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Multivariate discriminant
a = (a1, . . . , an) ∈ Zn ↔ monomial xa = xa11 . . . xann
A ⊂ Zn ↔ C[A] = {linear combinations of xa, a ∈ A}

considered as functions on (C \ 0)n

Example

C[standard simplex] = {linear functions}
C[{0, 1, . . . , d}] = {polynomials of degree d}

ΣA ⊂ C[A] contains f ⇔ 0 is a critical value of f : (C \ 0)n → C.

Example

If A = , then the closure of ΣA consists of

f (x) = a00 + 2a10x + 2a01y + a20x
2 + 2a11xy + a02y

2 such that

det

(
a01 a00 a02
a00 a10 a20
a02 a20 a11

)
= 0.

If A′ = , then the closure of ΣA′ consists of

f (x) = a0 + a1x + a2x
2 + by such that a21 − 4a0a2 = b = 0.
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Dual defect

De�nition (Gelfand-Kapranov-Zelevinsky'94)

If the closure of ΣA if given by one equation, then denote it by

DA = 0, otherwise set DA ≡ 1. DA is the A-discriminant.

If codimΣA > 1, then A is dual defect. How to classify such A?

Projectivization of ΣA is projectively dual to the toric variety XA.

A is dual defect ⇔ XA is dual defect.

Classifying dual defect projective varieties:

Bertini'XIXâ., Gri�ths&Harris'79, Ein'86,. . .
Classi�cation of smooth dual defect toric varieties: Di Rocco'06.

Even if A is dual defect, dim ΣA is pure. For example (Takeuchi'08),

de�ne di =
∑

B(−1)codimB
(
C i−1
dimB−1 + (−1)i i

)
Vol(B)eBA , where

B runs over faces of A, and eBA is the Euler obstruction of XA at B .
0 = d1 = . . . = dr 6= dr+1 ⇒ r − 1 = codimΣA, dr+1 = deg ΣA.
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Discriminant of system of equations

Consider A0 and A1 in Z2. What is the (A0,A1)-discriminant?

ΣA0,A1⊂ C[A0]⊕ C[A1] contains a pair of polynomials (f0, f1),

if 0 is a critical value of (f0, f1) : (C \ 0)2 → C2.

ΣA0,A1 may contain components of codimension both = 1 and > 1.

Example

f0(x , y) = a + by + cxy , f1(x , y) = p + qx + rx2,
Σ2 = {q2 = 4pr}, Σ1 = {a = pc2 + qbc + rb2 = 0}.
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Nondegenerate polynomials: de�nitions

For a polynomial f of n variables and a linear function v : Zn → Z,
let f v be the highest v -homogeneous component of f .

De�nition
A tuple (f0, . . . , fk) is degenerate in the sense of Khovanskii, if:

� 0 is a critical value of (f v0 , . . . , f
v
k ) : (C \ 0)n → Ck+1 for some v ,

� the (non-zero) coe�cients of (f0, . . . , fk) can be perturbed

so that the topological type of {f0 = . . . = fk = 0} changes,
� the (non-zero) coe�cients of (f0, . . . , fk) can be perturbed

so that the Euler charecteristics of {f0 = . . . = fk = 0} changes.
� There is a local system L, such that H

(
(C \ 0)n, L

)
= 0, but

H({f0 = . . . = fk = 0}, L) is not only in the middle dimension.

Let A0, . . . ,Ak be �nite sets in Zn.

Let S ⊂ C[A0]⊕ . . .⊕ C[Ak ] be the set of all degenerate tuples.



Nondegenerate polynomials: examples

Example

f0(x , y) = a+by + cxy , f1(x , y) = p+qx + rx2, Σ2 = {q2 = 4pr},
Σ1 = {a = pc2 + qbc + rb2 = 0}.

Example

If (A0,A1,A2,A3) = in Z3, then codimS = 2:

nondegenerate tuple (f0, f1, f2, f3) has no common roots, and

triples (f1, f2, f3) that have a common root are in codimension 2.
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Discriminant of system of equations: de�nition

De�nition
codim(A0, . . . ,Ak) is the maximum over all i1 < . . . < ip
of p − dim(convex hull of Ai1 + . . .+ Aip).

Example

codim( ) = 2.

S ⊂ C[A0]⊕ . . .C[Ak ] is the set of all degenerate tuples.

Theorem
If codim(A0, . . . ,Ak) 6 1, then S is a non-empty hypersurface.

Let Si be a component of S , choose f /∈ S and a generic f̃ ∈ Si ,
then (−1)n−k(χ{f̃ = 0} − χ{f = 0}) > 0, denote it by χi .

De�nition
The equation of the divisor

∑
i χiSi is called the Euler

discriminant EA0,...,Ak
.
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Discriminant of system of equations: examples

Example

If k = n, then S is the closure of all tuples (f0, . . . , fn) such that

{f0 = . . . = fn = 0} 6= ∅, and EA0,...,An = RA0,...,An is the sparse

resultant.

It can be computed e. g. as
Sylvester-type matrix

its certain minor
(D'Andrea'02).

Example

If k = 0, then EA0 is the principal A-determinant:

EA0(f ) = RA0,...,A0(f , x1
∂f
∂x1
, . . . , xn

∂f
∂xn

). EA0 6= DA0 for n > 1!

Its Newton polytope is the secondary polytope of A (GKZ'94).

Proposition (Cayley trick)

EA0,...,Ak
(f0, . . . , fk) =

∏
i0<...<ip

E (λi0fi0 + . . .+ λip fip)(−1)
n−p

Its Newton polytope is the mixed secondary polytope of A•.
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Bifurcation set and Euler discriminant
Every algebraic π : M → Cm admits the maximal open subset

V ⊂ Cm, on which π : π−1(V )→ V is a �bration.

De�nition
Cm \V is the bifurcation set Bπ. Fiber π

−1(v), v ∈ V , is typical.

Theorem (Jelonek'92)

If M = Cm, then Bπ is a hypersurface.

Theorem (Le'84, generalization � Siersma-Tibar,
Artal-Luengo-Melle, Nemethi, Parusinski etc.)

Atyplical �bers of π : C2 → C di�er from typical ones by their Euler

characteristics.

By induction, subdivide Cm into
⊔

i Vi , such that π is a �bration

over every Vi . Let is �ber be Fi and V0 be dense.

De�nition
Eπ =

∑
i : dimVi=m−1

(χFi − χF0) · V i � Euler discriminant.
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Base changes in Euler discriminant

Theorem (k = 1 � Nemethi'90, k = n � Jelonek'92)

|EG | = BG for every map G = (g1, . . . , gk) : (C \ 0)n → Ck ,

such that (g1, . . . , gk) and (g1, . . . , ĝi , . . . , gk) for every i are
nondegenerate: atypical �bers are parameterized by a hypersurface,

and almost all atypical �bers have atypical Euler characteristics.

Proof: de�ne J : Ck → C[A1]⊕ . . .⊕ C[Ak ] = C[A•]
as J (y1, . . . , yk) = (g1 − y1, . . . , gk − yk).

graph of G → {(x , f1, . . . , fk) | f•(x) = 0} ⊂ (C \ 0)n × C[A•]
↓J ∗π ↓π
Ck J→ C[A•]

I |Eπ| = Bπ is the Euler discriminant {EA0,...,Ak
= 0}.

I J ∗Eπ = EJ ∗π and J −1Bπ = BJ ∗π by the invariance under

base changes.

I EJ ∗π = EG and BJ ∗π = BG are what we need.
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Faces of a tuple of polytopes

Proof of Theorems for A0 = . . . = An = A: singularity theory plus

�every face of convA is a facet of another face�. What if Ai 6= Aj?

I A tuple B of polytopes is said to be essential,

if codimB > codim Γ for every its subtuple Γ

I For linear v : Zn → Z, let Av be the face of convA,
on which v attains its maximum.

I For every linear v : Zn → Z, the maximal essential subtuple

of Av
0 , . . . ,A

v
k is called a facing of (A0, . . . ,Ak).

I A facing Γ is adjacent to a facing B , if they are the maximal

essential subtuples of (Av
0)u, . . . , (Av

k)u and Av
0 , . . . ,A

v
k .

I For a facing B of (A0, . . . ,Ak), de�ne
dim(B) = codim(A0, . . . ,Ak)− codim(B).



Faces of a tuple of polytopes: examples

(Facings, adjacency, dim) is the poset of faces of (A0, . . . ,Ak).

Example

Blue is adjacent to red. Blue is adjacent to black.

Example

Poset of faces is not a poset:

Blue<red<green, blue≮green
What is the transitive closure

of the adjacency relation?

Theorem
Every facing is adjacent to a facing of dimension greater by 1.



Discriminant of system of equations: tropical version
Tropical ring � T = (R ∪ {−∞},�max�,+), where
�max�(a, b) = max(a, b) for a 6= b, and �max�(a, a) = [−∞, a].

A k-dimensional algebraic set T is a union of

k-dimensional polytopes in Tn ⊃ Rn, endowed

with balanced positive integer tensions:∑
i Tiei = 0 on every (k − 1)-dimensional face.

Purity of the Euler discriminant is deduced from

I x ∈ T is regular for π : Rn → Rk , if a generic �ber of π
intersects a neighborhood of x in T at one point.

I T is regular, if every its point is regular for some Rn → Rk .

I π(all x ∈ T that are not regular for π) is the

tropical discriminant TDπ of the projection π : T → Rk .

I Conjecture: if T is regular then codimTDπ = 1.
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