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Motivation: freeform architecture

Rationalization of an architectural design:

J. Wallner and H. Pottmann. Geometric computing for freeform
architecture. J. Math. Industry 1 (2011), #4,1–19.
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Motivation: freeform architecture

Rationalization of an architectural design:

Building in progress, 2011.
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Motivation: freeform architecture

Rationalization of an architectural design:

Yas Viceroy hotel in Abu-Dhabi, 2012.
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Motivation: circular arc structures

Circular arc structures (Bo et al., 2011):

edges are circular arcs;
nodes have tangent planes;
nodes are congruent to each other.
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Main problem

Problem. Find all surfaces containing ≥ 2

circles through each point.
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Doubly ruled surfaces

A surface is doubly ruled/doubly circular, if it
contains 2 segments/arcs through each point.

Classical Theorem. A doubly
ruled surface in R3 is either

a one-sheeted hyperboloid or
a hyperbolic paraboloid or
a plane.
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Ruled circular surfaces

Theorem (Nilov and S., 2011). An
analytic ruled circular surface in R3 is either

a one-sheeted hyperboloid or
a quadratic cone or
an elliptic cylinder or
a plane.

Example. Not true with R3 replaced by C3:(
x2 + y 2 + z2

)2
+ (x + iy)2 − z2 = 0.
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An example of a doubly circular surface

Example. Darboux cyclide: an image of a
doubly ruled surface under a map R3 → R3

taking all lines to circles.
Theorem. (A.G. Khovanskii, ’80) A map
R2 → S2 taking all lines to circles is a
composition of the inclusion R2 → R3 and a
central projection R3 → S2.

true also in dimension 3 (F. Izadi, ’01);
not true in dimension 4 (V. Timorin, ’04).
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Darboux cyclides

A Darboux cyclide is given by the equation
a(x2+y 2+z2)2+(x2+y 2+z2)(bx+cy+dz)+Q(x , y , z) = 0,

where a, b, c , d ∈ R

and degQ(x , y , z) ≤ 2.

Examples:
quadrics
tori
Dupin cyclides.
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Circles on a torus

How many families of circles exist on a torus?
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Circles on a torus

Two obvious families: meridians and parallels
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Circles on a torus

Two more circle families: Villarceau circles
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Circles on a torus

A torus is carrying 4 families of circles.
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Circles on Darboux cyclides

Darboux cyclides contain up to 6 real circles
through each point (R. Blum, 1980):
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Circles on Darboux cyclides

Darboux cyclides contain up to 6 real circles
through each point (R. Blum, 1980):
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Circles on Darboux cyclides

Darboux cyclides contain up to 6 real circles
through each point (R. Blum, 1980):
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Webs of circles on Darboux cyclides

Theorem (Pottmann–Shi–S., 2011).
Three families of circles on a nontrivial
irreducible Darboux cyclide form a 3-web
unless one takes two nonspecial paired
families and another family which has a
paired one. Thus we have 5 types of 3-webs
from circles on a Darboux cyclide.
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Web of type 1 on Darboux cyclides

3 nonsingle families such that no two of
them are paired families
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Web of type 2 on Darboux cyclides

2 special paired families and another
family which has a paired one
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Web of type 3 on Darboux cyclides

a single family and 2 paired families
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Web of type 4 on Darboux cyclides

a single family and 2 nonsingle families,
which are not two paired families
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Web of type 5 on Darboux cyclides

2 single families and another family which
has a paired one
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Multiple circular surfaces

Theorem. A smooth surface of genus at
most 1 containing 7 / 4 circles through each
point is a sphere / Darboux cyclide
(N. Takeuchi, 1995 / F. Nilov–M.S., 2011).
Theorem. A smooth surface containing 2

cospherical/orthogonal circles through each
point is a Darboux cyclide/Dupin cyclide
(J. Coolidge, 1906/ T. Ivey, 1995).
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Noncyclidic doubly circular surfaces

Example. Doubly circular 6⇒ Darboux
cyclide: (x2 + y 2 + z2 + 3)2 − 4y 2z2 − 16x2 − 12y 2 = 0.

Example. Triply isotropic circular 6⇒
isotropic cyclide: z = xy(x + y).
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A short proof of the Takeuchi theorem*

Lemma. From any 7 smooth closed curves
intersecting pairwise in finitely many points
in a closed surface of genus ≤ 1 one can
choose at least 3 curves intersecting pairwise
in an even number of points (counted with
multiplicities).
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A short proof of the Takeuchi theorem*

Lemma. Two circles passing through a
generic point of a doubly circular surface are
transversal.
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Conical surfaces

A surface is conical, if it contains a conic
section through each point.

Classification results:
ruled conical surfaces
(H. Brauner, 1969);
multiply conical surfaces
(J. Schicho, 2000).
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Doubly circular surfaces

Theorem (S., 2011). An analytic doubly
circular surface in C3 can be parametrized as

x(s, s ′, t, t ′) : y(s, s ′, t, t ′) : z(s, s ′, t, t ′) : w(s, s ′, t, t ′),

where x , y , z ,w are bihomogeneous
biquadratic polynomials s.t. w | x2 + y 2 + z2.
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Doubly circular surfaces in 3-sphere

Theorem (S., 2011). An analytic doubly
circular surface in 3-sphere can be
parametrized as

x : y : z : w : v ,

where x , y , z ,w , v are bihomogeneous
biquadratic polynomials such that

x2 + y 2 + z2 + w 2 = v 2.
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Isotropic geometry

An isotropic circle in R3 is either an ellipse
whose projection to Oxy is a circle or a
parabola with the axis parallel to Oz .
Problem. Find all 3-webs from isotropic
circles on surfaces in 3-space.
Motivation:

isotropic version is easier than Euclidean;
it is also interesting for architecture.
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