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Non-abelian Hodge correspondence

Pure non-abelian Hodge correspondence without ramification:

Theorem: [Corlette-Simpson] Let pX ,OX p1qq be a smooth
complex projective variety. Then there is a natural equivalence
of dg b-categories:

nahX :

�
finite rank C-
local systems
on X

� �ÝÑ ��� finite rank OX p1q-
semistable Higgs
bundles on X with
ch1 � 0 and ch2 � 0

�Æ
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Basic functoriality:
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Functoriality of the correspondence (i)

Basic functoriality: The non-abelian Hodge correspondece is
compatible [Simpson] with the formalism of Grothendieck’s
six operations:
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Functoriality of the correspondence (i)

Basic functoriality: The non-abelian Hodge correspondece is
compatible [Simpson] with the formalism of Grothendieck’s
six operations:

nahX respects b;

nahX respects internal RHoms;
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Functoriality of the correspondence (i)

Basic functoriality: The non-abelian Hodge correspondece is
compatible [Simpson] with the formalism of Grothendieck’s
six operations:

nahX respects b;

nahX respects internal RHoms;

if f : X Ñ Y is a morphism of smooth projective
varieties, then f � intertwines nahY and nahX ;
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Functoriality of the correspondence (i)

Basic functoriality: The non-abelian Hodge correspondece is
compatible [Simpson] with the formalism of Grothendieck’s
six operations:

nahX respects b;

nahX respects internal RHoms;

if f : X Ñ Y is a morphism of smooth projective
varieties, then f � intertwines nahY and nahX ;

if f is smooth, then Rf� intertwines nahX and nahY .
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Functoriality of the correspondence (i)

Basic functoriality: The non-abelian Hodge correspondece is
compatible [Simpson] with the formalism of Grothendieck’s
six operations:

nahX respects b;

nahX respects internal RHoms;

if f : X Ñ Y is a morphism of smooth projective
varieties, then f � intertwines nahY and nahX ;

if f is smooth, then Rf� intertwines nahX and nahY .

Note: The hardest part is the compatibility with pushforwards
.
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Functoriality of the correspondence (ii)
General functoriality:
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Functoriality of the correspondence (ii)
General functoriality:
Problem: Show that the non-abelian Hodge correspondence
is compatible with arbitrary pullback and pushforwards.
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Functoriality of the correspondence (ii)
General functoriality:
Problem: Show that the non-abelian Hodge correspondence
is compatible with arbitrary pullback and pushforwards.

Note: If f : X Ñ Y is a general morphism, then the
application of any of f�f!, f �, or f ! to a local system will result
in a general (regular holonomic) D-module.
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Functoriality of the correspondence (ii)
General functoriality:
Problem: Show that the non-abelian Hodge correspondence
is compatible with arbitrary pullback and pushforwards.

Note: If f : X Ñ Y is a general morphism , then the

application of any of f�f!, f �, or f ! to a local system will result
in a general (regular holonomic) D-module.

not necessarily
smooth or proper
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Functoriality of the correspondence (ii)
General functoriality:
Problem: Show that the non-abelian Hodge correspondence
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application of any of f�f!, f �, or f ! to a local system will result
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Functoriality of the correspondence (ii)
General functoriality:
Problem: Show that the non-abelian Hodge correspondence
is compatible with arbitrary pullback and pushforwards.

Note: If f : X Ñ Y is a general morphism, then the
application of any of f�f!, f �, or f ! to a local system will result
in a general (regular holonomic) D-module.

Conclusion: To achieve general functoriality we must extend
the non-abelian Hodge correspondence to objects with
singularities.
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Functoriality of the correspondence (ii)
General functoriality:
Problem: Show that the non-abelian Hodge correspondence
is compatible with arbitrary pullback and pushforwards.

Note: If f : X Ñ Y is a general morphism, then the
application of any of f�f!, f �, or f ! to a local system will result
in a general (regular holonomic) D-module.

Conclusion: To achieve general functoriality we must extend
the non-abelian Hodge correspondence to objects with
singularities. Such an extension - the theory of twistor
D-modules - was developed and studied extensively in the
works of Sabbah and Mochizuki.
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Some applications of functoriality (i)

The compatibility of nah with arbitrary pullbacks and
pushforwards is a powerful tool: it allows us to convert
complicated questions about D-modules to geometric
questions about coherent sheaves.
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Some applications of functoriality (i)

Example: (Non-degenerate representations of Kähler groups)
Simpson used the compatibility of nah with pushforwards and
a deformation theory calculation for coherent sheaves to
construct projective manifolds whose fundamental groups
admit a non-rigid, non-factorizable representations which do
not come from variations Hodge structures. Such examples are
of central importance in understanding the Shafarevich
uniformization conjecture.
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Some applications of functoriality (ii)

Example: (Construction of Hecke eigensheaves) In a joint
work with Donagi we use the general compatibility with
pushforwards to construct a geometric Langlands type
equivalence as a conjugation of a Fourier-Mukai transform
with two non-abelian Hodge correspondences. We also use the
compatibbility to show that the the equivalence intertwines
Hecke and tensorization symmetries.
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Some applications of functoriality (iii)

Example: (Construction of Fourier-Mukai kernels) One can
use the general compatibility to construct a Fourier-Mukai
kernel for the stratified Mukai flop and to check the
Bondal-Orlov orthogonality conditions for this kernel and thus
prove the Bondal-Orlov “K-equivalence implies D-equivalence”
conjecture in this case.
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Tamely ramified non-abelian Hodge theory
Theorem: [Mochizuki] Let pX ,OX p1qq be smooth projec-

tive, and let D � X be an effective divisor. Suppose that we

have a closed subvariety Z � X of codimension ¥ 3, such that

X � Z is smooth and D � Z is a normal crossing divisor.

Then there is a canonical equivalence of dg b-categories:��� finite rank tame

parabolic C-

local systems onpX , Dq �ÆnahX ,DÝÑ ������� finite rank locally abelian

tame parabolic Higgs

bundles on pX , Dq
which are OX p1q-
semistable and satisfy

parch1 � 0 and parch2 � 0

�ÆÆÆÆÆ
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Functoriality with tame ramification
Let f : X Ñ Y be a projecive morphism, R � Y - a normal
crossing divisor, and K � f �1pRq. Assume
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Functoriality with tame ramification
Let f : X Ñ Y be a projecive morphism, R � Y - a normal
crossing divisor, and K � f �1pRq. Assume

H Y K � X - a normal crossing divisor;
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Functoriality with tame ramification
Let f : X Ñ Y be a projecive morphism, R � Y - a normal
crossing divisor, and K � f �1pRq. Assume

H Y K � X - a normal crossing divisor;

f : H Ñ X is smooth;
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Functoriality with tame ramification
Let f : X Ñ Y be a projecive morphism, R � Y - a normal
crossing divisor, and K � f �1pRq. Assume

H Y K � X - a normal crossing divisor;

f : H Ñ X is smooth;

Problem: Understand the push-forward and pull-back of tame
parabolic local systems and Higgs bundles under such a map f .
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Functoriality with tame ramification
Let f : X Ñ Y be a projecive morphism, R � Y - a normal
crossing divisor, and K � f �1pRq. Assume

H Y K � X - a normal crossing divisor;

f : H Ñ X is smooth;

Problem: Understand the push-forward and pull-back of tame
parabolic local systems and Higgs bundles under such a map f .
Note:
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Functoriality with tame ramification
Let f : X Ñ Y be a projecive morphism, R � Y - a normal
crossing divisor, and K � f �1pRq. Assume

H Y K � X - a normal crossing divisor;

f : H Ñ X is smooth;

Problem: Understand the push-forward and pull-back of tame
parabolic local systems and Higgs bundles under such a map f .
Note:

The compatibility of nah with pull-backs is automatic
once f � is defined correctly,
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Functoriality with tame ramification
Let f : X Ñ Y be a projecive morphism, R � Y - a normal
crossing divisor, and K � f �1pRq. Assume

H Y K � X - a normal crossing divisor;

f : H Ñ X is smooth;

Problem: Understand the push-forward and pull-back of tame
parabolic local systems and Higgs bundles under such a map f .
Note:

The compatibility of nah with pull-backs is automatic
once f � is defined correctly, (e.g. by using stacks or by
using the locally abelian condition);
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Functoriality with tame ramification
Let f : X Ñ Y be a projecive morphism, R � Y - a normal
crossing divisor, and K � f �1pRq. Assume

H Y K � X - a normal crossing divisor;

f : H Ñ X is smooth;

Problem: Understand the push-forward and pull-back of tame
parabolic local systems and Higgs bundles under such a map f .
Note:

The compatibility of nah with pull-backs is automatic
once f � is defined correctly,

For the compatibility of nah with push-forwards we will
need an algebraic formula for f� in terms of Higgs bundles.
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Compatibility of nah and f� (i)
Suppose
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Compatibility of nah and f� (i)
SupposepV,∇q - a tame parabolic local system on pX , H � K q;

Tony Pantev University of Pennsylvania

Integral transforms



Outline Functoriality Examples Functoriality revisited The push-forward formula Results Odds and ends

Compatibility of nah and f� (i)
SupposepV,∇q - a tame parabolic local system on pX , H � K q;pE, θq - a tame locally abelian parabolic Higgs bundle

with parch1 � 0, parch2 � 0;
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Compatibility of nah and f� (i)
SupposepV,∇q - a tame parabolic local system on pX , H � K q;pE, θq - a tame locally abelian parabolic Higgs bundle

with parch1 � 0, parch2 � 0;

Assume that nahppV,∇qq � pE, θq (i.e. these two objects
are related by a tame harmonic bundle pE , BE , θ, hq on
X � pH Y K q).
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Integral transforms



Outline Functoriality Examples Functoriality revisited The push-forward formula Results Odds and ends

Compatibility of nah and f� (i)
SupposepV,∇q - a tame parabolic local system on pX , H � K q;pE, θq - a tame locally abelian parabolic Higgs bundle

with parch1 � 0, parch2 � 0;

Assume that nahppV,∇qq � pE, θq
.

Set U � X � pH Y K q, V � Y � R , g : U Ñ V , and consider
for each k the L2 push-forward

F k :� Rk f�,L2pL, hq
of pV,∇q.
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Compatibility of nah and f� (i)
SupposepV,∇q - a tame parabolic local system on pX , H � K q;pE, θq - a tame locally abelian parabolic Higgs bundle

with parch1 � 0, parch2 � 0;

Assume that nahppV,∇qq � pE, θq
.

Set U � X � pH Y K q, V � Y � R , g : U Ñ V , and consider
for each k the L2 push-forward

F k :� Rk f�,L2pL, hq
of pV,∇q. Here L � �pVαq|U�∇. Note: This is independent
of α.
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Compatibility of nah and f� (ii)

Remark:
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Compatibility of nah and f� (ii)

Remark:

One can check that F k is a tame harmonic bundle;
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Compatibility of nah and f� (ii)

Remark:

One can check that F k is a tame harmonic bundle;

One can check that F k is compatible with middle
extensions and D-module push-forward.
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Compatibility of nah and f� (ii)

Remark:

One can check that F k is a tame harmonic bundle;

One can check that F k is compatible with middle
extensions and D-module push-forward.

Question: What is the tame parabolic Higgs bundle onpY , Rq corresponding to F k? Can this Higgs bundle be
computed purely algebraically?
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Compatibility of nah and f� (ii)

Remark:

One can check that F k is a tame harmonic bundle;

One can check that F k is compatible with middle
extensions and D-module push-forward.

Question: What is the tame parabolic Higgs bundle onpY , Rq corresponding to F k? Can this Higgs bundle be
computed purely algebraically?
General principle: Jost-Yang-Zuo The Higgs bundle
corresponding to F k should be given by the L2 holomorphic
push-forward of pE, θq|U .

Tony Pantev University of Pennsylvania
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An analytic formula

Our first result is a confirmation of the general principle:
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An analytic formula

Our first result is a confirmation of the general principle:

Theorem: [Donagi-P-Simpson] F k is the harmonic bundle
corresponding to the L2 holomorphic push-forward�Rkf�pΩ

X {Y pE q, θqL2 , ϕ
�
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An analytic formula

Our first result is a confirmation of the general principle:

Theorem: [Donagi-P-Simpson] F k is the harmonic bundle
corresponding to the L2 holomorphic push-forward�Rkf�pΩ

X {Y pE q, θqL2 , ϕ
�

Note: This is essentially contained in Jost-Yang-Zuo. They
have an addittional hypothesis (that the local monodromy of
∇ is compact) which is unnecessary.
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An algebraic formula

Our main result is an alebraic formula computing the
push-forward parabolic Higgs bundle directly:
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An algebraic formula

Our main result is an alebraic formula computing the
push-forward parabolic Higgs bundle directly:

Theorem: [Donagi-P-Simpson] F k is the harmonic bundle
corresponding to the tame locally abelian parabolic Higgs bun-
dle pH, ϕq, where

Hα � Rk f� �Ω
X {Y �

W�2pverqE0ver,αhor

�
, θ
�
.
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Weight filtrations

Here Wn�Hi
Ec is the weight filtration relative to Hi defined as

follows:
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Weight filtrations

Here Wn�Hi
Ec is the weight filtration relative to Hi defined as

follows:

Given a component Hi of H consider the nilpotent
operator N : `aPweightspEcqigra Ec Ñ `aPweightspEcqigra Ec

which is the nilpotent part of `igra ResHi
θ.
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Weight filtrations

Here Wn�Hi
Ec is the weight filtration relative to Hi defined as

follows:

Given a component Hi of H consider the nilpotent
operator N : `aPweightspEcqigra Ec Ñ `aPweightspEcqigra Ec

which is the nilpotent part of `igra ResHi
θ.

Take the monodromy weight-filtration for N and pull it
back to Ec under the natural map Ec Ñ �

ıHi� ` igra Ec

�
.

Tony Pantev University of Pennsylvania
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Smooth pushforwards

Global cohomology
The compatibility of nah with pushforwards follows from the
higher order Kähler identities: the D and D2 Laplacians on
a harmonic bundle are proportional.

△
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Smooth pushforwards

Global cohomology

Basic case:

△
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Smooth pushforwards

Global cohomology

Basic case: There is a canonical isomorphism of de Rham
and Dolbeault cohomology:HpΩ

X pV q, Dq � HpΩ
X pE q, θ^q

△
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Smooth pushforwards

Global cohomology

Basic case: There is a canonical isomorphism of de Rham
and Dolbeault cohomology:HpΩ

X pV q, Dq � HpΩ
X pE q, θ^q

H
dRppV , Dqq

△
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Smooth pushforwards

Global cohomology

Basic case: There is a canonical isomorphism of de Rham
and Dolbeault cohomology:HpΩ

X pV q, Dq � HpΩ
X pE q, θ^q

H
dRppV , Dqq H

DolppE , θqq
△
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Smooth pushforwards

Global cohomology

Basic case: There is a canonical isomorphism of de Rham
and Dolbeault cohomology:HpΩ

X pV q, Dq � HpΩ
X pE q, θ^q

HerepV , Dq is a C-local system, andpE , θq � nahX pV , Dq is the corresponding Higgs bundle,

△
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Smooth pushforwards

Global cohomology

Basic case: There is a canonical isomorphism of de Rham
and Dolbeault cohomology:HpΩ

X pV q, Dq � HpΩ
X pE q, θ^q

General case:

△
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Smooth pushforwards

Global cohomology

Basic case: There is a canonical isomorphism of de Rham
and Dolbeault cohomology:HpΩ

X pV q, Dq � HpΩ
X pE q, θ^q

General case: There non-abelian Hodge correspondence
on Y gives a canonical quasi-isomorphism of de Rham and
Dolbeault pushforwards:

nahY :
�Rf�pΩ

X {Y pV q, Dq,∇� �Ñ �Rf�pΩ
X {Y pE q, θ^q, ϕ^�

△
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Smooth pushforwards

Smooth pushforwards
Here

△
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Smooth pushforwards

Smooth pushforwards
Here

f : X Ñ Y is a smooth projective morphism of smooth
projective varieties.

△
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Smooth pushforwards

Smooth pushforwards
Here

f : X Ñ Y is a smooth projective morphism of smooth
projective varieties.
∇ and ϕ are the edge homomorphisms arising in the
pushforwards of the short exact sequences of complexes:

△
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Smooth pushforwards

Smooth pushforwards
Here

f : X Ñ Y is a smooth projective morphism of smooth
projective varieties.
∇ and ϕ are the edge homomorphisms arising in the
pushforwards of the short exact sequences of complexes:

0 // f �Ω1
Y b Ω�1

X {Y pV q // Ω
X pV q{I 2 // Ω

X {Y pV q // 0

0 // f �Ω1
Y b Ω�1

X {Y pE q // Ω
X pE q{I 2 // Ω

X {Y pE q // 0

Here I k is the subcomplex of Ω
X pV q defined inductively by

△
Tony Pantev University of Pennsylvania
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Smooth pushforwards

Smooth pushforwards
Here

f : X Ñ Y is a smooth projective morphism of smooth
projective varieties.
∇ and ϕ are the edge homomorphisms arising in the
pushforwards of the short exact sequences of complexes:

0 // f �Ω1
Y b Ω�1

X {Y pV q // Ω
X pV q{I 2 // Ω

X {Y pV q // 0

0 // f �Ω1
Y b Ω�1

X {Y pE q // Ω
X pE q{I 2 // Ω

X {Y pE q // 0

Here I k is the subcomplex of Ω
X pV q defined inductively by

I 1 � im rf �Ω1
Y b Ω

X pV qs;
△
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Smooth pushforwards

Smooth pushforwards
Here

f : X Ñ Y is a smooth projective morphism of smooth
projective varieties.
∇ and ϕ are the edge homomorphisms arising in the
pushforwards of the short exact sequences of complexes:

0 // f �Ω1
Y b Ω�1

X {Y pV q // Ω
X pV q{I 2 // Ω

X {Y pV q // 0

0 // f �Ω1
Y b Ω�1

X {Y pE q // Ω
X pE q{I 2 // Ω

X {Y pE q // 0

Here I k is the subcomplex of Ω
X pV q defined inductively by

I 1 � im rf �Ω1
Y b Ω

X pV qs;
I k�1 � im

�
f �Ω1

Y b I k
�
.

△
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Smooth pushforwards

Algebraic formula (i)
Note: pΩ

X pE q, θ^q is a complex of coherent sheaves with an
O-linear differential. Thus

△Tony Pantev University of Pennsylvania
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Smooth pushforwards

Algebraic formula (i)
Note: pΩ

X pE q, θ^q is a complex of coherent sheaves with an
O-linear differential. Thus

nah converts pushforwards of local systems to
pushforwards of coherent data;
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Smooth pushforwards

Algebraic formula (i)
Note: pΩ

X pE q, θ^q is a complex of coherent sheaves with an
O-linear differential. Thus

nah converts pushforwards of local systems to
pushforwards of coherent data;
the computation can be done explicitly in terms of
spectral data.

△Tony Pantev University of Pennsylvania

Integral transforms



Outline Functoriality Examples Functoriality revisited The push-forward formula Results Odds and ends

Smooth pushforwards

Algebraic formula (i)
Note: pΩ

X pE q, θ^q is a complex of coherent sheaves with an
O-linear differential. Thus

nah converts pushforwards of local systems to
pushforwards of coherent data;
the computation can be done explicitly in terms of
spectral data.

Setup: Let f : X Ñ Y be smooth and proper of fiber
dimension n. Consider the diagram of spaces:

△Tony Pantev University of Pennsylvania
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Smooth pushforwards

Algebraic formula (i)
Note: pΩ

X pE q, θ^q is a complex of coherent sheaves with an
O-linear differential. Thus

nah converts pushforwards of local systems to
pushforwards of coherent data;
the computation can be done explicitly in terms of
spectral data.

Setup: Let f : X Ñ Y be smooth and proper of fiber
dimension n. Consider the diagram of spaces:

totpf �T_Y q
q

vvlllllll g

))RRRRRRR

totpT_X q totpT_Y q
△Tony Pantev University of Pennsylvania
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Smooth pushforwards

Algebraic formula (ii)

The Higgs bundle pE , θq corresponds to a spectral sheaf
E P CohptotpT_Xqq;

△
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Smooth pushforwards

Algebraic formula (ii)

The Higgs bundle pE , θq corresponds to a spectral sheaf
E P CohptotpT_Xqq;
The Higgs complex pRf�pΩ

X {Y pE q, θ^q, ϕ^q
corresponds to a spectral complex F P Db

cohptotpT_Y qq.
△
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Smooth pushforwards

Algebraic formula (ii)

The Higgs bundle pE , θq corresponds to a spectral sheaf
E P CohptotpT_Xqq;
The Higgs complex pRf�pΩ

X {Y pE q, θ^q, ϕ^q
corresponds to a spectral complex F P Db

cohptotpT_Y qq.
The spectral data E and F are related by the formula:

F � Rg�pLq�E bωg r�nsq.
△

Tony Pantev University of Pennsylvania

Integral transforms



Outline Functoriality Examples Functoriality revisited The push-forward formula Results Odds and ends

Smooth pushforwards

Algebraic formula (ii)

The Higgs bundle pE , θq corresponds to a spectral sheaf
E P CohptotpT_Xqq;
The Higgs complex pRf�pΩ

X {Y pE q, θ^q, ϕ^q
corresponds to a spectral complex F P Db

cohptotpT_Y qq.
The spectral data E and F are related by the formula:

F � Rg�pLq�E bωg r�nsq.
Here ωg � p�Ωn

X {Y is the relative dualizing sheaf of g .
△
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Mukai flops

Kashiwara’s conjecture (i)

Local model for the stratified Mukai flop: Consider
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Mukai flops

Kashiwara’s conjecture (i)

Local model for the stratified Mukai flop: Consider

V - an n-dimensional vector space,
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Mukai flops

Kashiwara’s conjecture (i)

Local model for the stratified Mukai flop: Consider

V - an n-dimensional vector space,
r - an integer satisfying 0   r ¤ n{2,
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Mukai flops

Kashiwara’s conjecture (i)

Local model for the stratified Mukai flop: Consider

V - an n-dimensional vector space,
r - an integer satisfying 0   r ¤ n{2,
X - the nilpotent variety

X � ta P EndpV q | a2 � 0, rankpaq ¤ ru.
Tony Pantev University of Pennsylvania
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Mukai flops

Kashiwara’s conjecture (i)

Local model for the stratified Mukai flop: Consider

V - an n-dimensional vector space,
r - an integer satisfying 0   r ¤ n{2,
X - the nilpotent variety

X � ta P EndpV q | a2 � 0, rankpaq ¤ ru.
The stratified Mukai flop is the birational transformation
between the two natural crepant resolutions of X :

X 1
ε1 $$HHH

//____ X 2
ε2zzuuu

X
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Mukai flops

Kashiwara’s conjecture (ii)
Here X 1 � totpT_Grpr , V qq, X 2 � totpT_Grpn � r , V qq, and

△
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Mukai flops

Kashiwara’s conjecture (ii)
Here X 1 � totpT_Grpr , V qq, X 2 � totpT_Grpn � r , V qq, and

ε1 : X 1 // XpW , f q �
//

�
V ։ V {W fÑ W ãÑ V

�
△
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Mukai flops

Kashiwara’s conjecture (ii)
Here X 1 � totpT_Grpr , V qq, X 2 � totpT_Grpn � r , V qq, and

ε1 : X 1 // XpW , f q �
//

�
V ։ V {W fÑ W ãÑ V

�
W P Grpr , V q, f P HompV {W , W q

△
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Mukai flops

Kashiwara’s conjecture (ii)
Kashiwara proved that if U � Grpr , V q � Grpn � r , V q is the
subvariety of pairs of transversal subspaces, then the integral
transform

Φ : DbpGrpr , V q,Dq Ñ DbpGrpn � r , V q,Dq
defined by the kernel D-module iU!CU is an equivalence.

△
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Mukai flops

Kashiwara’s conjecture (ii)
Kashiwara proved that if U � Grpr , V q � Grpn � r , V q is the
subvariety of pairs of transversal subspaces, then the integral
transform

Φ : DbpGrpr , V q,Dq Ñ DbpGrpn � r , V q,Dq
defined by the kernel D-module iU!CU is an equivalence.

Conjecture: [Kashiwara] The complex of Higgs sheaves
nahpiU!CUq viewed as a complex of coherent sheaves on
T_Grpr , V q � T_Grpn � r , V q � X 1 � X 2 is a Fourier-Mukai
kernel supported on X 1�X X 2 and giving the D-equivalence of
X 1 and X 2.

△
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Parabolic objects

Parabolic sheaves
Fix a pair pX , Dq, where
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Parabolic objects

Parabolic sheaves
Fix a pair pX , Dq, where

X - a compact complex manifold;
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Parabolic objects

Parabolic sheaves
Fix a pair pX , Dq, where

X - a compact complex manifold;

D � X - a divisor with simple normal crossings;
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Parabolic objects

Parabolic sheaves
Fix a pair pX , Dq, where

X - a compact complex manifold;

D � X - a divisor with simple normal crossings;

D � YiPSDi - the irreducible decomposition of D.
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Parabolic objects

Parabolic sheaves

Definition: A torsion free parabolic sheaf on pX , Dq is a
collection of torsion free coherent sheaves tEαuαPRS together
with inclusions Eα � Eβ of sheaves of OX -modules, specified
for all α ¤ β, satisfying the conditions:
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Parabolic objects

Parabolic sheaves

Definition: A torsion free parabolic sheaf on pX , Dq is a
collection of torsion free coherent sheaves tEαuαPRS together
with inclusions Eα � Eβ of sheaves of OX -modules, specified
for all α ¤ β, satisfying the conditions:

[semicontinuity] for every α P RS , there exists a real
number c ¡ 0 so that Eα�ε � Eα for all
functions ε : S Ñ r0, cs.
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Parabolic objects

Parabolic sheaves

Definition: A torsion free parabolic sheaf on pX , Dq is a
collection of torsion free coherent sheaves tEαuαPRS together
with inclusions Eα � Eβ of sheaves of OX -modules, specified
for all α ¤ β, satisfying the conditions:

[semicontinuity] for every α P RS , there exists a real
number c ¡ 0 so that Eα�ε � Eα for all
functions ε : S Ñ r0, cs.

[support] if δi : S Ñ R is the characteristic function of i ,
then for all α P RS we have Eα�δi

� EαpDiq
(compatibly with the inclusion).
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Parabolic objects

Flags and weights

Fix a parabolic torsion free sheaf E on pX , Dq and c P RS .
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Parabolic objects

Flags and weights

Fix a parabolic torsion free sheaf E on pX , Dq and c P RS .
For every i P S we get an induced filtration tiFauci�1 a¤ci

of
the restricted sheaf Ec|Di

.
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Parabolic objects

Flags and weights

Fix a parabolic torsion free sheaf E on pX , Dq and c P RS .
For every i P S we get an induced filtration tiFauci�1 a¤ci

of
the restricted sheaf Ec|Di

.

iFa � ¤
α¤c
αi¤a

Eα
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Parabolic objects

Flags and weights

Fix a parabolic torsion free sheaf E on pX , Dq and c P RS .
For every i P S we get an induced filtration tiFauci�1 a¤ci

of
the restricted sheaf Ec|Di

.
Define igra Ec :� iFa{iFiF a

.
[semicontinuity] ñ the set of parabolic weights

weightspEc, iq �  
a P pci � 1, cis �� igra � 0

(
is finite
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Parabolic objects

Flags and weights

Fix a parabolic torsion free sheaf E on pX , Dq and c P RS .
For every i P S we get an induced filtration tiFauci�1 a¤ci

of
the restricted sheaf Ec|Di

.
Define igra Ec :� iFa{iFiF a

.
[semicontinuity] ñ the set of parabolic weights

weightspEc, iq �  
a P pci � 1, cis �� igra � 0

(
is finite
Note: The sheaf Ec together with the flagstiFa| i P S , a P weightspEc, iqu reconstruct the parabolic sheaf
E.
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Parabolic objects

Locally abelian parabolic bundles (i)

Example: A parabolic line bundle is a parabolic sheaf F
for which all sheaves Fα are invertible.

Tony Pantev University of Pennsylvania

Integral transforms



Outline Functoriality Examples Functoriality revisited The push-forward formula Results Odds and ends

Parabolic objects

Locally abelian parabolic bundles (i)

Example: A parabolic line bundle is a parabolic sheaf F
for which all sheaves Fα are invertible. If a P RS , then define
a parabolic line bundle OX p°iPS aiDiq by setting�

OX

�
i̧PS aiDi

��
α

:� OX

�
i̧PStai �αiuDi

�
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Parabolic objects

Locally abelian parabolic bundles (i)

Example: A parabolic line bundle is a parabolic sheaf F
for which all sheaves Fα are invertible. If a P RS , then define
a parabolic line bundle OX p°iPS aiDiq by setting�

OX

�
i̧PS aiDi

��
α

:� OX

�
i̧PStai �αiuDi

�
Claim: Every parabolic line bundle F is isomorphic to

LbOX p°iPS aiDiq for some L P PicpX q, and some a P RS .
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Parabolic objects

Locally abelian parabolic bundles (ii)

Definition: A parabolic sheaf F is a locally abelian bundle,
if in a Zariski neighborhood of any point x P X there is an
isomorphism between F and a direct sum of parabolic line
bundles.
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Parabolic objects

Locally abelian parabolic bundles (ii)

Definition: A parabolic sheaf F is a locally abelian bundle,
if in a Zariski neighborhood of any point x P X there is an
isomorphism between F and a direct sum of parabolic line
bundles.

Note: A parabolic bundle
�
Ec, tiFuiPS� is locally abelian iff

on every intersection Di1 X � � � X Dik the iterated graded
i1gra1

� � � ik grak
Ec does not depend on the order of the

components.
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Parabolic objects

Locally abelian parabolic bundles (ii)

Definition: A parabolic sheaf F is a locally abelian bundle,
if in a Zariski neighborhood of any point x P X there is an
isomorphism between F and a direct sum of parabolic line
bundles.

Note: A parabolic bundle
�
Ec, tiFuiPS� is locally abelian iff

on every intersection Di1 X � � � X Dik the iterated graded
i1gra1

� � � ik grak
Ec does not depend on the order of the

components.
Variant: We can define similarly locally abelian parabolic local
systems, Higgs bundles, or more generally locally abelian
parabolic λ-connections.
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Parabolic objects

Locally abelian parabolic λ-connections (i)
Let λ P C. A λ-connection with tame ramification along D, is
a pair pE ,Dλq, where:
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Parabolic objects

Locally abelian parabolic λ-connections (i)
Let λ P C. A λ-connection with tame ramification along D, is
a pair pE ,Dλq, where:

E is a holomorphic vector bundle on X ;
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Parabolic objects

Locally abelian parabolic λ-connections (i)
Let λ P C. A λ-connection with tame ramification along D, is
a pair pE ,Dλq, where:

E is a holomorphic vector bundle on X ;Dλ : E Ñ E bΩ1
X plog Dq, is a C-linear map satisfying the

λ-twisted Leibnitz ruleDλpf � sq � fDλs � λs b df .
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Parabolic objects

Locally abelian parabolic λ-connections (i)
Let λ P C. A λ-connection with tame ramification along D, is
a pair pE ,Dλq, where:

E is a holomorphic vector bundle on X ;Dλ : E Ñ E bΩ1
X plog Dq, is a C-linear map satisfying the

λ-twisted Leibnitz ruleDλpf � sq � fDλs � λs b df .

We say that Dλ is flat if Dλ �Dλ � 0.
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Parabolic objects

Locally abelian parabolic λ-connections (i)
Let λ P C. A λ-connection with tame ramification along D, is
a pair pE ,Dλq, where:

E is a holomorphic vector bundle on X ;Dλ : E Ñ E bΩ1
X plog Dq, is a C-linear map satisfying the

λ-twisted Leibnitz ruleDλpf � sq � fDλs � λs b df .

We say that Dλ is flat if Dλ �Dλ � 0.
Note:pflat 1-connectionq � pflat connection with regular singularitiesqpflat 0-connectionq � pHiggs bundle with logarithmic polesq
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Parabolic objects

Locally abelian parabolic λ-connections (ii)

Definition: A tame parabolic λ-connection is a pairpE,Dλq, where
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Parabolic objects

Locally abelian parabolic λ-connections (ii)

Definition: A tame parabolic λ-connection is a pairpE,Dλq, where

E is a prabolic bundle on pX , Dq;
Tony Pantev University of Pennsylvania
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Parabolic objects

Locally abelian parabolic λ-connections (ii)

Definition: A tame parabolic λ-connection is a pairpE,Dλq, where

E is a prabolic bundle on pX , Dq;Dλ : Eα Ñ Eα b Ω1
X plog Dq is a tame flat λ-connection

specified for all α P RS (compatibly with the inclusions).
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Parabolic objects

Locally abelian parabolic λ-connections (ii)

Definition: A tame parabolic λ-connection is a pairpE,Dλq, where

E is a prabolic bundle on pX , Dq;Dλ : Eα Ñ Eα b Ω1
X plog Dq is a tame flat λ-connection

specified for all α P RS (compatibly with the inclusions).

A tame parabolic λ-connection pE,Dλq is locally abelian if in
a Zariski neighborhood of any point x P X there is an
ismomorphism between pE,Dλq and direct sum of rank one
tame parabolic λ-connections.
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Parabolic objects

Parabolic Chern classes (i)
Let E be a parabolic torsion free sheaf on pX , Dq, then the
parabolic Chern character of E is given by the Iyer-Simpson
formula:
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Parabolic objects

Parabolic Chern classes (i)
Let E be a parabolic torsion free sheaf on pX , Dq, then the
parabolic Chern character of E is given by the Iyer-Simpson
formula:

parchpEq � parchpcE q � ±
iPS ³ci�1

ci
dαi

�
ch pEαi

q e�°iPS αiDi
�±

iPS ³10 dαie
�°iPS αiDi

.
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Parabolic objects

Parabolic Chern classes (i)
Let E be a parabolic torsion free sheaf on pX , Dq, then the
parabolic Chern character of E is given by the Iyer-Simpson
formula:

parchpEq � parchpcE q � ±
iPS ³ci�1

ci
dαi

�
ch pEαi

q e�°iPS αiDi
�±

iPS ³10 dαie
�°iPS αiDi

.

c P RS is any base point
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Parabolic objects

Parabolic Chern classes (i)
Let E be a parabolic torsion free sheaf on pX , Dq, then the
parabolic Chern character of E is given by the Iyer-Simpson
formula:

parchpEq � parchpcE q � ±
iPS ³ci�1

ci
dαi

�
ch pEαi

q e�°iPS αiDi
�±

iPS ³10 dαie
�°iPS αiDi

.

Note: Given c P RS define the c-truncation cE of E � the
collection tEαuc α¤c�δ, with δ � °

iPS δi .
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Parabolic objects

Parabolic Chern classes (i)
Let E be a parabolic torsion free sheaf on pX , Dq, then the
parabolic Chern character of E is given by the Iyer-Simpson
formula:

parchpEq � parchpcE q � ±
iPS ³ci�1

ci
dαi

�
ch pEαi

q e�°iPS αiDi
�±

iPS ³10 dαie
�°iPS αiDi

.

Note: Given c P RS define the c-truncation cE of E � the
collection tEαuc α¤c�δ, with δ � °

iPS δi .
[support] ñ E is effectively reconstructed by any truncation

cE .
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Parabolic objects

Parabolic Chern classes (i)
Let E be a parabolic torsion free sheaf on pX , Dq, then the
parabolic Chern character of E is given by the Iyer-Simpson
formula:

parchpEq � parchpcE q � ±
iPS ³ci�1

ci
dαi

�
ch pEαi

q e�°iPS αiDi
�±

iPS ³10 dαie
�°iPS αiDi

.

Note: Given c P RS define the c-truncation cE of E � the
collection tEαuc α¤c�δ, with δ � °

iPS δi .
[support] ñ E is effectively reconstructed by any truncation

cE . In fact: the numerator of the Iyer-Simpson formula is
independent of the choice of truncation.
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Parabolic objects

Parabolic Chern classes (ii)

Example: The first parabolic Chern class of E is given by:
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Parabolic objects

Parabolic Chern classes (ii)

Example: The first parabolic Chern class of E is given by:

parc1 � c1pEcq �
i̧PS �� ¸

aPweightspEc,iq a rank igra Ec

�� Di
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Parabolic objects

Weights and residues (i)

A parabolic λ-connection pE,Dλq has a collection of
numerical invariants which are most conveniently packaged in
the so called KMS spectrum.
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Parabolic objects

Weights and residues (i)

A parabolic λ-connection pE,Dλq has a collection of
numerical invariants which are most conveniently packaged in
the so called KMS spectrum.

Kashiwara-Malgrange-Sabbah-Simpson
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Parabolic objects

Weights and residues (i)

A parabolic λ-connection pE,Dλq has a collection of
numerical invariants which are most conveniently packaged in
the so called KMS spectrum. By definition:

KMSppE,Dλq, iq :�¤
c

KMSppEc,Dλq, iq � R� C
KMSppEc,Dλq, iq :� $&%pa, αq ������ a P weightspEc, iq, α is

an eigenvalue of igraDλ on
igra Ec

,.-
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Parabolic objects

Weights and residues (ii)
A tame harmonic bundle pE , BE , θ, hq on X � D gives rise to a
twistor family of parabolic λ-connections pEλ ,Dλq
parametrized by λ P C.
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Parabolic objects

Weights and residues (ii)
A tame harmonic bundle pE , BE , θ, hq on X � D gives rise to a
twistor family of parabolic λ-connections pEλ ,Dλq
parametrized by λ P C.

Theorem: [Mochizuki,Simpson] For any twistor familypEλ ,Dλq of parabolic λ-connections, the mapR� C // R� Cpa, αq �
// pa � 2 Repλ � ᾱq, α� a � λ� ᾱ � λ2q

identifies KMSppE0,D0q, iq with KMSppEλ ,Dλq, iq, and pre-
serves multiplicities.
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Parabolic objects

Weights and residues (iii)
Thus if a parabolic local system pV,∇q corresponds to a
parabolic Higgs bundle pE, θq under nahX ,D , then we have a
matching:
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Parabolic objects

Weights and residues (iii)
Thus if a parabolic local system pV,∇q corresponds to a
parabolic Higgs bundle pE, θq under nahX ,D , then we have a
matching: pE, θq pV,∇q

a - parabolic weight
along Di

b � a�2 Repαq - parabolic
weight along Di

α - eigenvalue of
igra ResDi

θ

β � �a�?�1 � 2 Impαq -
eigenvalue of igra ResDi

∇
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Parabolic objects

Monodromy weight filtrations
Let G be a finite dimensional complex vector space, and let
N : G Ñ G be a nilpotent operator of order ¤ k. Recall the
following

△
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Parabolic objects

Monodromy weight filtrations
Let G be a finite dimensional complex vector space, and let
N : G Ñ G be a nilpotent operator of order ¤ k. Recall the
following
Definition: The monodromy weight filtra-
tion associated with N is the unique filtration
0 � W�k � � � � � W0 � � � � � Wk � G , for which

△
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Parabolic objects

Monodromy weight filtrations
Let G be a finite dimensional complex vector space, and let
N : G Ñ G be a nilpotent operator of order ¤ k. Recall the
following
Definition: The monodromy weight filtra-
tion associated with N is the unique filtration
0 � W�k � � � � � W0 � � � � � Wk � G , for which

NpWjq � Wj�2;

△
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Parabolic objects

Monodromy weight filtrations
Let G be a finite dimensional complex vector space, and let
N : G Ñ G be a nilpotent operator of order ¤ k. Recall the
following
Definition: The monodromy weight filtra-
tion associated with N is the unique filtration
0 � W�k � � � � � W0 � � � � � Wk � G , for which

NpWjq � Wj�2;

NpWjq � im N XWj�2;

△
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Parabolic objects

Monodromy weight filtrations
Let G be a finite dimensional complex vector space, and let
N : G Ñ G be a nilpotent operator of order ¤ k. Recall the
following
Definition: The monodromy weight filtra-
tion associated with N is the unique filtration
0 � W�k � � � � � W0 � � � � � Wk � G , for which

NpWjq � Wj�2;

NpWjq � im N XWj�2;

N : grWk�j Ñ grWk�j is an isomorphism.

△
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