Graded matrix factorizations and functor categories

David Favero

University of Vienna

September 8, 2011

David Favero Graded matrix factorizations and functor categories

Based on joint work with Matthew Ballard (Upenn) and Ludmil Katzarkov (Miami and Wien).

- 4 同 ト 4 ヨ ト 4 ヨ

Hodge diamond of cubic fourfold and a K3 surface

3 1 3

∃ ⊳

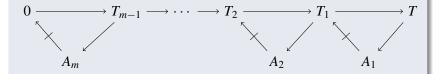
Hodge diamond of cubic fourfold and a K3 surface

3 1 3

∃ ⊳

Definition

A semi-orthogonal decomposition of a triangulated category, \mathcal{T} , is a sequence of full triangulated subcategories, $\mathcal{A}_1, \ldots, \mathcal{A}_m$, in \mathcal{T} such that $\mathcal{A}_i \subset \mathcal{A}_j^{\perp}$ for i < j and, for every object $T \in \mathcal{T}$, there exists a diagram:



where all triangles are distinguished and $A_k \in A_k$. We shall denote a semi-orthogonal decomposition by $\langle A_1, \ldots, A_m \rangle$.

Theorem (Orlov)

Let *X* be a hypersurface in \mathbb{P}^n which is the zero locus of a homogeneous polynomial, *f*, of degree, *d*.

• If n + 1 - d > 0, there is a semi-orthogonal decomposition,

$$\mathrm{D^b}(\mathrm{coh}\,X) = \langle \mathcal{O}_X(d-n), ..., \mathcal{O}_X, \mathrm{MF}(R, f, \mathbb{Z}) \rangle.$$

If n + 1 − d = 0, there is an equivalence of triangulated categories,

$$D^{b}(\operatorname{coh} X) = \langle \operatorname{MF}(R, f, \mathbb{Z}) \rangle.$$

So If n + 1 - d < 0, there is a semi-orthogonal decomposition,

$$\operatorname{MF}(R,f,\mathbb{Z})\cong\left\langle k,\ldots,k(n+2-d),\operatorname{D^b}(\operatorname{coh} X)\right\rangle.$$

Consider a cubic 4-fold, X, defined by f. Orlov's theorem gives:

 $\mathbf{D}^{\mathsf{b}}(\operatorname{coh} X) = \langle \mathsf{MF}(\mathbb{C}[x_0,...,x_6], f,\mathbb{Z}), \mathcal{O}, \mathcal{O}(1), \mathcal{O}(2) \rangle.$

Consider a cubic 4-fold, X, defined by f. Orlov's theorem gives:

 $\mathbf{D}^{\mathsf{b}}(\operatorname{coh} X) = \langle \mathsf{MF}(\mathbb{C}[x_0, ..., x_6], f, \mathbb{Z}), \mathcal{O}, \mathcal{O}(1), \mathcal{O}(2) \rangle.$

Work of Kuznetsov shows that when *f* is Pfaffian then $MF(\mathbb{C}[x_0, ..., x_6], f, \mathbb{Z})$ is equivalent to the derived category of a *K*3 surface and when *X* contains a plane, then $MF(\mathbb{C}[x_0, ..., x_6], f, \mathbb{Z})$ is equivalent to the derived category of a twisted *K*3 surface.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider a cubic 4-fold, X, defined by f. Orlov's theorem gives:

 $\mathbf{D}^{\mathsf{b}}(\operatorname{coh} X) = \langle \mathsf{MF}(\mathbb{C}[x_0, ..., x_6], f, \mathbb{Z}), \mathcal{O}, \mathcal{O}(1), \mathcal{O}(2) \rangle.$

Work of Kuznetsov shows that when *f* is Pfaffian then $MF(\mathbb{C}[x_0, ..., x_6], f, \mathbb{Z})$ is equivalent to the derived category of a *K*3 surface and when *X* contains a plane, then $MF(\mathbb{C}[x_0, ..., x_6], f, \mathbb{Z})$ is equivalent to the derived category of a twisted *K*3 surface.

Example

So when *f* is Pfaffian, we have a *K*3 surface, *Y*, and:

$$D^{b}(\operatorname{coh} X) = \langle D^{b}(\operatorname{coh} Y), \mathcal{O}, \mathcal{O}(1), \mathcal{O}(2) \rangle.$$

イロトスポトメラトメラ

So when *f* is Pfaffian, we have a *K*3 surface, *Y*, and:

$$D^{b}(\operatorname{coh} X) = \langle D^{b}(\operatorname{coh} Y), \mathcal{O}, \mathcal{O}(1), \mathcal{O}(2) \rangle.$$

In Hochschild homology, given a semi-orthogonal decomposition, we get a splitting:

 $HH_*(X) = HH_*(Y) \oplus HH_*(\langle \mathcal{O} \rangle) \oplus HH_*(\langle \mathcal{O}(1) \rangle) \oplus HH_*(\langle \mathcal{O}(2) \rangle)$

So when *f* is Pfaffian, we have a *K*3 surface, *Y*, and:

$$D^{b}(\operatorname{coh} X) = \langle D^{b}(\operatorname{coh} Y), \mathcal{O}, \mathcal{O}(1), \mathcal{O}(2) \rangle.$$

In Hochschild homology, given a semi-orthogonal decomposition, we get a splitting:

 $HH_*(X) = HH_*(Y) \oplus HH_*(\langle \mathcal{O} \rangle) \oplus HH_*(\langle \mathcal{O}(1) \rangle) \oplus HH_*(\langle \mathcal{O}(2) \rangle)$

The last three things are just the chern characters of these vector bundles, telling us that $HH_*(Y)$ is the orthogonal to these three chern characters, after making the appropriate identifications using the Hochschild-Kostant-Rosenberg isomorphism.

In this sense, for a cubic potential in six variables, the graded category of matrix factorizations is often discussed as a type of noncommutative K3 surface.

In this sense, for a cubic potential in six variables, the graded category of matrix factorizations is often discussed as a type of noncommutative K3 surface.

When, the cubic potential is a sum of cubic potentials in 3 variables, f(x, y, z) + g(u, v, w), this noncommutative *K*3 surface, can be realized as a \mathbb{Z}_3 quotient of the product of the two elliptic curves defined by *f* and *g*. Let us state the general theorem.

Theorem

Let M, M' be finitely generated abelian groups. Let $R = k[x_0, ..., x_n], R' = k[y_0, ..., y_{n'}]$ be M, M' graded rings with x_i, y_i homogeneous. Let $f \in R_d, f' \in R_{d'}$ be homogeneous functions such that $f \in df, f' \in df'$ and $d \in M, d' \in M'$ are not torsion. The full sub(dg)category of compact objects in the category of functors from MF(R, f, M) to MF(R', f', M') is equivalent to MF $(R \otimes R', f \otimes 1 - 1 \otimes f', M \oplus M'/(d, -d'))$.

ロトスポトメラトメラト

Theorem

Let M, M' be finitely generated abelian groups. Let $R = k[x_0, ..., x_n], R' = k[y_0, ..., y_{n'}]$ be M, M' graded rings with x_i, y_i homogeneous. Let $f \in R_d, f' \in R_{d'}$ be homogeneous functions such that $f \in df, f' \in df'$ and $d \in M, d' \in M'$ are not torsion. The full sub(dg)category of compact objects in the category of functors from MF(R, f, M) to MF(R', f', M') is equivalent to MF $(R \otimes R', f \otimes 1 - 1 \otimes f', M \oplus M'/(d, -d'))$.

Remark

This is a graded version of a result of Dyckerhoff. Independently, Polishchuk and Vaintrob prove this theorem in the case where the singularities are isolated and $M \otimes_{\mathbb{Z}} \mathbb{Q}, M' \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$.

Consider a collection of hypersurfaces, $X_i \subseteq \mathbb{P}^{n_i}$ defined by polynomials f_i of degree d_i for $1 \le i \le s$. Let R_i be the coordinate rings of the \mathbb{P}^{n_i} . Consider the free abelian group of rank *s*, \mathbb{Z}^s , with basis \mathbf{e}_i , $1 \le i \le s$. Let L be the subgroup generated by $d_i \mathbf{e}_i = d_i \mathbf{e}_i$ and $M := \mathbb{Z}^{s} / L$. Denote by H the torsion subgroup of M. Explicitly, letting d_{ii} be the greatest common divisor of d_i and d_j , H is the finite subgroup of *M* generated by the images of $\frac{d_i}{d_{ii}} \mathbf{e}_i - \frac{d_j}{d_{ii}} \mathbf{e}_j$. One has $M/H \cong \mathbb{Z}$. Let *m* be the least common multiple of the d_i . In this setting the degree map deg : $M \to \mathbb{Z}$ can be identified with the mapping which takes \mathbf{e}_i to $\frac{d}{d}$. Let δ be an element of degree 1.

The dual group to *M* can be identified with the set, $D := \{(\lambda_1, ..., \lambda_s) | \lambda_i^{d_i} = \lambda_j^{d_j} \forall i, j\} \subseteq (k^*)^s$ and acts on $\mathbb{A}^{n_1 + ... + n_s + s} \setminus 0$ by multiplication by λ_i on the coordinates, $x_{d_1 + ... + d_{i-1}}$ through $x_{d_1 + ... + d_i}$. Let *Y* denote the hypersurface in $\mathbb{A}^{n_1 + ... + n_s + s} \setminus 0$ defined by the zero locus of $f_1 + ... + f_s$ and consider the global quotient stack, Z := [Y/D].

Theorem (Orlov)

Let $\mathcal{A} = MF(R_1 \otimes ... \otimes R_s, f_1 + ... + f_s, M)$. (which by our theorem is equivalent to $(MF(R_1, f_1, \mathbb{Z}) \hat{\otimes}_k ... \hat{\otimes}_k MF(R_s, f_s, \mathbb{Z}))_{pe})$.

• If a > 0, there is a semi-orthogonal decomposition,

$$\mathrm{D}^{\mathrm{b}}(\mathrm{coh}\,Z) \cong \langle \bigoplus_{h \in H} \mathcal{O}_{Z}((-a+1)\delta h), ..., \bigoplus_{h \in H} \mathcal{O}_{Z}(h), \mathcal{A} \rangle.$$

2 If a = 0, there is an equivalence of triangulated categories,

 $D^{b}(\operatorname{coh} Z)\cong \mathcal{A}.$

• If a < 0, there is a semi-orthogonal decomposition,

$$\mathcal{A} \cong \langle \bigoplus_{h \in H} k(h), \dots, \bigoplus_{h \in H} k((a+1)\delta h), \mathrm{D}^{\mathrm{b}}(\mathrm{coh}\, Z) \rangle$$

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

In the simple case of one variable, Orlov's theorem in the context of algebras yields an equivalence between $MF(k[x], x^d, \mathbb{Z})$ and $D^b(A_{d-1})$. Therefore,

$$(\mathbf{MF}(k[x], x^{p}, \mathbb{Z}) \hat{\otimes}_{k} \mathbf{MF}(k[y], y^{q}, \mathbb{Z}) \hat{\otimes}_{k} \mathbf{MF}(k[z], z^{r}, \mathbb{Z}))_{\text{pe}}$$

$$\cong (\mathbf{D}^{b}(A_{p-1}) \hat{\otimes}_{k} \mathbf{D}^{b}(A_{q-1}) \hat{\otimes}_{k} \mathbf{D}^{b}(A_{r-1}))_{\text{pe}}$$

$$\cong \mathbf{D}^{b}(A_{p-1} \otimes_{k} A_{q-1} \otimes_{k} A_{r-1}).$$

Applying Orlov's theorem, this category is compared via a semi-orthogonal decomposition to the weighted projective line with weight sequence (p, q, r) (the parameter is $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} - 1$).

Let $f(x, y, z) = x(x - z)(x - \lambda z) - zy^2$ and $g(u, v, w) = u(u - w)(u - \gamma w) - wv^2$ define two smooth elliptic curves, E and F respectively. Then f + g defines a smooth cubic fourfold containing at least three planes by setting z = w = 0. By work of Kuznetsov, the category MF(k[x, y, z, u, v, w], $f + g, \mathbb{Z}$) is, in this case, equivalent to the derived category of a certain gerby K3 surface, *Y*. On the other hand, letting $M = \mathbb{Z} \oplus \mathbb{Z} / (3, -3)$ with *x*, *y*, *z*. in degree (1, 0) and u, v, w in degree (0, 1), we have $MF(k[x, y, z, u, v, w], f + g, M) \cong$ $(MF(k[x, y, z], f, \mathbb{Z}) \hat{\otimes}_k MF(k[u, v, w], g, \mathbb{Z}))_{pe}$. From Orlov, we have $MF(k[x, y, z], f, \mathbb{Z}) \cong D^{b}(\operatorname{coh} E)$ and $MF(k[u, v, w], g, \mathbb{Z}) \cong D^{b}(\operatorname{coh} F)$. Hence $MF(k[x, y, z, u, v, w], f + g, M) \cong D^{b}(\operatorname{coh} E \times_{k} F)$. In this way, $D^{b}(\operatorname{coh} E \times_{k} F)$ is a \mathbb{Z}_{3} -cover of $D^{b}(\operatorname{coh} Y)$ (this can be made precise using orbit categories).

Remark

Furthermore, on each elliptic curve, E, F the autoequivalence (1) is a composition of Dehn twists. Hence this autoequivalence can be viewed as a symplectic automorphism of the mirror. The action of \mathbb{Z}_3 on $D^b(\operatorname{coh} E \times_k F)$ is given by (1, -1). This can therefore be considered as a product of sympletic automorphisms of the product of the two mirrors. The relationship between the surfaces $E \times_k F$ and Y can then be seen by viewing the mirror of $E \times_k F$ as a three to one symplectic cover of the mirror of Y.

Relating cycles directly

Theorem

Let *Y* be a *K*3 surface such that $D^b(\operatorname{coh} Y)$ is equivalent to the $\langle \mathcal{O}, \mathcal{O}(1), \mathcal{O}(2) \rangle^{\perp}$ of the Fermat cubic fourfold. The Hodge conjecture over \mathbb{Q} holds for *n*-fold products of *Y*.

Theorem

Let *Y* be a *K*3 surface such that $D^b(\operatorname{coh} Y)$ is equivalent to the $\langle \mathcal{O}, \mathcal{O}(1), \mathcal{O}(2) \rangle^{\perp}$ of the Fermat cubic fourfold. The Hodge conjecture over \mathbb{Q} holds for *n*-fold products of *Y*.

Idea of the proof:

Similarly to the previous example, due to Orlov's theorem and results of Kuznetsov, $D^{b}(\operatorname{coh} Y) \cong \operatorname{MF}(k[x_{0}, ..., x_{5}], x_{0}^{3} + ... + x_{5}^{3}, \mathbb{Z})$. Therefore by our theorem, $D^{b}(\operatorname{coh} Y^{n})$ is a \mathbb{Z}_{3}^{n-1} -cover of $\operatorname{MF}(k[x_{0}, ..., x_{6n-1}, x_{0}^{3} + ... + x_{6n-1}^{3}, \mathbb{Z})$. On any Fermat of prime degree, a basis for the cycles can be obtained by considering all partitions of the variables into sets of cardinality two and reducing the associated grading back to \mathbb{Z} . The cycles which are not obtained by induction on the *K*3 are the invariant ones under the \mathbb{Z}_{3}^{n-1} -action.

- Take X and shift by i to get X[i].
- Take a (finite) coproduct of copies of X, $\bigoplus_{i \in I} X$.
- If $X \cong Y \oplus Z$, then split off Y and Z.
- From a morphism, $a: X \to Y$, take the cone C(a), with $Y \in \mathcal{I}$.

We denote by $\langle \mathcal{I} \rangle_n$ the smallest full subcategory of \mathcal{T} which is closed under shifts, sums, summands, and taking at most *n*-cones. We say an object, *G*, is a **generator** of \mathcal{T} if the smallest full subcategory containing *G* and closed under these operations is equivalent to \mathcal{T} . We say that *G* is a **strong generator** if $\langle G \rangle_n$ is equivalent to \mathcal{T} for some *n*. The **generation time** of \mathcal{I} is the minimal *n* for which $\langle G \rangle_n \cong \mathcal{T}$; it is denoted by $\mathfrak{O}(G)$.

Generation

Fix a triangulated category, \mathcal{T} , and a subcategory \mathcal{I} . Four ways to build new objects from old:

- Take X and shift by i to get X[i].
- Take a (finite) coproduct of copies of X, $\bigoplus_{i \in I} X$.
- If $X \cong Y \oplus Z$, then split off Y and Z.
- From a morphism, $a : X \to Y$, take the cone C(a), with $Y \in \mathcal{I}$.

We denote by $\langle \mathcal{I} \rangle_n$ the smallest full subcategory of \mathcal{T} which is closed under shifts, sums, summands, and taking at most *n*-cones. We say an object, *G*, is a **generator** of \mathcal{T} if the smallest full subcategory containing *G* and closed under these operations is equivalent to \mathcal{T} . We say that *G* is a **strong generator** if $\langle G \rangle_n$ is equivalent to \mathcal{T} for some *n*. The **generation time** of \mathcal{I} is the minimal *n* for which $\langle G \rangle_n \cong \mathcal{T}$; it is denoted by $\mathfrak{O}(G)$.

- Take X and shift by i to get X[i].
- Take a (finite) coproduct of copies of X, $\bigoplus_{i \in I} X$.
- If $X \cong Y \oplus Z$, then split off Y and Z.

• From a morphism, $a : X \to Y$, take the cone C(a), with $Y \in \mathcal{I}$.

We denote by $\langle \mathcal{I} \rangle_n$ the smallest full subcategory of \mathcal{T} which is closed under shifts, sums, summands, and taking at most *n*-cones. We say an object, *G*, is a **generator** of \mathcal{T} if the smallest full subcategory containing *G* and closed under these operations is equivalent to \mathcal{T} . We say that *G* is a **strong generator** if $\langle G \rangle_n$ is equivalent to \mathcal{T} for some *n*. The **generation time** of \mathcal{I} is the minimal *n* for which $\langle G \rangle_n \cong \mathcal{T}$; it is denoted by $\mathfrak{S}(G)$.

- Take X and shift by i to get X[i].
- Take a (finite) coproduct of copies of X, $\bigoplus_{i \in I} X$.
- If $X \cong Y \oplus Z$, then split off Y and Z.

• From a morphism, $a : X \to Y$, take the cone C(a), with $Y \in \mathcal{I}$. We denote by $\langle \mathcal{I} \rangle_n$ the smallest full subcategory of \mathcal{T} which is closed under shifts, sums, summands, and taking at most *n*-cones. We say an object, *G*, is a **generator** of \mathcal{T} if the smallest full subcategory containing *G* and closed under these operations is equivalent to \mathcal{T} . We say that *G* is a **strong generator** if $\langle G \rangle_n$ is equivalent to \mathcal{T} for some *n*. The **generation time** of \mathcal{I} is the minimal *n* for which $\langle G \rangle_n \cong \mathcal{T}$; it is denoted by $\mathfrak{O}(G)$.

- Take X and shift by i to get X[i].
- Take a (finite) coproduct of copies of X, $\bigoplus_{i \in I} X$.
- If $X \cong Y \oplus Z$, then split off *Y* and *Z*.

• From a morphism, $a : X \to Y$, take the cone C(a), with $Y \in \mathcal{I}$. We denote by $\langle \mathcal{I} \rangle_n$ the smallest full subcategory of \mathcal{T} which is closed under shifts, sums, summands, and taking at most *n*-cones. We say an object, *G*, is a **generator** of \mathcal{T} if the smallest full subcategory containing *G* and closed under these operations is equivalent to \mathcal{T} . We say that *G* is a **strong generator** if $\langle G \rangle_n$ is equivalent to \mathcal{T} for some *n*. The **generation time** of \mathcal{I} is the minimal *n* for which $\langle G \rangle_n \cong \mathcal{T}$; it is denoted by $\mathfrak{O}(G)$.

- Take X and shift by i to get X[i].
- Take a (finite) coproduct of copies of X, $\bigoplus_{i \in I} X$.
- If $X \cong Y \oplus Z$, then split off *Y* and *Z*.
- From a morphism, $a : X \to Y$, take the cone C(a), with $Y \in \mathcal{I}$.

We denote by $\langle \mathcal{I} \rangle_n$ the smallest full subcategory of \mathcal{T} which is closed under shifts, sums, summands, and taking at most *n*-cones. We say an object, *G*, is a **generator** of \mathcal{T} if the smallest full subcategory containing *G* and closed under these operations is equivalent to \mathcal{T} . We say that *G* is a **strong generator** if $\langle G \rangle_n$ is equivalent to \mathcal{T} for some *n*. The **generation time** of \mathcal{I} is the minimal *n* for which $\langle G \rangle_n \cong \mathcal{T}$; it is denoted by $\Theta(G)$.

- Take X and shift by i to get X[i].
- Take a (finite) coproduct of copies of X, $\bigoplus_{i \in I} X$.
- If $X \cong Y \oplus Z$, then split off *Y* and *Z*.
- From a morphism, $a : X \to Y$, take the cone C(a), with $Y \in \mathcal{I}$.

We denote by $\langle \mathcal{I} \rangle_n$ the smallest full subcategory of \mathcal{T} which is closed under shifts, sums, summands, and taking at most *n*-cones.

We say an object, *G*, is a **generator** of \mathcal{T} if the smallest full subcategory containing *G* and closed under these operations is equivalent to \mathcal{T} . We say that *G* is a **strong generator** if $\langle G \rangle_n$ is equivalent to \mathcal{T} for some *n*. The **generation time** of \mathcal{I} is the minimal *n* for which $\langle G \rangle_n \cong \mathcal{T}$; it is denoted by $\mathfrak{S}(G)$.

- Take X and shift by i to get X[i].
- Take a (finite) coproduct of copies of X, $\bigoplus_{i \in I} X$.
- If $X \cong Y \oplus Z$, then split off *Y* and *Z*.
- From a morphism, $a : X \to Y$, take the cone C(a), with $Y \in \mathcal{I}$.

We denote by $\langle \mathcal{I} \rangle_n$ the smallest full subcategory of \mathcal{T} which is closed under shifts, sums, summands, and taking at most *n*-cones. We say an object, *G*, is a **generator** of \mathcal{T} if the smallest full subcategory containing *G* and closed under these operations is equivalent to \mathcal{T} . We say that *G* is a **strong generator** if $\langle G \rangle_n$ is equivalent to \mathcal{T} for some *n*. The **generation time** of \mathcal{I} is the minimal *n* for which $\langle G \rangle_n \cong \mathcal{T}$; it is denoted by $\Theta(G)$.

- Take X and shift by i to get X[i].
- Take a (finite) coproduct of copies of X, $\bigoplus_{i \in I} X$.
- If $X \cong Y \oplus Z$, then split off *Y* and *Z*.
- From a morphism, $a : X \to Y$, take the cone C(a), with $Y \in \mathcal{I}$.

We denote by $\langle \mathcal{I} \rangle_n$ the smallest full subcategory of \mathcal{T} which is closed under shifts, sums, summands, and taking at most *n*-cones. We say an object, *G*, is a **generator** of \mathcal{T} if the smallest full subcategory containing *G* and closed under these operations is equivalent to \mathcal{T} . We say that *G* is a **strong generator** if $\langle G \rangle_n$ is equivalent to \mathcal{T} for some *n*. The **generation time** of \mathcal{I} is the minimal *n* for which $\langle G \rangle_n \cong \mathcal{T}$; it is denoted by $\mathfrak{O}(G)$.

Definition The Orlov spectrum of a triangulated category \mathcal{T} is the set of all generation times of all strong generators.

Definition

The Rouquier dimension of a triangulated category \mathcal{T} is the minimum of the Orlov spectrum i.e. the minimal generation time achieved by a strong generator.

(日本) (日本)

Theorem (Rouquier)

For a separated scheme of finite type over a perfect field, *X*, the dimension of $D^{b}_{coh}(X)$ is finite.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Theorem (Rouquier)

For a separated scheme of finite type over a perfect field, *X*, the dimension of $D^{b}_{coh}(X)$ is finite.

Theorem (Rouquier)

Let *X* be a reduced separated scheme of finite type over *k*. One has:

 $Imterim dim(X) \le \dim \mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(X)$

Theorem (Rouquier)

For a separated scheme of finite type over a perfect field, *X*, the dimension of $D^{b}_{coh}(X)$ is finite.

Theorem (Rouquier)

Let *X* be a reduced separated scheme of finite type over *k*. One has:

- $Im(X) \le \dim \mathbf{D}^{\mathbf{b}}_{\mathrm{coh}}(X)$
- if X is a smooth quasi-projective variety, then dim $D^{b}_{coh}(X) \leq 2 \dim X$.

Theorem (Rouquier)

For a separated scheme of finite type over a perfect field, *X*, the dimension of $D^{b}_{coh}(X)$ is finite.

Theorem (Rouquier)

Let *X* be a reduced separated scheme of finite type over *k*. One has:

- $Im(X) \le \dim \mathbf{D}^{\mathbf{b}}_{\mathrm{coh}}(X)$
- if X is a smooth quasi-projective variety, then dim $D^{b}_{coh}(X) \leq 2 \dim X$.

Conjecture (Orlov)

Let *X* be a smooth variety. Then dim $D^{b}_{coh}(X) = dim(X)$.

• • • • • • • • • • • •

Let *X* be a smooth variety. Then dim $D^{b}_{coh}(X) = dim(X)$.

Theorem (Rouquier)

The above conjecture holds for ;

• smooth affine varieties,

Let *X* be a smooth variety. Then dim $D^{b}_{coh}(X) = dim(X)$.

Theorem (Rouquier)

The above conjecture holds for ;

- smooth affine varieties,
- projective spaces,

Image: A matching of the second se

Let *X* be a smooth variety. Then dim $D^{b}_{coh}(X) = dim(X)$.

Theorem (Rouquier)

The above conjecture holds for ;

- smooth affine varieties,
- projective spaces,
- and smooth quadrics.

Let *X* be a smooth variety. Then dim $D^{b}_{coh}(X) = dim(X)$.

Theorem (Rouquier)

The above conjecture holds for ;

- smooth affine varieties,
- projective spaces,
- and smooth quadrics.

Theorem (Orlov)

The above conjecture holds for smooth curves. More generally, if *C* is a smooth curve, then the spectrum of $D^{b}(C)$ contains $\{1, 2\}$ with equality if and only if $C = \mathbb{P}^{1}$.

• □ ► • □ ► • □ ► •

Proposition

Let $L \subseteq M$ be a finite subgroup. The categories, MF(R, f, M) and MF(R, f, M/L) have the same Rouquier dimension.

Proposition

Let $L \subseteq M$ be a finite subgroup. The categories, MF(R, f, M) and MF(R, f, M/L) have the same Rouquier dimension.

Example

Let $(d_0, ..., d_n)$ be a weight sequence with $\sum_{i=1}^{s} \frac{1}{d_i} \leq 1$ containing either $\{2\}, \{3,3\}, \{3,4\}, \text{ or } \{3,5\}$. Let *k* be a field whose characteristic does not divide any of the d_i then Orlov's Conjecture holds for the weighted fermat hypersurface defined by *f*. Similarly, the Rouquier dimension of $D^b(A_{d_0-1} \otimes ... \otimes A_{d_n-1})$ is equal to n-2. In general, the upper bound on the product category is n-1 and is achieved when $\sum_{i=1}^{s} \frac{1}{d_i} \leq \frac{1}{2}$.

• □ • • □ • • □ • • □ •

Proposition

Let $L \subseteq M$ be a finite subgroup. The categories, MF(R, f, M) and MF(R, f, M/L) have the same Rouquier dimension.

Example

Orlov's conjecture holds for the product, $E \times E$ of two Fermat elliptic curves and the *K*3 surface obtained as a \mathbb{Z}_3 quotient and other similar examples.

Let *f* be a homogeneous polynomial of degree *d* defining a smooth projective hypersurface *X* in projective space. Consider the category $MF(R, f, \mathbb{Z})$, here *R* is the coordinate ring of projective space. For any $r \in R_i$ and $B \in MF(R, f, \mathbb{Z})$ we have a morphism $r : B \to B(i)$. Let *I* be the homogeneous ideal which annihilates all $B \in MF(R, f, \mathbb{Z})$. We define the scheme theoretic support of *B* as the ideal in R/I which annihilates *B*. Note that R/I is a quotient of the Jacobian ring. Roughly, the image of the Chern character map can be identified with polynomials in R/I of degree d(n - 1) + d - n - 1.

Let *f* be a homogeneous polynomial of degree *d* defining a smooth projective hypersurface *X* in projective space. Consider the category $MF(R, f, \mathbb{Z})$, here *R* is the coordinate ring of projective space. For any $r \in R_i$ and $B \in MF(R, f, \mathbb{Z})$ we have a morphism $r : B \to B(i)$. Let *I* be the homogeneous ideal which annihilates all $B \in MF(R, f, \mathbb{Z})$. We define the scheme theoretic support of *B* as the ideal in R/I which annihilates *B*. Note that R/I is a quotient of the Jacobian ring. Roughly, the image of the Chern character map can be identified with polynomials in R/I of degree d(n-1) + d - n - 1.

イロト イポト イヨト イヨト

Let *f* be a homogeneous polynomial of degree *d* defining a smooth projective hypersurface *X* in projective space. Consider the category $MF(R, f, \mathbb{Z})$, here *R* is the coordinate ring of projective space. For any $r \in R_i$ and $B \in MF(R, f, \mathbb{Z})$ we have a morphism $r : B \to B(i)$. Let *I* be the homogeneous ideal which annihilates all $B \in MF(R, f, \mathbb{Z})$. We define the scheme theoretic support of *B* as the ideal in R/I which annihilates *B*. Note that R/I is a quotient of the Jacobian ring.

Roughly, the image of the Chern character map can be identified with polynomials in R/I of degree d(n-1) + d - n - 1.

イロト イポト イヨト イヨト

Let *f* be a homogeneous polynomial of degree *d* defining a smooth projective hypersurface *X* in projective space. Consider the category $MF(R, f, \mathbb{Z})$, here *R* is the coordinate ring of projective space. For any $r \in R_i$ and $B \in MF(R, f, \mathbb{Z})$ we have a morphism $r : B \to B(i)$. Let *I* be the homogeneous ideal which annihilates all $B \in MF(R, f, \mathbb{Z})$. We define the scheme theoretic support of *B* as the ideal in R/I which annihilates *B*. Note that R/I is a quotient of the Jacobian ring. Roughly, the image of the Chern character map can be identified with polynomials in R/I of degree d(n - 1) + d - n - 1.

イロト イポト イラト イラト

Theorem

Let *X* be a smooth hypersurface in \mathbb{P}^n , defined by a homogeneous polynomial, *f*, of degree *d*, $k \in MF(R, f, \mathbb{Z})$ be the residue field, and *I* be the ideal of polynomials in J_f which are homotopic to zero for all matrix factorizations in $MF(R, f, \mathbb{Z})$. For any homogeneous ideal $J \subseteq R/I$, the generation time of MF(J), the category of \mathbb{Z} -graded matrix factorizations scheme theoretically supported on *J*, is bounded below by one less than the nilpotent order of *J* in R/I with equality if *J* is principal.

Let \mathfrak{m} be the maximal ideal in R/I. One can show that $MF(\mathfrak{m})$ is equal to the additive category spanned by all internal and homological shifts of the residue field.

Let \mathfrak{m} be the maximal ideal in R/I. One can show that $MF(\mathfrak{m})$ is equal to the additive category spanned by all internal and homological shifts of the residue field.

Corollary

Let *X* be a smooth hypersurface of even dimension in \mathbb{P}^n . Suppose the algebraic classes form a full sublattice of $H^{\frac{n-1}{2},\frac{n-1}{2}}(X,\mathbb{C})$ i.e. there is a basis of the lattice which forms a \mathbb{C} -basis of $H^{\frac{n-1}{2},\frac{n-1}{2}}(X,\mathbb{C})$. For any ideal $J \subseteq J_f$, generated by homogeneous polynomials of degree *i*, the generation time of MF(*J*) is bounded below by $\lfloor \frac{(n+1)(d-2)}{2i} \rfloor$ in both MF(*R*,*f*) and MF(*R*,*f*, \mathbb{Z}) with equality when *J* is principal.

Corollary

If
$$\Theta(\bigoplus_{i=0}^{d-1} k(i)) < \frac{(n+1)(d-2)}{2}$$
, then *X* has no primitive algebraic classes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

E 990

Corollary

If
$$\Theta(\bigoplus_{i=0}^{d-1} k(i)) < \frac{(n+1)(d-2)}{2}$$
, then *X* has no primitive algebraic classes.

Remark

If *M* is any finite generated abelian group of rank 1, and *R* is *M*-graded with the usual \mathbb{Z} -grading a quotient of *M* with $f \in R_d$. We have

$$\Im(\bigoplus_{i=0}^{d-1} k(i)) = \Im(\bigoplus_{m \in M/d} k(m))$$

Corollary

If
$$\Theta(\bigoplus_{i=0}^{d-1} k(i)) < \frac{(n+1)(d-2)}{2}$$
, then *X* has no primitive algebraic classes.

Remark

If *M* is any finite generated abelian group of rank 1, and *R* is *M*-graded with the usual \mathbb{Z} -grading a quotient of *M* with $f \in R_d$. We have

$$\Im(\bigoplus_{i=0}^{d-1}k(i)) = \boxdot(\bigoplus_{m\in M/d}k(m))$$

Questions

Does equality hold for all ideals? Is the converse to the corollary true?

イロト イポト イヨト イヨ