Lie-operator rings and their schemes (A. Dosi)

One of the principal foundations of noncommutative alge-
braic geometry is to extend the concept of affine schemes
to noncommutative rings. As in the commutative case
the main motivation for this is to represent a noncommu-
tative ring as the ring of "functions" over its spectrum.

The classical result, which is due to |. M. Gelfand, asserts
that a commutative Banach algebra can be realized as the
algebra of continuous functions over the space of all its
maximal ideals modulo its Jacobson radical.

A commutative ring A is the ring of all global sections
[ (Spec (A), O) of the structure sheaf O of the ring A
over its scheme Spec(A) (the space of all prime ideals
of A) up to an isomorphism (A. Grothendieck).

The noncommutative ring would generalize here a com-
mutative ring of regular functions on a commutative scheme.



The construction of the relevant schemes, and "func-
tions" over them, for the noncommutative ring requires
extraordinary efforts. The problem can not be able to be
solved in a unique framework based on a certain special
category of objects and morphisms. All these diversity
reflects in various methods and constructions picked up
in noncommutative geometry.

In the Banach algebra context the indicated direction is
closely related to the noncommutative functional calculus
problem and noncommutative spectral theory. Lie algebra
methods allow us to handle the problem and formulate
the relevant restrictions for noncommutative functional
calculus to be built up. As shown in many investiga-
tions the most reliable case is a family generating a Lie
nilpotent algebra. Based on this result from analysis, it
is reasonable to expect good behavior of Lie-nilpotent
rings in noncommutative algebraic geometry. This pro-
posal has been partially supported in Kapranov's theory
of NC-schemes.



Another motivation for the present work is to use a purely
operator approach to noncommutative schemes without
any sheaf constructions as classically done. The operator
realization of many noncommutative algebras is the well
known fact.

In the present talk we deal with noncommutative regu-
larity in the general purely algebraic case. We propose a
new approach to noncommutative spectra which is based
on concrete operator realization of an abstract regularity
in a Lie-complete ring.



Let R be a unital (noncommutative) ring. The set of all
its nilpotent elements is denoted by 9T (R). Recall that
a unital subring C C R is said to be an inverse closed
subring in R if each x € C being a unit in R turns out to
be a unit in C too, that is, z~1 € C. Any intersection
of inverse closed subrings is an inverse closed subring. In
particular, a subset S C R possesses the inverse closed
hull R (S), which is the smallest inverse closed subring

containing S.

A ring R turns out to be a Lie ring denoted by Ry,
equipped with the Lie brackets [a, b] = ab—ba, a,b € R.
The lower central series £(K) k& > 1, of a Lie ring L is
defined as the decaying sequence £1) = g, pkt+l) —
[[,,[,(k)}, k > 1, of its Lie-ideals. If £("*+1) = {0} for
some n > 1, we say that L is a nilpotent Lie ring.



Lie-nilpotent rings. Let A be aring. The ring A is said
to be a Lie-nilpotent ring if A, is a nilpotent Lie ring,
that is, Ag'erl) = {0} for some n > 1.

Pr. 1. Let R be a unital ring, A C R its Lie nilpotent
subring, and R (A) the inverse closed hull of A in R.
Then N (R (A)) is a two-sided ideal in R(A) and the
ring R (A) is commutative modulo N (R (A)).

In particular, if A is a Lie-nilpotent ring then 91 (A) < A
and A/91(A) is commutative (just put R = A). In

particular, I(A(2)) C IM(A). We also put Az =

le

A/l (A%?) called Kapranov's commutativization of A.



Prime ideals of a Lie-nilpotent ring. A two-sided ideal
p of a noncommutative ring A is called a prime ideal if
the inclusion I1Io C p for two-sided ideals I7, I» C A
implies that 11 € p or I C p. The set of all prime
ideals of a ring A is denoted by Spec (A). We define the
nilradical (McCoy, 1949)

Mil(A) =N{p:p €Spec(A)} C N(A)

An ideal p with multiplicatively closed complement A\p
is called a completely prime ideal.

Pr. 2. Let A be a Lie-nilpotent ring. Then Spec (A)
consists of all completely prime ideals, which is identified
with Spec (A¢), and Mil(A) = DN (A). Thus Spec(A)
turns out to be 1-space with respect to the Zariski topol-
ogy inherited from Spec (A¢).



Lie-complete rings. Let B¢, ¢ € a, be a family of
Lie-nilpotent rings (equipped with the discrete topology),
B = ][ Be their direct product, and let A C B be a

eca
unital subring. We have a projective (or weak) topology

in A such that all projections m¢ : A — B¢, € € q,
are continuous. We say that A is a Lie-filtered ring with

its weak topology. Thus A C [] Ae with Ac = we (A).
eca
Thering A is said to be a Lie-complete ring if A coincides

with its (weak) completion A. Put
Spf (A) = {open prime ideals of A}.

If A is a Lie-nilpotent ring (equipped with the discrete
topology) then Spf (A) = Spec (A). The set

Thil (A) = {a: cA: Ij'mxm :O}

is called the topological nilradical of A.



Pr. 3. Let A C ]] A¢ be a Lie-filtered ring. Then

€eca

NSpf (A) = Tnil (A), A/Tnil (A) is commutative, and
Spf (A) = {open completely prime ideals of A}. Thus

Spf (A) = Ueca Spec (Ae) = Spf (Ac¢) C Spec(Ae¢),
and if A is a Lie-complete ring then

MN(A) C Tnil(4) C Rad (4),
where Rad (A) is the Jacobson radical of A, and A¢ =
A/T (Ag?) is the commutativization.

We define the formal radical

VT = {p €Spf (4) : T C p)

in A of an nonempty subset (or tuple) T C A. In par-
ticular, +/0 = Tnil (A). Note that

VT = {az cA: Ii[n(:cm—yb) =0, (y.) gI(T)},
where I (T) is the two-sided ideal in A generated by T.



Quantum domains. Fix a unital commutative ring R
and let K € R-mod. By a (quantum) domain on K we
mean a commutative subset X C Endpg (K) of nonzero
projections such that >° X = 1g (or > .cxim(e) =
K). The commutant (noncommutative functions on X)

X'={T €Endp(K):Te=eT,e € X}

is an inverse closed unital subring in Endp (K). For each
S € X' we set (the noncommutative support)

Xg={ee€ X :eSisaunitineEndp(K)e}.

If T C X' then we put X = UgerXg. For each
e € X we have the ring homomorphism

e : X' — [] eEndgr (K)e,me (T) = (eT)

ece

ece’

In particular, 7x : X’ — [ eEndgr(K)e is a ring
ec X
embedding. Thus X’ is a filtered ring. Assuming each

subring e Endp (K) e to be equipped with the discrete
topology, we obtain the weak (filtered) topology tv (called
the weak operator topology) in X’ such that all projec-
tions e, € € X, are continuous.



Operator topologies. 0 is the discrete topology in X',
A covering t of X defines a new filtered topology (de-
noted by t as well) in X', which is the weak topology
in X' such that all projections m¢, € € t, are continu-
ous (each [] eEndpg (K)e equipped with the discreet

ece
topology). Thus we have the scale

o <t=0

of the filtered topologies in X’ called the operator topol-
ogy scale of the domain X.

If t ={X} then t =10;

If t ={{e} : e € X} is the "atomic" covering of X then
t = 1o.

Actually, X’ is complete with respect to each topology t
from the scale.



Lie-operator rings. Let A C X’ be a unital subring
equipped with a topology a from the operator topology
scale of the domain X.

We say that A is a Lie-operator ring in X' if the range

me (A) is a Lie-nilpotent subring in [[ eEndg (K) e for
ece
all € € a. In particular, the subring e A (= me (A)) is

Lie-nilpotent for each e € X.

The Lie-operator ring A automatically generates so called
support topology s (.A) in X, which is based on the key
relation

XSﬂXT:XST

forall S, T € A. The family {Xg¢ : S € A} isatopology
base of s(.A) in X, which is not necessarily Tj-space
topology.



Noncommutative regularity. Let A be a complete Lie-
operator ring in X'. It is called an X-regular ring if

(i) X¢ C Xp, Se A, TCA= S cVT;
(ZZ) S,TEA:>XS+TEX5UXT.

Then Tnil (A) = {S € A: Xg = @}. Similarly, Xg =
X iff S'is a unit in A.

For each e € X the set

pe ={T € A:TeisnotaunitineEndg (K)e}

is an open prime ideal of A, () pe = %nil(A) and
ec X
U pe consists of all non-unit elements in . A. We have
ec X
a continuous mapping

f: X —Spf(A),f(e) = pe

such that {e} = {f} in X (with respect to 5 (A)) iff
pe = pys. Thus the Kolmogorov quotient X of X is
embedded into Spf (\A) up to a homeomorphism.

Pr. Let A C X' be an X-regular ring, Then X is a
dense subspace in Spf (A).



Lie-operator X-rings. As a concrete model of a Lie-
complete ring we introduce Lie-operator X-rings:

Let A C X' be an X -regular ring with its operator topol-
ogy a. We say that A is a Lie-operator X -ring if for each
€ € a we have the following local properties:

(i)ede=3S € A, e e Xg, me(S) = 0 (the separa-
tion axiom);

(i) Te =0, T € A, ece= IS € A e € Xg, with

If a =0 on A, then A is a Lie-nilpotent ring, and we
have Te = 0T € A, e € X = 35 € Ae € Xg,
to-limy, T'S™ = 0. The separation axiom (%) is satisfied
automatically.

If @ =10 on A then (¢) means that for e # f in X we
have e € Xg, f € Xp and Sf = Te = 0 for some
S, T € A. In particular, X is Tj-space with respect to
the support topology s (\A). In this case the axiom (i)
is satisfied automatically.



The formal spectrum of a Lie-operator X-ring. Now
consider the open two-sided ideal

ge = {T € A : Te is nilpotent} C pe.

Th.1. If A is a Lie-operator X -ring, p € Spf (A) \ X,
then qe € p C pe for a certain e € X. Thus Xy is a
strongly dense subspace in Spf (A), that is, Spf (A) is
the Kolmogorov completion of X.

Cor. If X C A then X is an orthogonal family of pro-
jections with v0->. X = 1, the support topology s (.A)

in X is discreet, and A = ] Ae with a =to. In par-
ecX
ticular, Spf (A) = X up to a homeomorphism, and X

consists of all open maximal ideals.



Kolmogorov completion: Let Y be a non-empty Tp-
space, X C Y a subspace.

X is dense in'Y means X NU # & for each non-empty
open subset U C Y.

X is Tp-dense in Y means X N F # & for each non-
empty closed subset F' C Y.

If X is dense in Y in both senses, we say that X is a
strongly dense subspace in' Y .

Thus strongly dense subspaces reflect our Hausdorff per-
ception of density within 7p-spaces.

We say that Y is a Kolmogorov completion of a topo-
logical space X if the Kolmogorov quotient X of X is
embedded (up to a homeomorphism) into Y as a strongly
dense subspace. If Y is Hausdorff then 7j-dense subspace
of Y is just the whole space Y itself.

The set Z is an example of a strongly dense subspace in
R with respect to the right-order topology.



Application to joint spectra. Assume that R = k is
a field, K a linear space over k, A C X' C L(K)
an X-regular ring, and S = (5,),cq € A. The Harte
spectrum of S in A is defined as

oA(S)={Nek?:(S=N) # (1x)},

where (S — \) is the closure of the left or right ideal in
A generated by the tuple S — A\. Then

oa(8)={Nek?: Xg_\ # X}

Consider the free associative k-algebra Fq (x) gener-
ated by x =(z,),cq- The mapping f(x) — f(S) is
a functional calculus Fq (x) — A for S. A tuple A €
k! generates itself a functional calculus Fq (x) — k,
) = FN). IF£(%) = (f (X))ez C Fo () then
we have the =-tuples f(S) = (fx(S)),c= in A and
f(A) = (f () ez € E~

Th 2. If 04(S) # @ then f(o.4(S)) = o4 (f(S)).



The representation theorem. Finally, we propose the
representation theorem for Lie-complete rings being rep-
resented as Lie-operator X-rings.

Th 3. Let A C J] A¢ be a Lie-complete ring. Then A
eca
Is a Lie-operator X -ring up to a topological ring isomor-

phism, where X = VecqSpec (Ae). Moreover, pe = e
for all e € X. In particular, Xxc = Spf (A) up to a
homeomorphism.

Thus the Lie-operator X-rings are concrete models of Lie-
complete (in particular, Lie-nilpotent) rings. If A is a Lie-
nilpotent ring then it is a Lie-operator X-ring equipped
with the discrete topology thanks to Th. 3.



Examples. 1) The block-upper triangular matrices.

let R = k be a field, K = & k'e the direct sum
ec X
of me-dimensional k-linear spaces. We identify the in-

dex set X with the family X C Endj, (K') of orthogonal
projections onto indicated finite dimensional subspaces.
Note that > X = 1, and each S € X’ has a block di-

agonal form S = @ Se with Se € Endj, (k"¢), e € X.
ecX

In particular, X’ possesses the weak (operator) topology
to with respect to the indicated expansion. Consider the
following unital subring

Se *
0 Se

equipped with to. Obviously, Ay is a complete Lie-
operator ring. For each S € Ap we have

Xg={ee X :se#0}.

Then Ap is a Lie-operator X-ring and Spf (Aw) =
Mf (An) = X up to a homeomorphism.



2) The glued block-upper triangular matrices. The
previous example can be modified in the following way.
For each subset ¢ C X we put

me = sup{me : e € €}

(some of me even infinitely many may coincide). Con-
sider a partition a of X with the following property m¢ <
oo for each € € a, and let pe = 0-Y .. e € Ay be the
relevant projections. The partition a associates the fol-

lowing subring

Aa:{SEA:se:sf,Ve,fEe,Veea}Q.Am.

If a ={{e}:e € X} = tuis the atomic partition of X
then Aq = Aw. In the general case, Aq is a Lie-operator
X-ring. Note that pe = p for all e, f € € They stick to
each other within €. Put pe = pe whenever e € €. Then

X ={pe:e€a},

and it is a strongly dense subspace in Spf (Aq).



3) The local ring Zp)- Let p > 1 be a fixed prime,

Kp:{geQ:prZ,y¢pZ},K:Q@KPEZ—
Yy

mod, and X = {ej,ep} C Endy (K) the relevant
canonical projections. The local ring

A:Z(p):{%GQZGEZ,b¢pZ}gX/

acts as the diagonal operators on K. |If z € Z(p),

z

0
plication operators. Then X = &, {e;} or X. The

support topology s (\A) is non-Hausdorff T-space topol-

then z = [ 2] acts on Q and K as the multi-

ogy, whose open subsets are {&, {e1}, X }. Moreover,
a=0=1ton A and A is a Lie-operator X-ring. Note
that

a
Per = deys Pep = {g € Ly :a € pZ},qe2 = {0}.

By Th 3, Spf (A) = Spec (\A) = X up to a homeomor-
phism, e is a generic point which responds to {0} and
e> responds to pZ.



4) The algebra of step functions on [0,1). Let K
be the algebra of all real-valued functions on the inter-
val [0,1). Then K acts on itself by means of the (left)
multiplication operators, it is the so called left regular
representation of the algebra K. We restrict this rep-

resentation to the subring A C K of all step-functions
like

a—aox[ )—I—Zakx[ 1 1 ),akER,RGN,
m n—k+1'n—k

where x 7 indicates to the characteristic function of a sub-
set I C [0,1). The family {X{l/n} 1n # 1} (we set
1/0 = 0) of characteristic functions over the points

Q={0,1/n:n#1} CR

act as the family X = {en : n # 1} of projections in
Endg (K). Undoubtedly, A C X’. The support topol-

ogy s (A) in X is identified with the restricted topology

of the subspace 2 C R, which is Hausdorff, compact

space topology. Finally, Xjc = X = Q = Spec(.A) and
en ={a € A:ap =0} =qge,.



5) An example of an X-regular ring which is not
Lie-operator X-ring. An X-regular ring may not be
a Lie-operator X-ring. Indeed, let X = Spec(Z) be
the space of all primes equipped with Zariski topology,
Lyp = Z]pZ the finite field related to the prime p € Z,
which is Z-module via pull back along the canonical ring
homomorphism Z — Zp, and let K = %Zp be their

direct sum. The space X is identified with the set {ep} of
all canonical projections in Endy (K') with respect to the
indicated expansion of K. Consider the representation

¢ :Z —Endy (K), ¢(n) (pr) => n-zp.
Put A = ¢ (Z) C X’'. Note that

Xm) =1{ep € X 1 p(n)episaunitinepEndy (K)ep}

={pe X :n¢pl}
— Xy

Thus the support topology s (.A) is reduced to the original
Zariski topology of X, and A equipped with the discreet
topology is an X-regular ring but it is not a Lie-operator
X-ring.



