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I. Geometric approach to continued fractions. Basics of inte-
ger trigonometry.
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Ordinary continued fractions

The expression (finite or infinite)

a0 + 1/(a1 + 1/(a2 + . . .) . . .))

is an ordinary continued fraction if a0 ∈ Z, ak ∈ Z+ for k > 0.
Denote it [a0 : a1; . . .] (or [a0 : a1; . . . ; an]).

Ordinary continued fraction is odd (even) if it has odd (even) number
of elements.

Proposition

Any rational number has a unique odd and even ordinary continued
fractions.
Any irrational number has a unique infinite ordinary continued
fraction
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Geometry of continued fractions

a1 = lsin(A0A1A2) = 2;

OX

OY
y = 7/5x

O

1

2

2

A0

A1

B2 = A2

B0

B1

a0 = l`(A0A1) = 1;

a1 = l`(B0B1) = 2;

a2 = l`(A1A2) = 2.

7/5 = [1; 2 : 2].

l`(AB) — the number of primitive vectors in AB.
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Geometry of continued fractions

OX
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y = 7/5x
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A0

A1

A2

a0 = l`(A0A1) = 1;

a1 = lsin(A0A1A2) = 2;

a2 = l`(A1A2) = 2.

7/5 = [1; 2 : 2].

lsin(ABC ) =
S(ABC )

l`(AB) l`(BC )
(integer sin-formula).
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Geometry of continued fractions

OX

OY
y = 7/5x
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A1
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a0 = l`(A0A1) = 1;

a1 = lsin(A0A1A2) = 2;

a2 = l`(A1A2) = 2.

7/5 = [1; 2 : 2].

(a0, . . . , a2n) — lattice length-sine sequence (LLS-sequence).
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Integer geometry

Objects: Integer segments, integer angles, integer polygons.

Transformations: Integer lattice preserving affine transformations
in the plane.

(Aff (2, Z) = GL(2, Z) o Z2).

Oleg Karpenkov, TU Graz Toric singularities of surfaces and lattice trigonometry



Institute of Geometry TU Graz

Integer geometry

Objects: Integer segments, integer angles, integer polygons.

Transformations: Integer lattice preserving affine transformations
in the plane.

(Aff (2, Z) = GL(2, Z) o Z2).

Oleg Karpenkov, TU Graz Toric singularities of surfaces and lattice trigonometry



Institute of Geometry TU Graz

Integer geometry

Objects: Integer segments, integer angles, integer polygons.

Transformations: Integer lattice preserving affine transformations
in the plane.

(Aff (2, Z) = GL(2, Z) o Z2).

Oleg Karpenkov, TU Graz Toric singularities of surfaces and lattice trigonometry



Institute of Geometry TU Graz

Integer trigonometry (O.K. ’08)

O

A

B

V1

V0

V2

Isin 6 V0V1V2 = 2
I`(V0V1) = 1

I`(V1V2) = 2
Itan 6 AOB = 7/5
Isin 6 AOB = 7
Icos 6 AOB = 5

LLS-sequence for an arbitrary angle
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Integer trigonometry (O.K. ’08)

O

A

B

V1

V0

V2

Isin 6 V0V1V2 = 2
I`(V0V1) = 1

I`(V1V2) = 2
Itan 6 AOB = 7/5
Isin 6 AOB = 7
Icos 6 AOB = 5

Theorem
LLS-sequence is a complete invariant of integer angles in integer
geometry.
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Integer trigonometry (O.K. ’08)

O

A

B

V1

V0

V2

Isin 6 V0V1V2 = 2
I`(V0V1) = 1

I`(V1V2) = 2
Itan 6 AOB = 7/5
Isin 6 AOB = 7
Icos 6 AOB = 5

Definition
Let (a0, . . . , a2n) be the LLS-sequence of α, then
ltanα = [a0 : . . . : a2n].
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Integer trigonometry (O.K. ’08)

O

A

B

V1

V0

V2

Isin 6 V0V1V2 = 2
I`(V0V1) = 1

I`(V1V2) = 2
Itan 6 AOB = 7/5
Isin 6 AOB = 7
Icos 6 AOB = 5

ltanAOB = [1 : 2; 2] =
7

5
=⇒

{
lsin AOB = 7
lcos AOB = 5
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α + β + γ = π

Theorem
Integer: a). There exists an integer triangle with integer angles
(α, β, γ) iff (for some α of the triple)
i) ] ltan α,−1, ltanβ,−1, ltan γ[ = 0;
ii) ] ltan α,−1, ltanβ[ /∈ [0, ltanα].
b). Two integer triangles with the same sequences of integer
tangents are integer-homothetic.

Oleg Karpenkov, TU Graz Toric singularities of surfaces and lattice trigonometry



Institute of Geometry TU Graz

α + β + γ = π

Theorem
Euclidean: a). There exists a triangle with angles (α, β, γ) iff (α
is acute)
i) tan(α + β + γ) = 0;
ii) tan(α + β) /∈ [0, tanα].
b). Two triangles with the same sequences of tangents for angles
are homothetic.

Theorem
Integer: a). There exists an integer triangle with integer angles
(α, β, γ) iff (for some α of the triple)
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α + β + γ = π

Example

α γ

β
ltanα = 3 = [3];
ltanβ = 9/7 = [1; 3 : 2];
ltan γ = 3/2 = [1; 1 : 1].

i) [3;−1 : 1 : 3 : 2 : −1 : 1 : 1 : 1] = 0;
ii) [3;−1 : 1 : 3 : 2] = −3/2 /∈ [0, 3].

Theorem
Integer: a). There exists an integer triangle with integer angles
(α, β, γ) iff (for some α of the triple)
i) ] ltan α,−1, ltanβ,−1, ltan γ[ = 0;
ii) ] ltan α,−1, ltanβ[ /∈ [0, ltanα].
b). Two integer triangles with the same sequences of integer
tangents are integer-homothetic.
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Part II

II. Global relations on singularities of toric surfaces.
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Complex projective surfaces

Consider an integer convex polygon

P = A0,A1, . . . ,An.

Let An+1, . . . ,Am be it’s inner integer points. Let Ai = (xi , yi ).
Denote

Ω =
{(

tx1
1 ty1

2 t−x1−y1
3 : . . . : txm

1 tym
2 t−xm−ym

3

)
|

t1, t2, t3 ∈ C \ {0}
}

.

The set XP = Ω is the complex toric variety for P.

Example

For P = we have XP = CP2.

For P = XP is the conic x1x3 = x0x4 in CP3.
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Structure of singular sets

Denote Ãi = (0: . . . :0:1:0: . . . :0).

a) Ãi ∈ XP for i = 0, . . . , n;

b) XP \ {Ã0, Ã1, . . . , Ãn} is non-singular;

c) Ãi is singular ⇐⇒ i ≤ n and edges of the corresponding angle
does not generate Z2;

d) the singularity at Ãi is determined by a pair (ltan α, ltanαt).

Example

For P =
XP is defined by x0x1x2 = x3

3 ∈ CP3.
Singularities are at
(1:0:0:0), (0:1:0:0), and (0:0:1:0).

In appropriate affine charts all singularities are: xy = z3.
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Global relation on toric singularities

Corollary

A toric surface singularity of Euler characteristic 3 admits
singularities of type (ltan αi , ltanαt

i ) for i = 1, 2, 3

⇐⇒

for some ci ∈ {ltanαi , ltanαt
i } and a permutation σ it holds:

i) ]cσ(1),−1, cσ(2)[/∈ [0, cσ(1)];
ii) ]cσ(1),−1, cσ(2),−1, cσ(3)[= 0.
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Global relation on toric singularities

Corollary

A toric surface singularity of Euler characteristic n admits
singularities of type (ltan αi , ltanαt

i ) for i = 1, . . . , n.

=⇒

For ci ∈ {ltanαi , ltanαt
i } there exists a set of integers

{m0, . . . ,mn−1} such that:

]c0,m0, c1,m1, . . . ,mn−1, cn[= 0.
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Global relation on toric singularities

Corollary

A toric surface singularity of Euler characteristic n admits
singularities of type (ltan αi , ltanαt

i ) for i = 1, . . . , n.

=⇒

For ci ∈ {ltanαi , ltanαt
i } there exists a set of integers

{m0, . . . ,mn−1} such that:

]c0,m0, c1,m1, . . . ,mn−1, cn[= 0.

Problem
Find a good criterion for ”⇐=” in this case.

Oleg Karpenkov, TU Graz Toric singularities of surfaces and lattice trigonometry



Institute of Geometry TU Graz

A geometric tool used in the proof

Definition
a2k = |OAk × OAk+1|, k = 0, . . . , n;

a2k−1 =
|AkAk−1 × AkAk+1|

a2k−2a2k
, k = 1, . . . , n.

The sequence (a0, . . . , a2n) is called the LLS-sequence.

(|v ×w | — the oriented area of the parallelogram spanned by v and
w)

Oleg Karpenkov, TU Graz Toric singularities of surfaces and lattice trigonometry
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O

A

B

V1

V0

V2

Isin 6 V0V1V2 = 2
I`(V0V1) = 1

I`(V1V2) = 2
Itan 6 AOB = 7/5
Isin 6 AOB = 7
Icos 6 AOB = 5

Is it possible to extend the LLS-sequence to arbitrary broken
lines?

Definition
a2k = |OAk × OAk+1|, k = 0, . . . , n;

a2k−1 =
|AkAk−1 × AkAk+1|

a2k−2a2k
, k = 1, . . . , n.

The sequence (a0, . . . , a2n) is called the LLS-sequence.

(|v ×w | — the oriented area of the parallelogram spanned by v and
w)
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A0

A1

A2

A3O

a0 = 1;
a1 = −1;
a2 = 2;
a3 = 2;
a4 = −1.
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Generalized geometry of continued fractions

Theorem
Consider a broken line A0 . . .An with LLS-sequence
(a0, a1, . . . , a2n). Let A0 = (1, 0), A1 = (1, a0), and An = (x , y).
Then

y

x
= [a0 : a1; . . . ; a2n].

Example
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Theorem
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Then

y
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Example

A0

A1 −2

A2

−3/5

A3

O

1

2
−5

[1;−2 : 2 : −3/5 : −5] =
−1

2
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Generalized geometry of continued fractions

Theorem
Consider a broken line A0 . . .An with LLS-sequence
(a0, a1, . . . , a2n). Let A0 = (1, 0), A1 = (1, a0), and An = (x , y).
Then

y

x
= [a0 : a1; . . . ; a2n].

Example

B0 = B3

B1 −1

B2

−2

O

23

1

[2;−1 : 3 : −2 : 1] =
0

1
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Part III

III. Continued fractions and the second Kepler law.
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Smoothing of continued fractions

Recall

Definition
a2k = |OAk × OAk+1|, k = 0, . . . , n;

a2k−1 =
|AkAk−1 × AkAk+1|

a2k−2a2k
, k = 1, . . . , n.

The sequence (a0, . . . , a2n) is called the LLS-sequence.

What happens if we consider infinitesimally small edges?
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Continued fractions for curves

Definition
(O.K. ’11) Let γ be an arc-length parameterized C 2-class curve.
Put by definition the areal density and the angular density at some
point t:

A(t) = lim
ε→0

|Oγ(t)× Oγ(t + ε)|
ε

= |Oγ(t)× γ̇(t)|

and

B(t) = lim
ε→0

|γ(t)γ(t − ε)× γ(t)γ(t + ε)|
ε|Oγ(t − ε)× Oγ(t)||Oγ(t)× Oγ(t + ε)|

.
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Continued fractions for curves

Definition
(O.K. ’11) Let γ be an arc-length parameterized C 2-class curve.
Put by definition the areal density and the angular density at some
point t:
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Proposition

A2(t)B(t) = κ(t).
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Continued fractions for curves

Definition
(O.K. ’11) Let γ be an arc-length parameterized C 2-class curve.
Put by definition the areal density and the angular density at some
point t:

A(t) = lim
ε→0

|Oγ(t)× Oγ(t + ε)|
ε

= |Oγ(t)× γ̇(t)|

and

B(t) = lim
ε→0

|γ(t)γ(t − ε)× γ(t)γ(t + ε)|
ε|Oγ(t − ε)× Oγ(t)||Oγ(t)× Oγ(t + ε)|

.

Proposition

(Areal density and the second Kepler law.) Suppose that a
body moves along the curve γ with velocity 1/A. Then the sector
area velocity of a body is constant and equals 1.
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Examples

Lines. The line x = a; O — the origin.

A(t) = a and B(t) = 0.

Ellipses and their centers. The ellipse x2

a2 + y2

b2 = 1 with a ≥ b > 0;
O — the origin (at the symmetry center of the ellipse).

A(t) =
ab√

a2 sin2 t + b2 cos2 t
and B(t) =

1

ab
√

a2 sin2 t + b2 cos2 t
.

Notice:
A(t)

B(t)
= a2b2 = const.
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Examples (planetary motion)

Ellipses and their foci. Consider x2

a2 + y2

b2 = 1 with a ≥ b > 0; O

— a focus (−
√

a2 − b2, 0).

A(t) =
ab + b

√
a2 − b2 cos t√

a2 sin2 t + b2 cos2 t

and

B(t) =
a

b
√

a2 sin2 t + b2 cos2 t
(
a+cos t

√
a2−b2

)2
.

I. The orbit of the planet is an ellipse with the Sun at one of the
foci.
II. The motion has the constant sector area velocity.
III. The square of the orbital period of the planet is proportional to
the cube of the semi-major axis of its orbit.

Remark
O – the Sun.
The trajectory of the planet is x2

a2 + y2

b2 = 1 with a ≥ b (I Kepler
law),
Velocity of the planet: λ/A(t) (II Kepler law), where

λ = ± Te∫ L
0 |1/A(t)|dt

(
a

ae

) 3
2

.

for L — the length of the ellipse for the planet. (III Kepler law)
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Examples

Logarithmic spirals. Consider a logarithmic spiral{(
aebt cos t, aebt sin t

)∣∣t ∈ R
}
.

Then

A(t) =
aebt

√
b2 + 1

and B(t) =
e−3bt

√
b2 + 1

a3
.

Notice

A3(t)B(t) =
1

b2 + 1
= const.
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Open questions

Problem
What curves do we get in case if AB (or simply B) is constant?

Problem
Investigate the convergency questions of discrete curves to smooth
ones with respect to their continued fractions.

Problem
Is there some analog of toric surfaces in the smooth limit?
(Develop an approximation theory by toric surfaces.)
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