*}(\Omega^{\bullet}_{X/Y}(E), \theta \wedge), \varphi \wedge\right)$$

University of Pennsylvania

Here

University of Pennsylvania

Here

• $f: X \rightarrow Y$ is a smooth projective morphism of smooth projective varieties.

University of Pennsylvania

Here

- $f: X \to Y$ is a smooth projective morphism of smooth projective varieties.
- ∇ and φ are the edge homomorphisms arising in the pushforwards of the short exact sequences of complexes:

University of Pennsylvania

Here

- $f: X \to Y$ is a smooth projective morphism of smooth projective varieties.
- ∇ and φ are the edge homomorphisms arising in the pushforwards of the short exact sequences of complexes:

$$\begin{split} 0 &\to f^* \Omega^1_Y \otimes \Omega^{\bullet-1}_{X/Y}(V) \to \Omega^{\bullet}_X(V) / I^2 \to \Omega^{\bullet}_{X/Y}(V) \to 0 \\ 0 &\to f^* \Omega^1_Y \otimes \Omega^{\bullet-1}_{X/Y}(E) \to \Omega^{\bullet}_X(E) / I^2 \to \Omega^{\bullet}_{X/Y}(E) \to 0 \end{split}$$

Here I^k is the subcomplex of $\Omega^{\bullet}_{X}(V)$ defined inductively by

Here

- $f: X \to Y$ is a smooth projective morphism of smooth projective varieties.
- ∇ and φ are the edge homomorphisms arising in the pushforwards of the short exact sequences of complexes:

$$\begin{split} 0 &\to f^* \Omega^1_Y \otimes \Omega^{\bullet -1}_{X/Y}(V) \to \Omega^{\bullet}_X(V) / I^2 \to \Omega^{\bullet}_{X/Y}(V) \to 0 \\ 0 &\to f^* \Omega^1_Y \otimes \Omega^{\bullet -1}_{X/Y}(E) \to \Omega^{\bullet}_X(E) / I^2 \to \Omega^{\bullet}_{X/Y}(E) \to 0 \end{split}$$

・ロト ・ 日 ト ・ 日 ト ・ 日

University of Pennsylvania

Here I^k is the subcomplex of $\Omega^{\bullet}_X(V)$ defined inductively by $I^1 = \operatorname{im} [f^*\Omega^1_Y \otimes \Omega^{\bullet}_X(V)];$

Here

- $f: X \rightarrow Y$ is a smooth projective morphism of smooth projective varieties.
- ∇ and φ are the edge homomorphisms arising in the pushforwards of the short exact sequences of complexes:

$$\begin{split} 0 &\to f^*\Omega^1_Y \otimes \Omega^{\bullet-1}_{X/Y}(V) \to \Omega^{\bullet}_X(V)/I^2 \to \Omega^{\bullet}_{X/Y}(V) \to 0 \\ 0 &\to f^*\Omega^1_Y \otimes \Omega^{\bullet-1}_{X/Y}(E) \to \Omega^{\bullet}_X(E)/I^2 \to \Omega^{\bullet}_{X/Y}(E) \to 0 \end{split}$$

Here I^k is the subcomplex of $\Omega^{\bullet}_X(V)$ defined inductively by $I^1 = \operatorname{im} [f^*\Omega^1_Y \otimes \Omega^{\bullet}_X(V)];$ $I^{k+1} = \operatorname{im} [f^*\Omega^1_Y \otimes I^k].$

イロト イロト イヨト イヨト

Algebraic formula (i)

Note: $(\Omega^{\bullet}_X(E), \theta \wedge)$ is a complex of coherent sheaves with an \mathcal{O} -linear differential. Thus

University of Pennsylvania

Algebraic formula (i)

Note: $(\Omega^{\bullet}_X(E), \theta \wedge)$ is a complex of coherent sheaves with an \mathcal{O} -linear differential. Thus

 nah converts pushforwards of local systems to pushforwards of coherent data;

Algebraic formula (i)

Note: $(\Omega^{\bullet}_X(E), \theta \wedge)$ is a complex of coherent sheaves with an \mathcal{O} -linear differential. Thus

- nah converts pushforwards of local systems to pushforwards of coherent data;
- the computation can be done explicitly in terms of spectral data.

< □ > < ---->

Note: $(\Omega^{\bullet}_X(E), \theta \wedge)$ is a complex of coherent sheaves with an \mathcal{O} -linear differential. Thus

- nah converts pushforwards of local systems to pushforwards of coherent data;
- the computation can be done explicitly in terms of spectral data.

Setup: Let $f : X \to Y$ be smooth and proper of fiber dimension *n*. Consider the diagram of spaces:

< □ > < A > >

Note: $(\Omega^{\bullet}_{X}(E), \theta \wedge)$ is a complex of coherent sheaves with an \mathcal{O} -linear differential. Thus

- nah converts pushforwards of local systems to pushforwards of coherent data;
- the computation can be done explicitly in terms of spectral data.

Setup: Let $f : X \to Y$ be smooth and proper of fiber dimension *n*. Consider the diagram of spaces:

$$\operatorname{tot}(f^*T^{\vee}Y)$$

$$\operatorname{tot}(T^{\vee}X)$$

$$\operatorname{tot}(T^{\vee}Y)$$

< □ > < A > >

■ The Higgs bundle (E, θ) corresponds to a spectral sheaf E ∈ Coh(tot(T[∨]X));

University of Pennsylvania

- The Higgs bundle (E, θ) corresponds to a spectral sheaf $\mathcal{E} \in Coh(tot(T^{\vee}X));$
- The Higgs complex $(\mathbb{R}^{\bullet}f_*(\Omega^{\bullet}_{X/Y}(E), \theta \wedge), \varphi \wedge)$ corresponds to a spectral complex $\mathcal{F} \in D^b_{coh}(tot(\mathcal{T}^{\vee}Y)).$

- The Higgs bundle (E, θ) corresponds to a spectral sheaf E ∈ Coh(tot(T[∨]X));
- The Higgs complex $(\mathbb{R}^{\bullet}f_*(\Omega^{\bullet}_{X/Y}(E), \theta \wedge), \varphi \wedge)$ corresponds to a spectral complex $\mathcal{F} \in D^b_{coh}(tot(\mathcal{T}^{\vee}Y)).$

The spectral data ${\mathcal E}$ and ${\mathcal F}$ are related by the formula:

$$\mathcal{F} = R^{\bullet}g_*(Lq^*\mathcal{E}\otimes\omega_g[-n]).$$

University of Pennsylvania

- The Higgs bundle (E, θ) corresponds to a spectral sheaf E ∈ Coh(tot(T[∨]X));
- The Higgs complex $(\mathbb{R}^{\bullet}f_*(\Omega^{\bullet}_{X/Y}(E), \theta \wedge), \varphi \wedge)$ corresponds to a spectral complex $\mathcal{F} \in D^b_{coh}(tot(\mathcal{T}^{\vee}Y)).$

The spectral data ${\mathcal E}$ and ${\mathcal F}$ are related by the formula:

$$\mathcal{F} = R^{\bullet}g_{*}(Lq^{*}\mathcal{E}\otimes\omega_{g}[-n]).$$

Here $\omega_g = p^* \Omega_{X/Y}^n$ is the relative dualizing sheaf of g.

Tony Pantev Integral transforms University of Pennsylvania

Local model for the stratified Mukai flop: Consider

University of Pennsylvania

Local model for the stratified Mukai flop: Consider

■ V - an *n*-dimensional vector space,

University of Pennsylvania

Local model for the stratified Mukai flop: Consider

- V an *n*-dimensional vector space,
- **r** an integer satisfying $0 < r \leq n/2$,

Image: A math a math

Local model for the stratified Mukai flop: Consider

- V an *n*-dimensional vector space,
- **r** an integer satisfying $0 < r \leq n/2$,
- X the nilpotent variety

$$X = \{a \in \operatorname{End}(V) \mid a^2 = 0, \operatorname{rank}(a) \leqslant r\}.$$

Image: A matrix

Local model for the stratified Mukai flop: Consider

- V an *n*-dimensional vector space,
- **r** an integer satisfying $0 < r \leq n/2$,
- X the nilpotent variety

$$X = \{a \in \mathsf{End}(V) \mid a^2 = 0, \mathsf{rank}(a) \leqslant r\}.$$

The **stratified Mukai flop** is the birational transformation between the two natural crepant resolutions of X:

$$X' - - - > X''$$

Kashiwara's conjecture (ii) Here $X' = tot(T \lor Gr(r, V)), X'' = tot(T \lor Gr(n - r, V))$, and

University of Pennsylvania

Kashiwara's conjecture (ii) Here $X' = tot(T^{\vee}Gr(r, V))$, $X'' = tot(T^{\vee}Gr(n - r, V))$, and

$$\begin{aligned} \varepsilon': & X' \xrightarrow{} X \\ & (W, f) \longmapsto \left[V \twoheadrightarrow V/W \xrightarrow{f} W \hookrightarrow V \right] \end{aligned}$$

University of Pennsylvania

Kashiwara's conjecture (ii) Here $X' = tot(T^{\vee}Gr(r, V))$, $X'' = tot(T^{\vee}Gr(n - r, V))$, and

$$\varepsilon': \qquad X' \xrightarrow{} X \\ (W, f) \longmapsto \left[V \twoheadrightarrow V/W \xrightarrow{f} W \hookrightarrow V \right]$$

$W \in Gr(r, V)$, $f \in Hom(V/W, W)$

University of Pennsylvania

Kashiwara proved that if $U \subset Gr(r, V) \times Gr(n - r, V)$ is the subvariety of pairs of transversal subspaces, then the integral transform

$$\Phi: D^{b}(Gr(r, V), \mathcal{D}) \to D^{b}(Gr(n - r, V), \mathcal{D})$$

defined by the kernel *D*-module $i_{U!}\mathbb{C}_U$ is an equivalence.

University of Pennsylvania

Kashiwara proved that if $U \subset Gr(r, V) \times Gr(n - r, V)$ is the subvariety of pairs of transversal subspaces, then the integral transform

$$\Phi: D^{b}(Gr(r, V), \mathcal{D}) \to D^{b}(Gr(n - r, V), \mathcal{D})$$

defined by the kernel *D*-module $i_{U!} \mathbb{C}_U$ is an equivalence.

Conjecture: [Kashiwara] The complex of Higgs sheaves $\operatorname{nah}(i_{U!}\mathbb{C}_U)$ viewed as a complex of coherent sheaves on $T^{\vee}Gr(r, V) \times T^{\vee}Gr(n-r, V) = X' \times X''$ is a Fourier-Mukai kernel supported on $X' \times_X X''$ and giving the *D*-equivalence of X' and X''.

University of Pennsylvania

Fix a pair (X, D), where

University of Pennsylvania

Fix a pair (X, D), where

X - a compact complex manifold;

University of Pennsylvania

Fix a pair (X, D), where

- X a compact complex manifold;
- $D \subset X$ a divisor with simple normal crossings;

Image: A matrix

Fix a pair (X, D), where

- X a compact complex manifold;
- $D \subset X$ a divisor with simple normal crossings;
- $\square D = \bigcup_{i \in S} D_i$ the irreducible decomposition of D.

Image: A matrix

Definition: A torsion free parabolic sheaf on (X, D) is a collection of torsion free coherent sheaves $\{\mathcal{E}_{\alpha}\}_{\alpha \in \mathbb{R}^{5}}$ together with inclusions $\mathcal{E}_{\alpha} \subset \mathcal{E}_{\beta}$ of sheaves of \mathcal{O}_{X} -modules, specified for all $\alpha \leq \beta$, satisfying the conditions:

- ∢ 🗇 🕨

Definition: A torsion free parabolic sheaf on (X, D) is a collection of torsion free coherent sheaves $\{\mathcal{E}_{\alpha}\}_{\alpha \in \mathbb{R}^{S}}$ together with inclusions $\mathcal{E}_{\alpha} \subset \mathcal{E}_{\beta}$ of sheaves of \mathcal{O}_{X} -modules, specified for all $\alpha \leq \beta$, satisfying the conditions: **[semicontinuity]** for every $\alpha \in \mathbb{R}^{S}$, there exists a real number c > 0 so that $\mathcal{E}_{\alpha+\epsilon} = \mathcal{E}_{\alpha}$ for all functions $\varepsilon : S \to [0, c]$.

- < A

Definition: A torsion free parabolic sheaf on (X, D) is a collection of torsion free coherent sheaves $\{\mathcal{E}_{\alpha}\}_{\alpha \in \mathbb{R}^{S}}$ together with inclusions $\mathcal{E}_{\alpha} \subset \mathcal{E}_{\beta}$ of sheaves of \mathcal{O}_X -modules, specified for all $\alpha \leq \beta$, satisfying the conditions: **[semicontinuity]** for every $\alpha \in \mathbb{R}^{S}$, there exists a real number c > 0 so that $\mathcal{E}_{\alpha+\varepsilon} = \mathcal{E}_{\alpha}$ for all functions $\varepsilon : S \rightarrow [0, c]$. **[support]** if $\delta_i : S \to \mathbb{R}$ is the characteristic function of *i*, then for all $\alpha \in \mathbb{R}^{S}$ we have $\mathcal{E}_{\alpha+\delta_{i}} = \mathcal{E}_{\alpha}(D_{i})$ (compatibly with the inclusion).

Fix a parabolic torsion free sheaf **E**_• on (X, D) and $\mathbf{c} \in \mathbb{R}^{S}$.

University of Pennsylvania

Fix a parabolic torsion free sheaf **E**. on (X, D) and $\mathbf{c} \in \mathbb{R}^{S}$. For every $i \in S$ we get an induced filtration $\{{}^{i}F_{a}\}_{c_{i}-1 < a \leq c_{i}}$ of the restricted sheaf $\mathbf{E}_{\mathbf{c}|D_{i}}$.

< □ > < A > >

Fix a parabolic torsion free sheaf **E**. on (X, D) and $\mathbf{c} \in \mathbb{R}^{S}$. For every $i \in S$ we get an induced filtration $\{{}^{i}F_{a}\}_{c_{i}-1 < a \leq c_{i}}$ of the restricted sheaf $\mathbf{E}_{\mathbf{c}|D_{i}}$.

$$F_{a} = \bigcup_{\substack{\alpha \leqslant \mathbf{c} \\ \alpha_{i} \leqslant a}} \mathbf{E}_{\alpha}$$

University of Pennsylvania

Fix a parabolic torsion free sheaf \mathbf{E}_{\bullet} on (X, D) and $\mathbf{c} \in \mathbb{R}^{S}$. For every $i \in S$ we get an induced filtration $\{{}^{i}F_{a}\}_{c_{i}-1 < a \leq c_{i}}$ of the restricted sheaf $\mathbf{E}_{\mathbf{c}|D_{i}}$. Define ${}^{i}\mathbf{gr}_{a} \mathbf{E}_{\mathbf{c}} := {}^{i}F_{a}/{}^{i}F_{{}^{i}F_{< a}}$. [semicontinuity] \Rightarrow the set of parabolic weights

weights(
$$\mathbf{E}_{\mathbf{c}}, i$$
) = { $a \in (c_i - 1, c_i] \mid {}^i gr_a \neq 0$ }

is finite

University of Pennsylvania

Image: Image:

Fix a parabolic torsion free sheaf \mathbf{E}_{\bullet} on (X, D) and $\mathbf{c} \in \mathbb{R}^{S}$. For every $i \in S$ we get an induced filtration $\{{}^{i}F_{a}\}_{c_{i}-1 < a \leq c_{i}}$ of the restricted sheaf $\mathbf{E}_{c|D_{i}}$. Define ${}^{i}\text{gr}_{a} \mathbf{E}_{c} := {}^{i}F_{a}/{}^{i}F_{i}_{F_{< a}}$. [semicontinuity] \Rightarrow the set of parabolic weights

weights(
$$\mathbf{E}_{\mathbf{c}}, i$$
) = { $a \in (c_i - 1, c_i] \mid {}^i \mathrm{gr}_a \neq 0$ }

is finite **Note:** The sheaf $\mathbf{E}_{\mathbf{c}}$ together with the flags $\{{}^{i}F_{a} | i \in S, a \in \text{weights}(\mathbf{E}_{\mathbf{c}}, i)\}$ reconstruct the parabolic sheaf \mathbf{E}_{\bullet} .

Image: A math a math

Example: A **parabolic line bundle** is a parabolic sheaf F_{\bullet} for which all sheaves F_{α} are invertible.

Image: A matrix

University of Pennsylvania

Locally abelian parabolic bundles (i)

Example: A parabolic line bundle is a parabolic sheaf F_{\bullet} for which all sheaves F_{α} are invertible. If $\mathbf{a} \in \mathbb{R}^{S}$, then define a parabolic line bundle $\mathcal{O}_{X}(\sum_{i \in S} \mathbf{a}_{i}D_{i})_{\bullet}$ by setting

$$\left(\mathcal{O}_X\left(\sum_{i\in S}\mathbf{a}_iD_i\right)\right)_{\boldsymbol{\alpha}} := \mathcal{O}_X\left(\sum_{i\in S}\left[\mathbf{a}_i + \boldsymbol{\alpha}_i\right]D_i\right)$$

University of Pennsylvania

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Locally abelian parabolic bundles (i)

Example: A parabolic line bundle is a parabolic sheaf F_{\bullet} for which all sheaves F_{α} are invertible. If $\mathbf{a} \in \mathbb{R}^{S}$, then define a parabolic line bundle $\mathcal{O}_{X}(\sum_{i \in S} \mathbf{a}_{i}D_{i})_{\bullet}$ by setting

$$\left(\mathcal{O}_X\left(\sum_{i\in S}\mathbf{a}_i D_i\right)\right)_{\boldsymbol{\alpha}} := \mathcal{O}_X\left(\sum_{i\in S} [\mathbf{a}_i + \boldsymbol{\alpha}_i] D_i\right)$$

Claim: Every parabolic line bundle F_{\bullet} is isomorphic to $L \otimes \mathcal{O}_X (\sum_{i \in S} \mathbf{a}_i D_i)_{\bullet}$ for some $L \in \operatorname{Pic}(X)$, and some $\mathbf{a} \in \mathbb{R}^S$.

Image: A math a math

Parabolic objects

Locally abelian parabolic bundles (ii)

Definition: A parabolic sheaf F_{\bullet} is a **locally abelian bundle**, if in a Zariski neighborhood of any point $x \in X$ there is an isomorphism between F_{\bullet} and a direct sum of parabolic line bundles.

University of Pennsylvania

Parabolic objects

Locally abelian parabolic bundles (ii)

Definition: A parabolic sheaf F_{\bullet} is a **locally abelian bundle**, if in a Zariski neighborhood of any point $x \in X$ there is an isomorphism between F_{\bullet} and a direct sum of parabolic line bundles.

Note: A parabolic bundle $(\mathbf{E}_{\mathbf{c}}, \{{}^{i}F_{\bullet}\}_{i\in S})$ is locally abelian iff on every intersection $D_{i_{1}} \cap \cdots \cap D_{i_{k}}$ the iterated graded ${}^{i_{1}}\operatorname{gr}_{a_{1}}\cdots{}^{i_{k}}\operatorname{gr}_{a_{k}}\mathbf{E}_{\mathbf{c}}$ does not depend on the order of the components.

Parabolic objects

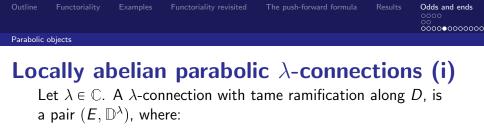
Locally abelian parabolic bundles (ii)

Definition: A parabolic sheaf F_{\bullet} is a **locally abelian bundle**, if in a Zariski neighborhood of any point $x \in X$ there is an isomorphism between F_{\bullet} and a direct sum of parabolic line bundles.

Note: A parabolic bundle $(\mathbf{E}_{\mathbf{c}}, \{{}^{i}F_{\bullet}\}_{i\in S})$ is locally abelian iff on every intersection $D_{i_{1}} \cap \cdots \cap D_{i_{k}}$ the iterated graded ${}^{i_{1}}\operatorname{gr}_{a_{1}} \cdots {}^{i_{k}}\operatorname{gr}_{a_{k}} \mathbf{E}_{\mathbf{c}}$ does not depend on the order of the components.

Variant: We can define similarly locally abelian parabolic local systems, Higgs bundles, or more generally locally abelian parabolic λ -connections.

Image: A math a math



Tony Pantev Integral transforms University of Pennsylvania

Image: A math a math

• *E* is a holomorphic vector bundle on X;

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let $\lambda \in \mathbb{C}$. A λ -connection with tame ramification along D, is a pair $(E, \mathbb{D}^{\lambda})$, where:

- E is a holomorphic vector bundle on X;
- $\mathbb{D}^{\lambda}: E \to E \otimes \Omega^1_X(\log D)$, is a \mathbb{C} -linear map satisfying the λ -twisted Leibnitz rule

$$\mathbb{D}^{\lambda}(f \cdot s) = f \mathbb{D}^{\lambda} s + \lambda s \otimes df.$$

Image: A matrix

■ E is a holomorphic vector bundle on X:

■ \mathbb{D}^{λ} : $E \to E \otimes \Omega^1_X(\log D)$, is a \mathbb{C} -linear map satisfying the λ -twisted Leibnitz rule

$$\mathbb{D}^{\lambda}(f \cdot s) = f \mathbb{D}^{\lambda} s + \lambda s \otimes df.$$

We say that \mathbb{D}^{λ} is flat if $\mathbb{D}^{\lambda} \circ \mathbb{D}^{\lambda} = 0$.

< □ > < A > >

Let $\lambda \in \mathbb{C}$. A λ -connection with tame ramification along D, is a pair $(E, \mathbb{D}^{\lambda})$, where:

- E is a holomorphic vector bundle on X;
- \mathbb{D}^{λ} : $E \to E \otimes \Omega^{1}_{X}(\log D)$, is a \mathbb{C} -linear map satisfying the λ -twisted Leibnitz rule

$$\mathbb{D}^{\lambda}(f \cdot s) = f \mathbb{D}^{\lambda} s + \lambda s \otimes df.$$

We say that \mathbb{D}^{λ} is flat if $\mathbb{D}^{\lambda} \circ \mathbb{D}^{\lambda} = 0$. Note:

 $({\sf flat 1-connection}) = ({\sf flat connection with regular singularities}) \\ ({\sf flat 0-connection}) = ({\sf Higgs bundle with logarithmic poles})$

< □ > < A > >

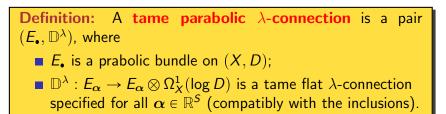
Definition: A tame parabolic λ -connection is a pair $(E_{\bullet}, \mathbb{D}^{\lambda})$, where

University of Pennsylvania

E is a prabolic bundle on (X, D);

> < □ > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

University of Pennsylvania



University of Pennsylvania

Tony Pantev Integral transfo<u>rms</u>

Locally abelian parabolic λ -connections (ii)

Definition: A tame parabolic λ-connection is a pair (E_•, D^λ), where
E_• is a prabolic bundle on (X, D);
D^λ: E_α → E_α ⊗ Ω¹_X(log D) is a tame flat λ-connection specified for all α ∈ R^S (compatibly with the inclusions).

A tame parabolic λ -connection $(E_{\bullet}, \mathbb{D}^{\lambda})$ is locally abelian if in a Zariski neighborhood of any point $x \in X$ there is an ismomorphism between $(E_{\bullet}, \mathbb{D}^{\lambda})$ and direct sum of rank one tame parabolic λ -connections.

< □ > < A > >

Let \mathcal{E}_{\bullet} be a parabolic torsion free sheaf on (X, D), then the parabolic Chern character of \mathcal{E}_{\bullet} is given by the **lyer-Simpson** formula:

University of Pennsylvania

Let \mathcal{E}_{\bullet} be a parabolic torsion free sheaf on (X, D), then the parabolic Chern character of \mathcal{E}_{\bullet} is given by the **lyer-Simpson** formula:

$$\mathsf{parch}(\mathcal{E}_{\bullet}) = \mathsf{parch}({}_{\mathbf{c}}E) = \frac{\prod_{i \in S} \int_{c_i}^{c_i+1} d\alpha_i \left[ch\left(\mathcal{E}_{\alpha_i}\right) e^{-\sum_{i \in S} \alpha_i D_i} \right]}{\prod_{i \in S} \int_0^1 d\alpha_i e^{-\sum_{i \in S} \alpha_i D_i}}.$$

< □ > < A > >

Let \mathcal{E}_{\bullet} be a parabolic torsion free sheaf on (X, D), then the parabolic Chern character of \mathcal{E}_{\bullet} is given by the **lyer-Simpson** formula:

$$\mathsf{parch}(\mathcal{E}_{\bullet}) = \mathsf{parch}({}_{\mathbf{c}}E) = \frac{\prod_{i \in S} \int_{c_i}^{c_i+1} d\alpha_i \left[ch\left(\mathcal{E}_{\alpha_i}\right) e^{-\sum_{i \in S} \alpha_i D_i} \right]}{\prod_{i \in S} \int_0^1 d\alpha_i e^{-\sum_{i \in S} \alpha_i D_i}}.$$

 $\mathbf{c} \in \mathbb{R}^{S}$ is any base point

University of Pennsylvania

< □ > < A > >

Let \mathcal{E}_{\bullet} be a parabolic torsion free sheaf on (X, D), then the parabolic Chern character of \mathcal{E}_{\bullet} is given by the **lyer-Simpson** formula:

$$\mathsf{parch}(\mathcal{E}_{\bullet}) = \mathsf{parch}({}_{\mathbf{c}}E) = \frac{\prod_{i \in S} \int_{c_i}^{c_i+1} d\alpha_i \left[ch\left(\mathcal{E}_{\alpha_i}\right) e^{-\sum_{i \in S} \alpha_i D_i} \right]}{\prod_{i \in S} \int_0^1 d\alpha_i e^{-\sum_{i \in S} \alpha_i D_i}}.$$

Note: Given $\mathbf{c} \in \mathbb{R}^{S}$ define the **c**-truncation $_{\mathbf{c}}E$ of \mathcal{E}_{\bullet} = the collection $\{\mathcal{E}_{\alpha}\}_{\mathbf{c} < \alpha \leq \mathbf{c} + \delta}$, with $\delta = \sum_{i \in S} \delta_{i}$.

< □ > < A > >

Let \mathcal{E}_{\bullet} be a parabolic torsion free sheaf on (X, D), then the parabolic Chern character of \mathcal{E}_{\bullet} is given by the **lyer-Simpson** formula:

$$\mathsf{parch}(\mathcal{E}_{\bullet}) = \mathsf{parch}({}_{\mathbf{c}}E) = \frac{\prod_{i \in S} \int_{c_i}^{c_i+1} d\alpha_i \left[ch\left(\mathcal{E}_{\alpha_i}\right) e^{-\sum_{i \in S} \alpha_i D_i} \right]}{\prod_{i \in S} \int_0^1 d\alpha_i e^{-\sum_{i \in S} \alpha_i D_i}}.$$

Note: Given $\mathbf{c} \in \mathbb{R}^{S}$ define the **c**-truncation $_{\mathbf{c}}E$ of \mathcal{E}_{\bullet} = the collection $\{\mathcal{E}_{\alpha}\}_{\mathbf{c}<\alpha\leqslant \mathbf{c}+\delta}$, with $\delta = \sum_{i\in S} \delta_{i}$. [support] $\Rightarrow \mathcal{E}_{\bullet}$ is effectively reconstructed by any truncation $_{\mathbf{c}}E$.

< □ > < A > >

Let \mathcal{E}_{\bullet} be a parabolic torsion free sheaf on (X, D), then the parabolic Chern character of \mathcal{E}_{\bullet} is given by the **lyer-Simpson** formula:

$$\mathsf{parch}(\mathcal{E}_{\bullet}) = \mathsf{parch}({}_{\mathbf{c}}E) = \frac{\prod_{i \in S} \int_{c_i}^{c_i+1} d\alpha_i \left[ch\left(\mathcal{E}_{\alpha_i}\right) e^{-\sum_{i \in S} \alpha_i D_i} \right]}{\prod_{i \in S} \int_0^1 d\alpha_i e^{-\sum_{i \in S} \alpha_i D_i}}.$$

Note: Given $\mathbf{c} \in \mathbb{R}^{S}$ define the **c**-truncation $_{\mathbf{c}}E$ of \mathcal{E}_{\bullet} = the collection $\{\mathcal{E}_{\alpha}\}_{\mathbf{c}<\alpha\leqslant \mathbf{c}+\delta}$, with $\delta = \sum_{i\in S} \delta_{i}$. **[support]** $\Rightarrow \mathcal{E}_{\bullet}$ is effectively reconstructed by any truncation $_{\mathbf{c}}E$. In fact: the numerator of the lyer-Simpson formula is independent of the choice of truncation.

Example: The first parabolic Chern class of **E**_• is given by:

University of Pennsylvania

Example: The first parabolic Chern class of **E**_• is given by:

$$\boxed{\mathsf{parc}_1 = c_1(\mathsf{E}_{\mathsf{c}}) - \sum_{i \in S} \left(\sum_{a \in \mathsf{weights}(\mathsf{E}_{\mathsf{c}}, i)} a \operatorname{rank}^i \operatorname{gr}_a \mathsf{E}_{\mathsf{c}} \right) \cdot D_i}$$

University of Pennsylvania

< □ > < A > >

Weights and residues (i)

A parabolic λ -connection $(\mathbf{E}_{\bullet}, \mathbb{D}^{\lambda})$ has a collection of numerical invariants which are most conveniently packaged in the so called **KMS spectrum**.

< □ > < A > >

Weights and residues (i)

A parabolic λ -connection ($\mathbf{E}_{\bullet}, \mathbb{D}^{\lambda}$) has a collection of numerical invariants which are most conveniently packaged in the so called KMS spectrum.

Kashiwara-Malgrange-Sabbah-Simpson

Weights and residues (i)

A parabolic λ -connection ($\mathbf{E}_{\bullet}, \mathbb{D}^{\lambda}$) has a collection of numerical invariants which are most conveniently packaged in the so called **KMS spectrum**. By definition:

$$\begin{split} \mathsf{KMS}((\mathbf{E}_{\bullet}, \mathbb{D}^{\lambda}), i) &:= \bigcup_{\mathsf{c}} \mathsf{KMS}((\mathbf{E}_{\mathsf{c}}, \mathbb{D}^{\lambda}), i) \subset \mathbb{R} \times \mathbb{C} \\ \mathsf{KMS}((\mathbf{E}_{\mathsf{c}}, \mathbb{D}^{\lambda}), i) &:= \left\{ \left. (\mathbf{a}, \alpha) \right| \begin{array}{l} \mathbf{a} \in \mathsf{weights}(\mathbf{E}_{\mathsf{c}}, i), \ \alpha \ \mathsf{is} \\ \mathsf{an} \ \mathsf{eigenvalue} \ \mathsf{of} \ {}^{i}\mathsf{gr}_{\mathsf{a}} \mathbb{D}^{\lambda} \ \mathsf{on} \end{array} \right\} \end{split}$$

University of Pennsylvania

< □ > < A > >

Weights and residues (ii)

A tame harmonic bundle $(E, \overline{\partial}_E, \theta, h)$ on X - D gives rise to a twistor family of parabolic λ -connections $(\mathbf{E}^{\lambda}_{\bullet}, \mathbb{D}^{\lambda})$ parametrized by $\lambda \in \mathbb{C}$.

Weights and residues (ii)

A tame harmonic bundle $(E, \overline{\partial}_E, \theta, h)$ on X - D gives rise to a twistor family of parabolic λ -connections $(\mathbf{E}^{\lambda}_{\bullet}, \mathbb{D}^{\lambda})$ parametrized by $\lambda \in \mathbb{C}$.

Theorem: [Mochizuki,Simpson] For any twistor family $(\mathbf{E}^{\lambda}_{\bullet}, \mathbb{D}^{\lambda})$ of parabolic λ -connections, the map $\mathbb{R} \times \mathbb{C} \longrightarrow \mathbb{R} \times \mathbb{C}$ $(a, \alpha) \longmapsto (a + 2 \operatorname{Re}(\lambda \cdot \overline{\alpha}), \alpha - a \cdot \lambda - \overline{\alpha} \cdot \lambda^2)$ identifies KMS($(\mathbf{E}^{0}_{\bullet}, \mathbb{D}^{0}), i$) with KMS($(\mathbf{E}^{\lambda}_{\bullet}, \mathbb{D}^{\lambda}), i$), and preserves multiplicities.

Tony Pantev

Weights and residues (iii)

Thus if a parabolic local system $(\mathbf{V}_{\bullet}, \nabla)$ corresponds to a parabolic Higgs bundle $(\mathbf{E}_{\bullet}, \theta)$ under $\mathbf{nah}_{X,D}$, then we have a matching:

< □ > < A > >

Weights and residues (iii)

Thus if a parabolic local system $(\mathbf{V}_{\bullet}, \nabla)$ corresponds to a parabolic Higgs bundle $(\mathbf{E}_{\bullet}, \theta)$ under $\mathbf{nah}_{X,D}$, then we have a matching:

(E_{\bullet}, θ)	$(\mathbf{V}_{ullet}, abla)$	
<i>a</i> - parabolic weight along <i>D</i> _i	$b = a + 2 \operatorname{Re}(\alpha)$ - parabolic weight along D_i	
$lpha$ - eigenvalue of ${}^i{ m gr}_{a}{ m Res}_{D_i} heta$	$ \beta = -a + \sqrt{-1} \cdot 2 \operatorname{Im}(\alpha) - $ eigenvalue of ^{<i>i</i>} gr _a Res _{D_i} ∇	

< □ > < A > >

Let *G* be a finite dimensional complex vector space, and let $N: G \rightarrow G$ be a nilpotent operator of order $\leq k$. Recall the following

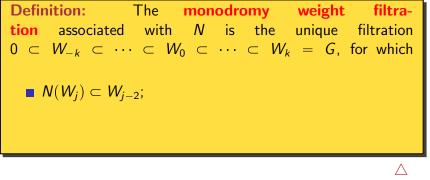
University of Pennsylvania

Let *G* be a finite dimensional complex vector space, and let $N: G \rightarrow G$ be a nilpotent operator of order $\leq k$. Recall the following

Definition:	The mo	nodromy	weight	filtra-
tion associated	with N	is the	unique	filtration
$0 \subset W_{-k} \subset \cdots$	$\cdot \subset W_0 \subset$	$\cdots \subset W$	$G_k = G_k$	for which

University of Pennsylvania

Let *G* be a finite dimensional complex vector space, and let $N: G \rightarrow G$ be a nilpotent operator of order $\leq k$. Recall the following



Let *G* be a finite dimensional complex vector space, and let $N: G \rightarrow G$ be a nilpotent operator of order $\leq k$. Recall the following

Definition: The monodromy weight filtration associated with N is the unique filtration $0 \subset W_{-k} \subset \cdots \subset W_0 \subset \cdots \subset W_k = G$, for which • $N(W_j) \subset W_{j-2}$; • $N(W_j) = \operatorname{im} N \cap W_{j-2}$;

University of Pennsylvania

Let G be a finite dimensional complex vector space, and let $N: G \rightarrow G$ be a nilpotent operator of order $\leq k$. Recall the following

Definition: The monodromy weight filtration associated with N is the unique filtration $0 \subset W_{-k} \subset \cdots \subset W_0 \subset \cdots \subset W_k = G$, for which $N(W_j) \subset W_{j-2};$ $N(W_j) = \operatorname{im} N \cap W_{j-2};$ $N : \operatorname{gr}_{k+j}^W \to \operatorname{gr}_{k-j}^W$ is an isomorphism.

University of Pennsylvania