Discriminant of system of equations

A. Esterov

National Research University Higher School of Economics esterov@mccme.ru

Algebra and Geometry, dedicated to the 65-th anniversary of Askold G. Khovanskii

(中) (종) (종) (종) (종) (종)

Multivariate discriminant

$$\begin{array}{rcl} a = (a_1, \dots, a_n) \in \mathbb{Z}^n & \leftrightarrow & \text{monomial } x^a = x_1^{a_1} \dots x_n^{a_n} \\ A \subset \mathbb{Z}^n & \leftrightarrow & \mathbb{C}[A] = \{ \text{linear combinations of } x^a, \ a \in A \} \\ & \text{considered as functions on } (\mathbb{C} \setminus 0)^n \end{array}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Example

$$\begin{split} \mathbb{C}[\text{standard simplex}] &= \{\text{linear functions}\}\\ \mathbb{C}[\{0, 1, \dots, d\}] &= \{\text{polynomials of degree } d\} \end{split}$$

Multivariate discriminant

 $\begin{array}{rcl} a = (a_1, \dots, a_n) \in \mathbb{Z}^n & \leftrightarrow & \text{monomial } x^a = x_1^{a_1} \dots x_n^{a_n} \\ A \subset \mathbb{Z}^n & \leftrightarrow & \mathbb{C}[A] = \{ \text{linear combinations of } x^a, a \in A \} \\ & \text{considered as functions on } (\mathbb{C} \setminus 0)^n \end{array}$

Example

$$\begin{split} & \mathbb{C}[\text{standard simplex}] = \{\text{linear functions}\} \\ & \mathbb{C}[\{0, 1, \dots, d\}] = \{\text{polynomials of degree } d\} \end{split}$$

 $\Sigma_A \subset \mathbb{C}[A] ext{ contains } f \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} 0 ext{ is a critical value of } f: (\mathbb{C} \setminus 0)^n
ightarrow \mathbb{C}.$

Example

If $A' = \sum_{a_0+a_1x+a_2x^2+by}$ such that $a_1^2 - 4a_0a_2 = b = 0$.

Dual defect

Definition (Gelfand-Kapranov-Zelevinsky'94)

If the closure of Σ_A if given by one equation, then denote it by $D_A = 0$, otherwise set $D_A \equiv 1$. D_A is the *A*-discriminant.

If $\operatorname{codim} \Sigma_A > 1$, then A is **dual defect**. How to classify such A?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Dual defect

Definition (Gelfand-Kapranov-Zelevinsky'94)

If the closure of Σ_A if given by one equation, then denote it by $D_A = 0$, otherwise set $D_A \equiv 1$. D_A is the A-discriminant.

If $\operatorname{codim} \Sigma_A > 1$, then A is **dual defect**. How to classify such A?

Projectivization of Σ_A is projectively dual to the toric variety X_A . *A* is dual defect \Leftrightarrow X_A is dual defect.

Classifying dual defect projective varieties: Bertini'XIXB., Griffiths&Harris'79, Ein'86,... Classification of smooth dual defect toric varieties: Di Rocco'06.

うして ふゆう ふほう ふほう うらつ

Dual defect

Definition (Gelfand-Kapranov-Zelevinsky'94)

If the closure of Σ_A if given by one equation, then denote it by $D_A = 0$, otherwise set $D_A \equiv 1$. D_A is the A-discriminant.

If $\operatorname{codim} \Sigma_A > 1$, then A is **dual defect**. How to classify such A?

Projectivization of Σ_A is projectively dual to the toric variety X_A . *A* is dual defect \Leftrightarrow X_A is dual defect.

Classifying dual defect projective varieties: Bertini'XIXB., Griffiths&Harris'79, Ein'86,... Classification of smooth dual defect toric varieties: Di Rocco'06.

Even if A is dual defect, dim Σ_A is pure. For example (Takeuchi'08), define $d_i = \sum_B (-1)^{\operatorname{codim} B} (C_{\dim B-1}^{i-1} + (-1)^i i) \operatorname{Vol}(B) e_A^B$, where B runs over faces of A, and e_A^B is the Euler obstruction of X_A at B. $0 = d_1 = \ldots = d_r \neq d_{r+1} \Rightarrow r-1 = \operatorname{codim} \Sigma_A, \ d_{r+1} = \operatorname{deg} \Sigma_A$.

Discriminant of system of equations

Consider A_0 and A_1 in \mathbb{Z}^2 . What is the (A_0, A_1) -discriminant? $\sum_{A_0,A_1} \subset \mathbb{C}[A_0] \oplus \mathbb{C}[A_1]$ contains a pair of polynomials (f_0, f_1) , if 0 is a critical value of $(f_0, f_1) : (\mathbb{C} \setminus 0)^2 \to \mathbb{C}^2$.

うして ふゆう ふほう ふほう うらつ

Discriminant of system of equations

Consider A_0 and A_1 in \mathbb{Z}^2 . What is the (A_0, A_1) -discriminant? $\sum_{A_0,A_1} \subset \mathbb{C}[A_0] \oplus \mathbb{C}[A_1]$ contains a pair of polynomials (f_0, f_1) , if 0 is a critical value of $(f_0, f_1) : (\mathbb{C} \setminus 0)^2 \to \mathbb{C}^2$.

 $\Sigma_{\mathcal{A}_0,\mathcal{A}_1}$ may contain components of codimension both =1 and >1. Example

◆□▶ ◆圖▶ ★ 国▶ ★ 国▶ - 国 - のへぐ

Nondegenerate polynomials: definitions

For a polynomial f of n variables and a linear function $v : \mathbb{Z}^n \to \mathbb{Z}$, let f^v be the highest v-homogeneous component of f.

Definition

- A tuple (f_0, \ldots, f_k) is degenerate in the sense of Khovanskii, if:
- 0 is a critical value of $(f_0^v, \ldots, f_k^v) : (\mathbb{C} \setminus 0)^n \to \mathbb{C}^{k+1}$ for some v,
- the (non-zero) coefficients of (f_0, \ldots, f_k) can be perturbed so that the topological type of $\{f_0 = \ldots = f_k = 0\}$ changes,
- the (non-zero) coefficients of (f_0, \ldots, f_k) can be perturbed so that the Euler charecteristics of $\{f_0 = \ldots = f_k = 0\}$ changes.
- There is a local system L, such that $H((\mathbb{C} \setminus 0)^n, L) = 0$, but $H(\{f_0 = \ldots = f_k = 0\}, L)$ is not only in the middle dimension.

Let A_0, \ldots, A_k be finite sets in \mathbb{Z}^n . Let $S \subset \mathbb{C}[A_0] \oplus \ldots \oplus \mathbb{C}[A_k]$ be the set of all degenerate tuples.

Nondegenerate polynomials: examples

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ● ●

Nondegenerate polynomials: examples

Nondegenerate polynomials: examples

Example

If $(A_0, A_1, A_2, A_3) =$ in \mathbb{Z}^3 , then $\operatorname{codim} S = 2$: nondegenerate tuple (f_0, f_1, f_2, f_3) has no common roots, and triples (f_1, f_2, f_3) that have a common root are in codimension 2.

Discriminant of system of equations: definition

Definition $\operatorname{codim}(A_0, \ldots, A_k)$ is the maximum over all $i_1 < \ldots < i_p$ of $p - \dim(\operatorname{convex} \operatorname{hull} \operatorname{of} A_{i_1} + \ldots + A_{i_p})$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Example $\operatorname{codim}(\underbrace{}_{1}, \underbrace{}_{2}, \underbrace{$

Discriminant of system of equations: definition

Definition $\operatorname{codim}(A_0, \ldots, A_k)$ is the maximum over all $i_1 < \ldots < i_p$ of $p - \dim(\operatorname{convex} \operatorname{hull} \operatorname{of} A_{i_1} + \ldots + A_{i_p})$.

Example

$$\operatorname{codim}(\bigwedge_{k=1}^{k}-\cdots-)=2.$$

 $\mathcal{S}\subset \mathbb{C}[\mathcal{A}_0]\oplus\ldots\mathbb{C}[\mathcal{A}_k]$ is the set of all degenerate tuples.

Theorem

If $\operatorname{codim}(A_0, \ldots, A_k) \leq 1$, then S is a non-empty hypersurface. Let S_i be a component of S, choose $f \notin S$ and a generic $\tilde{f} \in S_i$, then $(-1)^{n-k}(\chi\{\tilde{f}=0\}-\chi\{f=0\})>0$, denote it by χ_i .

Definition

The equation of the divisor $\sum_i \chi_i S_i$ is called the **Euler** discriminant $E_{A_0,...,A_k}$.

Discriminant of system of equations: examples

Example

If k = n, then S is the closure of all tuples (f_0, \ldots, f_n) such that $\{f_0 = \ldots = f_n = 0\} \neq \emptyset$, and $E_{A_0,\ldots,A_n} = R_{A_0,\ldots,A_n}$ is the sparse resultant.

It can be computed e. g. as $\frac{Sylvester-type matrix}{its certain minor}$ (D'Andrea'02).

うして ふゆう ふほう ふほう うらつ

Discriminant of system of equations: examples

Example

If k = n, then S is the closure of all tuples (f_0, \ldots, f_n) such that $\{f_0 = \ldots = f_n = 0\} \neq \emptyset$, and $E_{A_0,\ldots,A_n} = R_{A_0,\ldots,A_n}$ is the sparse resultant.

It can be computed e. g. as
$$\frac{\text{Sylvester-type matrix}}{\text{its certain minor}}$$
 (D'Andrea'02).

Example

If k = 0, then E_{A_0} is the principal A-determinant: $E_{A_0}(f) = R_{A_0,...,A_0}(f, x_1 \frac{\partial f}{\partial x_1}, ..., x_n \frac{\partial f}{\partial x_n})$. $E_{A_0} \neq D_{A_0}$ for n > 1! Its Newton polytope is the secondary polytope of A (GKZ'94).

うして ふゆう ふほう ふほう うらつ

Discriminant of system of equations: examples

Example

If k = n, then S is the closure of all tuples (f_0, \ldots, f_n) such that $\{f_0 = \ldots = f_n = 0\} \neq \emptyset$, and $E_{A_0,\ldots,A_n} = R_{A_0,\ldots,A_n}$ is the sparse resultant.

It can be computed e. g. as
$$\frac{\text{Sylvester-type matrix}}{\text{its certain minor}}$$
 (D'Andrea'02).

Example

If k = 0, then E_{A_0} is the principal A-determinant: $E_{A_0}(f) = R_{A_0,...,A_0}(f, x_1 \frac{\partial f}{\partial x_1}, ..., x_n \frac{\partial f}{\partial x_n})$. $E_{A_0} \neq D_{A_0}$ for n > 1! Its Newton polytope is the secondary polytope of A (GKZ'94).

Proposition (Cayley trick)

$$E_{A_0,...,A_k}(f_0,...,f_k) = \prod_{i_0 < ... < i_p} E(\lambda_{i_0}f_{i_0} + ... + \lambda_{i_p}f_{i_p})^{(-1)^{n-p}}$$

Its Newton polytope is the **mixed secondary polytope** of A_{\bullet}

Bifurcation set and Euler discriminant

Every algebraic $\pi: M \to \mathbb{C}^m$ admits the maximal open subset $V \subset \mathbb{C}^m$, on which $\pi: \pi^{-1}(V) \to V$ is a fibration.

Definition

 $\mathbb{C}^m \setminus V$ is the **bifurcation set** B_{π} . Fiber $\pi^{-1}(v), v \in V$, is **typical**.

Bifurcation set and Euler discriminant

Every algebraic $\pi: M \to \mathbb{C}^m$ admits the maximal open subset $V \subset \mathbb{C}^m$, on which $\pi: \pi^{-1}(V) \to V$ is a fibration.

Definition

 $\mathbb{C}^m \setminus V$ is the bifurcation set B_{π} . Fiber $\pi^{-1}(v), v \in V$, is typical.

Theorem (Jelonek'92)

If $M = \mathbb{C}^m$, then B_π is a hypersurface.

Theorem (Le'84, generalization – Siersma-Tibar, Artal-Luengo-Melle, Nemethi, Parusinski etc.)

Atyplical fibers of $\pi : \mathbb{C}^2 \to \mathbb{C}$ differ from typical ones by their Euler characteristics.

Bifurcation set and Euler discriminant

Every algebraic $\pi: M \to \mathbb{C}^m$ admits the maximal open subset $V \subset \mathbb{C}^m$, on which $\pi: \pi^{-1}(V) \to V$ is a fibration.

Definition

 $\mathbb{C}^m \setminus V$ is the bifurcation set B_{π} . Fiber $\pi^{-1}(v), v \in V$, is typical.

Theorem (Jelonek'92)

If $M = \mathbb{C}^m$, then B_π is a hypersurface: $|E_\pi| = B_\pi$.

Theorem (Le'84, generalization – Siersma-Tibar, Artal-Luengo-Melle, Nemethi, Parusinski etc.) Atyplical fibers of $\pi : \mathbb{C}^2 \to \mathbb{C}$ differ from typical ones by their Euler characteristics: $|E_{\pi}| = B_{\pi}$.

By induction, subdivide \mathbb{C}^m into $\bigsqcup_i V_i$, such that π is a fibration over every V_i . Let is fiber be F_i and V_0 be dense.

Definition

$$E_{\pi} = \sum_{i: \dim V_i = m-1} (\chi F_i - \chi F_0) \cdot \overline{V}_i - \text{Euler discriminant.}$$

Base changes in Euler discriminant

Theorem (k = 1 - Nemethi'90, k = n - Jelonek'92) $|E_G| = B_G$ for every map $G = (g_1, \ldots, g_k) : (\mathbb{C} \setminus 0)^n \to \mathbb{C}^k$, such that (g_1, \ldots, g_k) and $(g_1, \ldots, \hat{g_i}, \ldots, g_k)$ for every *i* are nondegenerate: atypical fibers are parameterized by a hypersurface, and almost all atypical fibers have atypical Euler characteristics.

ション ふゆ く 山 マ チャット しょうくしゃ

Base changes in Euler discriminant

Theorem (k = 1 - Nemethi'90, k = n - Jelonek'92) $|E_G| = B_G$ for every map $G = (g_1, \dots, g_k) : (\mathbb{C} \setminus 0)^n \to \mathbb{C}^k$, such that (g_1, \dots, g_k) and $(g_1, \dots, \hat{g_i}, \dots, g_k)$ for every *i* are nondegenerate: atypical fibers are parameterized by a hypersurface, and almost all atypical fibers have atypical Euler characteristics. PROOF: define $\mathcal{J} : \mathbb{C}^k \to \mathbb{C}[A_1] \oplus \dots \oplus \mathbb{C}[A_k] = \mathbb{C}[A_\bullet]$ as $\mathcal{J}(y_1, \dots, y_k) = (g_1 - y_1, \dots, g_k - y_k)$.

graph of
$$G \rightarrow \{(x, f_1, \dots, f_k) \mid f_{\bullet}(x) = 0\} \subset (\mathbb{C} \setminus 0)^n \times \mathbb{C}[A_{\bullet}]$$

 $\downarrow_{\mathcal{J}^*\pi} \qquad \qquad \downarrow_{\pi}$
 $\mathbb{C}^k \xrightarrow{\mathcal{J}} \mathbb{C}[A_{\bullet}]$

Base changes in Euler discriminant

Theorem (k = 1 - Nemethi'90, k = n - Jelonek'92) $|E_G| = B_G$ for every map $G = (g_1, \dots, g_k) : (\mathbb{C} \setminus 0)^n \to \mathbb{C}^k$, such that (g_1, \dots, g_k) and $(g_1, \dots, \hat{g_i}, \dots, g_k)$ for every *i* are nondegenerate: atypical fibers are parameterized by a hypersurface, and almost all atypical fibers have atypical Euler characteristics. PROOF: define $\mathcal{J} : \mathbb{C}^k \to \mathbb{C}[A_1] \oplus \dots \oplus \mathbb{C}[A_k] = \mathbb{C}[A_\bullet]$ as $\mathcal{J}(y_1, \dots, y_k) = (g_1 - y_1, \dots, g_k - y_k)$.

$$\begin{array}{rcl} \text{graph of } G & \to & \{(x, f_1, \dots, f_k) \mid f_{\bullet}(x) = 0\} & \subset (\mathbb{C} \setminus 0)^n \times \mathbb{C}[A_{\bullet}] \\ & \downarrow_{\mathcal{J}^*\pi} & & \downarrow_{\pi} \\ & \mathbb{C}^k & \xrightarrow{\mathcal{J}} & \mathbb{C}[A_{\bullet}] \end{array}$$

• $|E_{\pi}| = B_{\pi}$ is the Euler discriminant $\{E_{A_0,\dots,A_k} = 0\}$.

J^{*}E_π = E_{J^{*π}} and J⁻¹B_π = B_{J^{*π}</sub> by the invariance under base changes.</sub>}

•
$$E_{\mathcal{J}^*\pi} = E_G$$
 and $B_{\mathcal{J}^*\pi} = B_G$ are what we need.

Faces of a tuple of polytopes

Proof of Theorems for $A_0 = \ldots = A_n = A$: singularity theory plus "every face of conv A is a facet of another face". What if $A_i \neq A_i$?

- A tuple B of polytopes is said to be essential, if codim B > codim Γ for every its subtuple Γ
- For linear v : Zⁿ → Z, let A^v be the face of conv A, on which v attains its maximum.
- For every linear v : Zⁿ → Z, the maximal essential subtuple of A^v₀,..., A^v_k is called a facing of (A₀,..., A_k).
- A facing Γ is adjacent to a facing B, if they are the maximal essential subtuples of (A^v₀)^u,...,(A^v_k)^u and A^v₀,...,A^v_k.
- For a facing B of (A₀,..., A_k), define dim(B) = codim(A₀,..., A_k) − codim(B).

Faces of a tuple of polytopes: examples

(Facings, adjacency, dim) is the **poset of faces** of (A_0, \ldots, A_k) . Example

Blue is adjacent to red.

Blue is adjacent to black.

Example

Poset of faces is not a poset: **Blue**<**red**<**green**, **blue≰green** What is the transitive closure of the adjacency relation?

Theorem

Every facing is adjacent to a facing of dimension greater by 1.

Discriminant of system of equations: tropical version

Tropical ring – $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \text{``max''}, +)$, where "max" $(a, b) = \max(a, b)$ for $a \neq b$, and "max" $(a, a) = [-\infty, a]$.

A k-dimensional algebraic set T is a union of k-dimensional polytopes in $\mathbb{T}^n \supset \mathbb{R}^n$, endowed with balanced positive integer tensions: $\sum_i T_i e_i = 0$ on every (k - 1)-dimensional face.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Discriminant of system of equations: tropical version

Tropical ring – $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \text{``max''}, +)$, where "max" $(a, b) = \max(a, b)$ for $a \neq b$, and "max" $(a, a) = [-\infty, a]$.

A k-dimensional algebraic set T is a union of k-dimensional polytopes in $\mathbb{T}^n \supset \mathbb{R}^n$, endowed with balanced positive integer tensions: $\sum_i T_i e_i = 0$ on every (k - 1)-dimensional face. Purity of the Euler discriminant is deduced from

ション ふゆ く 山 マ チャット しょうくしゃ

Proposition

If $T \subset \mathbb{T}^n$ is k-dimensional, and $P \subset \mathbb{T}^n$ is an open polytope, then (closure of $T \cap P$) $\cap \partial P$ is purely (k - 1)-dimensional.

Discriminant of system of equations: tropical version

Tropical ring – $\mathbb{T} = (\mathbb{R} \cup \{-\infty\}, \text{``max''}, +)$, where "max''(a, b) = max(a, b) for $a \neq b$, and "max''(a, a) = $[-\infty, a]$.

A k-dimensional algebraic set T is a union of k-dimensional polytopes in $\mathbb{T}^n \supset \mathbb{R}^n$, endowed with balanced positive integer tensions: $\sum_i T_i e_i = 0$ on every (k - 1)-dimensional face. Purity of the Euler discriminant is deduced from

3

Proposition (Special case of Conjecture)

If $T \subset \mathbb{T}^n$ is k-dimensional, and $P \subset \mathbb{T}^n$ is an open polytope, then (closure of $T \cap P$) $\cap \partial P$ is purely (k - 1)-dimensional.

- ▶ $x \in T$ is **regular** for $\pi : \mathbb{R}^n \to \mathbb{R}^k$, if a generic fiber of π intersects a neighborhood of x in T at one point.
- T is **regular**, if every its point is regular for some $\mathbb{R}^n \to \mathbb{R}^k$.
- π(all x ∈ T that are not regular for π) is the tropical discriminant TD_π of the projection π : T → ℝ^k.
- Conjecture: if T is regular then $\operatorname{codim} \mathbb{T} D_{\pi} = 1$.