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Definition
A semi-orthogonal decomposition of a triangulated category, T , is a
sequence of full triangulated subcategories, A1, . . . ,Am, in T such
that Ai ⊂ A⊥j for i < j and, for every object T ∈ T , there exists a
diagram:

0 Tm−1 · · · T2 T1 T

Am A2 A1

|||

where all triangles are distinguished and Ak ∈ Ak. We shall denote a
semi-orthogonal decomposition by 〈A1, . . . ,Am〉.
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Theorem (Orlov)
Let X be a hypersurface in Pn which is the zero locus of a
homogeneous polynomial, f , of degree, d.

1 If n + 1− d > 0, there is a semi-orthogonal decomposition,

Db(coh X) = 〈OX(d − n), ...,OX,MF(R, f ,Z)〉.

2 If n + 1− d = 0, there is an equivalence of triangulated
categories,

Db(coh X) = 〈MF(R, f ,Z)〉.
3 If n + 1− d < 0, there is a semi-orthogonal decomposition,

MF(R, f ,Z) ∼=
〈
k, . . . , k(n + 2− d),Db(coh X)

〉
.
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Example
Consider a cubic 4-fold, X, defined by f . Orlov’s theorem gives:

Db(coh X) = 〈MF(C[x0, ..., x6], f ,Z),O,O(1),O(2)〉.
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Example
Consider a cubic 4-fold, X, defined by f . Orlov’s theorem gives:

Db(coh X) = 〈MF(C[x0, ..., x6], f ,Z),O,O(1),O(2)〉.

Work of Kuznetsov shows that when f is Pfaffian then
MF(C[x0, ..., x6], f ,Z) is equivalent to the derived category of a K3
surface and when X contains a plane, then MF(C[x0, ..., x6], f ,Z) is
equivalent to the derived category of a twisted K3 surface.
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Example
Consider a cubic 4-fold, X, defined by f . Orlov’s theorem gives:

Db(coh X) = 〈MF(C[x0, ..., x6], f ,Z),O,O(1),O(2)〉.

Work of Kuznetsov shows that when f is Pfaffian then
MF(C[x0, ..., x6], f ,Z) is equivalent to the derived category of a K3
surface and when X contains a plane, then MF(C[x0, ..., x6], f ,Z) is
equivalent to the derived category of a twisted K3 surface.

Example
So when f is Pfaffian, we have a K3 surface, Y , and:

Db(coh X) = 〈Db(coh Y),O,O(1),O(2)〉.
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Example
So when f is Pfaffian, we have a K3 surface, Y , and:

Db(coh X) = 〈Db(coh Y),O,O(1),O(2)〉.

In Hochschild homology, given a semi-orthogonal decomposition, we
get a splitting:

HH∗(X) = HH∗(Y)⊕ HH∗(〈O〉)⊕ HH∗(〈O(1)〉)⊕ HH∗(〈O(2)〉)
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Example
So when f is Pfaffian, we have a K3 surface, Y , and:

Db(coh X) = 〈Db(coh Y),O,O(1),O(2)〉.

In Hochschild homology, given a semi-orthogonal decomposition, we
get a splitting:

HH∗(X) = HH∗(Y)⊕ HH∗(〈O〉)⊕ HH∗(〈O(1)〉)⊕ HH∗(〈O(2)〉)

The last three things are just the chern characters of these vector
bundles, telling us that HH∗(Y) is the orthogonal to these three chern
characters, after making the appropriate identifications using the
Hochschild-Kostant-Rosenberg isomorphism.
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In this sense, for a cubic potential in six variables, the graded category
of matrix factorizations is often discussed as a type of
noncommutative K3 surface.
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In this sense, for a cubic potential in six variables, the graded category
of matrix factorizations is often discussed as a type of
noncommutative K3 surface.

When, the cubic potential is a sum of cubic potentials in 3 variables,
f (x, y, z) + g(u, v,w), this noncommutative K3 surface, can be
realized as a Z3 quotient of the product of the two elliptic curves
defined by f and g. Let us state the general theorem.
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Theorem
Let M,M′ be finitely generated abelian groups. Let
R = k[x0, ..., xn],R′ = k[y0, ..., yn′ ] be M,M′ graded rings with xi, yi

homogeneous. Let f ∈ Rd, f ′ ∈ Rd′ be homogeneous functions such
that f ∈ df , f ′ ∈ df ′ and d ∈ M, d′ ∈ M′ are not torsion. The full
sub(dg)category of compact objects in the category of functors from
MF(R, f ,M) to MF(R′, f ′,M′) is equivalent to
MF(R⊗ R′, f ⊗ 1− 1⊗ f ′,M ⊕M′/(d,−d′)).

David Favero Graded matrix factorizations and functor categories



Theorem
Let M,M′ be finitely generated abelian groups. Let
R = k[x0, ..., xn],R′ = k[y0, ..., yn′ ] be M,M′ graded rings with xi, yi

homogeneous. Let f ∈ Rd, f ′ ∈ Rd′ be homogeneous functions such
that f ∈ df , f ′ ∈ df ′ and d ∈ M, d′ ∈ M′ are not torsion. The full
sub(dg)category of compact objects in the category of functors from
MF(R, f ,M) to MF(R′, f ′,M′) is equivalent to
MF(R⊗ R′, f ⊗ 1− 1⊗ f ′,M ⊕M′/(d,−d′)).

Remark
This is a graded version of a result of Dyckerhoff. Independently,
Polishchuk and Vaintrob prove this theorem in the case where the
singularities are isolated and M ⊗Z Q,M′ ⊗Z Q ∼= Q.
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Consider a collection of hypersurfaces, Xi ⊆ Pni defined by
polynomials fi of degree di for 1 ≤ i ≤ s. Let Ri be the coordinate
rings of the Pni . Consider the free abelian group of rank s, Zs, with
basis ei, 1 ≤ i ≤ s. Let L be the subgroup generated by diei = djej and
M := Zs /L. Denote by H the torsion subgroup of M. Explicitly,
letting dij be the greatest common divisor of di and dj, H is the finite
subgroup of M generated by the images of di

dij
ei − dj

dij
ej. One has

M/H ∼= Z. Let m be the least common multiple of the di. In this
setting the degree map deg : M → Z can be identified with the
mapping which takes ei to d

di
. Let δ be an element of degree 1.

David Favero Graded matrix factorizations and functor categories



The dual group to M can be identified with the set,
D := {(λ1, ..., λs)|λdi

i = λ
dj
j ∀i, j} ⊆ (k∗)s and acts on An1+...ns+s\0 by

multiplication by λi on the coordinates, xd1+...+di−1 through xd1+...+di .
Let Y denote the hypersurface in An1+...ns+s\0 defined by the zero
locus of f1 + ...fs and consider the global quotient stack, Z := [Y/D].
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Theorem (Orlov)

Let A = MF(R1 ⊗ ...⊗ Rs, f1 + ...+ fs,M). (which by our theorem is
equivalent to (MF(R1, f1,Z)⊗̂k...⊗̂k MF(Rs, fs,Z))pe).

1 If a > 0, there is a semi-orthogonal decomposition,

Db(coh Z) ∼= 〈
⊕
h∈H

OZ((−a + 1)δh), ...,
⊕
h∈H

OZ(h),A〉.

2 If a = 0, there is an equivalence of triangulated categories,

Db(coh Z) ∼= A.

3 If a < 0, there is a semi-orthogonal decomposition,

A ∼= 〈
⊕
h∈H

k(h), . . . ,
⊕
h∈H

k((a + 1)δh),Db(coh Z)〉.
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Example
In the simple case of one variable, Orlov’s theorem in the context of
algebras yields an equivalence between MF(k[x], xd,Z) and
Db(Ad−1). Therefore,

(MF(k[x], xp,Z)⊗̂k MF(k[y], yq,Z)⊗̂k MF(k[z], zr,Z))pe

∼=(Db(Ap−1)⊗̂k Db(Aq−1)⊗̂k Db(Ar−1))pe

∼=Db(Ap−1 ⊗k Aq−1 ⊗k Ar−1).

Applying Orlov’s theorem, this category is compared via a
semi-orthogonal decomposition to the weighted projective line with
weight sequence (p, q, r) (the parameter is 1

p + 1
q + 1

r − 1).
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Example

Let f (x, y, z) = x(x− z)(x− λz)− zy2 and
g(u, v,w) = u(u− w)(u− γw)− wv2 define two smooth elliptic
curves, E and F respectively. Then f + g defines a smooth cubic
fourfold containing at least three planes by setting z = w = 0. By
work of Kuznetsov, the category MF(k[x, y, z, u, v,w], f + g,Z) is, in
this case, equivalent to the derived category of a certain gerby K3
surface, Y . On the other hand, letting M = Z⊕Z /(3,−3) with x, y, z
in degree (1, 0) and u, v,w in degree (0, 1), we have
MF(k[x, y, z, u, v,w], f + g,M) ∼=
(MF(k[x, y, z], f ,Z)⊗̂k MF(k[u, v,w], g,Z))pe. From Orlov, we have
MF(k[x, y, z], f ,Z) ∼= Db(coh E) and
MF(k[u, v,w], g,Z) ∼= Db(coh F). Hence
MF(k[x, y, z, u, v,w], f + g,M) ∼= Db(coh E ×k F). In this way,
Db(coh E ×k F) is a Z3-cover of Db(coh Y) (this can be made precise
using orbit categories).
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Remark
Furthermore, on each elliptic curve, E,F the autoequivalence (1) is a
composition of Dehn twists. Hence this autoequivalence can be
viewed as a symplectic automorphism of the mirror. The action of Z3
on Db(coh E ×k F) is given by (1,−1). This can therefore be
considered as a product of sympletic automorphisms of the product of
the two mirrors. The relationship between the surfaces E ×k F and Y
can then be seen by viewing the mirror of E ×k F as a three to one
symplectic cover of the mirror of Y .
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Relating cycles directly

Theorem

Let Y be a K3 surface such that Db(coh Y) is equivalent to the
〈O,O(1),O(2)〉⊥ of the Fermat cubic fourfold. The Hodge
conjecture over Q holds for n-fold products of Y .
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Relating cycles directly

Theorem

Let Y be a K3 surface such that Db(coh Y) is equivalent to the
〈O,O(1),O(2)〉⊥ of the Fermat cubic fourfold. The Hodge
conjecture over Q holds for n-fold products of Y .

Idea of the proof:
Similarly to the previous example, due to Orlov’s theorem and results
of Kuznetsov, Db(coh Y) ∼= MF(k[x0, ..., x5], x3

0 + ...+ x3
5,Z).

Therefore by our theorem, Db(coh Yn) is a Zn−1
3 -cover of

MF(k[x0, ..., x6n−1, x3
0 + ...+ x3

6n−1,Z). On any Fermat of prime
degree, a basis for the cycles can be obtained by considering all
partitions of the variables into sets of cardinality two and reducing the
associated grading back to Z. The cycles which are not obtained by
induction on the K3 are the invariant ones under the Zn−1

3 -action.
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Generation

Fix a triangulated category, T , and a subcategory I. Four ways to
build new objects from old:

Take X and shift by i to get X[i].

Take a (finite) coproduct of copies of X, ⊕i∈IX.

If X ∼= Y ⊕ Z, then split off Y and Z.

From a morphism, a : X → Y , take the cone C(a), with Y ∈ I.

We denote by 〈I〉n the smallest full subcategory of T which is closed
under shifts, sums, summands, and taking at most n-cones.
We say an object, G, is a generator of T if the smallest full
subcategory containing G and closed under these operations is
equivalent to T . We say that G is a strong generator if 〈G〉n is
equivalent to T for some n. The generation time of I is the minimal
n for which 〈G〉n ∼= T ; it is denoted by U(G).
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Definition
The Orlov spectrum of a triangulated category T is the set of
all generation times of all strong generators.

Definition
The Rouquier dimension of a triangulated category T is the minimum
of the Orlov spectrum i.e. the minimal generation time achieved by a
strong generator.
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Theorem (Rouquier)
For a separated scheme of finite type over a perfect field, X, the
dimension of Db

coh(X) is finite.
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Theorem (Rouquier)
For a separated scheme of finite type over a perfect field, X, the
dimension of Db

coh(X) is finite.

Theorem (Rouquier)
Let X be a reduced separated scheme of finite type over k. One has:

1 dim(X) ≤ dim Db
coh(X)
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Theorem (Rouquier)
For a separated scheme of finite type over a perfect field, X, the
dimension of Db

coh(X) is finite.

Theorem (Rouquier)
Let X be a reduced separated scheme of finite type over k. One has:

1 dim(X) ≤ dim Db
coh(X)

2 if X is a smooth quasi-projective variety, then
dim Db

coh(X) ≤ 2 dim X.
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Theorem (Rouquier)
For a separated scheme of finite type over a perfect field, X, the
dimension of Db

coh(X) is finite.

Theorem (Rouquier)
Let X be a reduced separated scheme of finite type over k. One has:

1 dim(X) ≤ dim Db
coh(X)

2 if X is a smooth quasi-projective variety, then
dim Db

coh(X) ≤ 2 dim X.

Conjecture (Orlov)

Let X be a smooth variety. Then dim Db
coh(X) = dim(X).
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Conjecture (Orlov)

Let X be a smooth variety. Then dim Db
coh(X) = dim(X).

Theorem (Rouquier)
The above conjecture holds for ;

1 smooth affine varieties,
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Conjecture (Orlov)

Let X be a smooth variety. Then dim Db
coh(X) = dim(X).

Theorem (Rouquier)
The above conjecture holds for ;

1 smooth affine varieties,
2 projective spaces,
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Conjecture (Orlov)

Let X be a smooth variety. Then dim Db
coh(X) = dim(X).

Theorem (Rouquier)
The above conjecture holds for ;

1 smooth affine varieties,
2 projective spaces,
3 and smooth quadrics.
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Conjecture (Orlov)

Let X be a smooth variety. Then dim Db
coh(X) = dim(X).

Theorem (Rouquier)
The above conjecture holds for ;

1 smooth affine varieties,
2 projective spaces,
3 and smooth quadrics.

Theorem (Orlov)
The above conjecture holds for smooth curves. More generally, if C is
a smooth curve, then the spectrum of Db(C) contains {1, 2} with
equality if and only if C = P1.
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Proposition

Let L ⊆ M be a finite subgroup. The categories, MF(R, f ,M) and
MF(R, f ,M/L) have the same Rouquier dimension.
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Proposition

Let L ⊆ M be a finite subgroup. The categories, MF(R, f ,M) and
MF(R, f ,M/L) have the same Rouquier dimension.

Example

Let (d0, .., dn) be a weight sequence with
∑s

i=1
1
di
≤ 1 containing

either {2}, {3, 3}, {3, 4}, or {3, 5}. Let k be a field whose
characteristic does not divide any of the di then Orlov’s Conjecture
holds for the weighted fermat hypersurface defined by f . Similarly,
the Rouquier dimension of Db(Ad0−1 ⊗ ...⊗ Adn−1) is equal to n− 2.
In general, the upper bound on the product category is n− 1 and is
achieved when

∑s
i=1

1
di
≤ 1

2 .
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Proposition

Let L ⊆ M be a finite subgroup. The categories, MF(R, f ,M) and
MF(R, f ,M/L) have the same Rouquier dimension.

Example
Orlov’s conjecture holds for the product, E × E of two Fermat elliptic
curves and the K3 surface obtained as a Z3 quotient and other similar
examples.
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The image of the chern character map and generation time

For homotopy categories of dg-categories, generation time is
intimately related to the image of chern character map (more precisely
to the boundary-bulk map).
Let f be a homogeneous polynomial of degree d defining a smooth
projective hypersurface X in projective space. Consider the category
MF(R, f ,Z), here R is the coordinate ring of projective space. For any
r ∈ Ri and B ∈ MF(R, f ,Z) we have a morphism r : B→ B(i). Let I
be the homogeneous ideal which annihilates all B ∈ MF(R, f ,Z). We
define the scheme theoretic support of B as the ideal in R/I which
annihilates B. Note that R/I is a quotient of the Jacobian ring.
Roughly, the image of the Chern character map can be identified with
polynomials in R/I of degree d(n− 1) + d − n− 1.

David Favero Graded matrix factorizations and functor categories



The image of the chern character map and generation time

For homotopy categories of dg-categories, generation time is
intimately related to the image of chern character map (more precisely
to the boundary-bulk map).
Let f be a homogeneous polynomial of degree d defining a smooth
projective hypersurface X in projective space. Consider the category
MF(R, f ,Z), here R is the coordinate ring of projective space. For any
r ∈ Ri and B ∈ MF(R, f ,Z) we have a morphism r : B→ B(i). Let I
be the homogeneous ideal which annihilates all B ∈ MF(R, f ,Z). We
define the scheme theoretic support of B as the ideal in R/I which
annihilates B. Note that R/I is a quotient of the Jacobian ring.
Roughly, the image of the Chern character map can be identified with
polynomials in R/I of degree d(n− 1) + d − n− 1.

David Favero Graded matrix factorizations and functor categories



The image of the chern character map and generation time

For homotopy categories of dg-categories, generation time is
intimately related to the image of chern character map (more precisely
to the boundary-bulk map).
Let f be a homogeneous polynomial of degree d defining a smooth
projective hypersurface X in projective space. Consider the category
MF(R, f ,Z), here R is the coordinate ring of projective space. For any
r ∈ Ri and B ∈ MF(R, f ,Z) we have a morphism r : B→ B(i). Let I
be the homogeneous ideal which annihilates all B ∈ MF(R, f ,Z). We
define the scheme theoretic support of B as the ideal in R/I which
annihilates B. Note that R/I is a quotient of the Jacobian ring.
Roughly, the image of the Chern character map can be identified with
polynomials in R/I of degree d(n− 1) + d − n− 1.

David Favero Graded matrix factorizations and functor categories



The image of the chern character map and generation time

For homotopy categories of dg-categories, generation time is
intimately related to the image of chern character map (more precisely
to the boundary-bulk map).
Let f be a homogeneous polynomial of degree d defining a smooth
projective hypersurface X in projective space. Consider the category
MF(R, f ,Z), here R is the coordinate ring of projective space. For any
r ∈ Ri and B ∈ MF(R, f ,Z) we have a morphism r : B→ B(i). Let I
be the homogeneous ideal which annihilates all B ∈ MF(R, f ,Z). We
define the scheme theoretic support of B as the ideal in R/I which
annihilates B. Note that R/I is a quotient of the Jacobian ring.
Roughly, the image of the Chern character map can be identified with
polynomials in R/I of degree d(n− 1) + d − n− 1.
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Theorem
Let X be a smooth hypersurface in Pn, defined by a homogeneous
polynomial, f , of degree d, k ∈ MF(R, f ,Z) be the residue field, and I
be the ideal of polynomials in Jf which are homotopic to zero for all
matrix factorizations in MF(R, f ,Z). For any homogeneous ideal
J ⊆ R/I, the generation time of MF(J), the category of Z-graded
matrix factorizations scheme theoretically supported on J, is bounded
below by one less than the nilpotent order of J in R/I with equality if
J is principal.
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Let m be the maximal ideal in R/I. One can show that MF(m) is
equal to the additive category spanned by all internal and homological
shifts of the residue field.
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Let m be the maximal ideal in R/I. One can show that MF(m) is
equal to the additive category spanned by all internal and homological
shifts of the residue field.

Corollary
Let X be a smooth hypersurface of even dimension in Pn. Suppose the
algebraic classes form a full sublattice of H

n−1
2 , n−1

2 (X,C) i.e. there is
a basis of the lattice which forms a C-basis of H

n−1
2 , n−1

2 (X,C). For
any ideal J ⊆ Jf , generated by homogeneous polynomials of degree i,
the generation time of MF(J) is bounded below by b (n+1)(d−2)

2i c in
both MF(R, f ) and MF(R, f ,Z) with equality when J is principal.
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Corollary

If U(
⊕d−1

i=0 k(i)) < (n+1)(d−2)
2 , then X has no primitive algebraic

classes.
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Corollary

If U(
⊕d−1

i=0 k(i)) < (n+1)(d−2)
2 , then X has no primitive algebraic

classes.

Remark
If M is any finite generated abelian group of rank 1, and R is M-graded
with the usual Z-grading a quotient of M with f ∈ Rd. We have

U(

d−1⊕
i=0

k(i)) = U(
⊕

m∈M/d

k(m))
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Corollary

If U(
⊕d−1

i=0 k(i)) < (n+1)(d−2)
2 , then X has no primitive algebraic

classes.

Remark
If M is any finite generated abelian group of rank 1, and R is M-graded
with the usual Z-grading a quotient of M with f ∈ Rd. We have

U(

d−1⊕
i=0

k(i)) = U(
⊕

m∈M/d

k(m))

Questions
Does equality hold for all ideals? Is the converse to the corollary true?
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