
Lie-operator rings and their schemes (A. Dosi)

One of the principal foundations of noncommutative alge-
braic geometry is to extend the concept of a¢ ne schemes
to noncommutative rings. As in the commutative case
the main motivation for this is to represent a noncommu-
tative ring as the ring of "functions" over its spectrum.

The classical result, which is due to I. M. Gelfand, asserts
that a commutative Banach algebra can be realized as the
algebra of continuous functions over the space of all its
maximal ideals modulo its Jacobson radical.

A commutative ring A is the ring of all global sections
� (Spec (A) ;O) of the structure sheaf O of the ring A
over its scheme Spec (A) (the space of all prime ideals
of A) up to an isomorphism (A. Grothendieck).

The noncommutative ring would generalize here a com-
mutative ring of regular functions on a commutative scheme.



The construction of the relevant schemes, and "func-
tions" over them, for the noncommutative ring requires
extraordinary e¤orts. The problem can not be able to be
solved in a unique framework based on a certain special
category of objects and morphisms. All these diversity
re�ects in various methods and constructions picked up
in noncommutative geometry.

In the Banach algebra context the indicated direction is
closely related to the noncommutative functional calculus
problem and noncommutative spectral theory. Lie algebra
methods allow us to handle the problem and formulate
the relevant restrictions for noncommutative functional
calculus to be built up. As shown in many investiga-
tions the most reliable case is a family generating a Lie
nilpotent algebra. Based on this result from analysis, it
is reasonable to expect good behavior of Lie-nilpotent
rings in noncommutative algebraic geometry. This pro-
posal has been partially supported in Kapranov�s theory
of NC-schemes.



Another motivation for the present work is to use a purely
operator approach to noncommutative schemes without
any sheaf constructions as classically done. The operator
realization of many noncommutative algebras is the well
known fact.

In the present talk we deal with noncommutative regu-
larity in the general purely algebraic case. We propose a
new approach to noncommutative spectra which is based
on concrete operator realization of an abstract regularity
in a Lie-complete ring.



Let R be a unital (noncommutative) ring. The set of all
its nilpotent elements is denoted by N (R). Recall that
a unital subring C � R is said to be an inverse closed
subring in R if each x 2 C being a unit in R turns out to
be a unit in C too, that is, x�1 2 C. Any intersection
of inverse closed subrings is an inverse closed subring. In
particular, a subset S � R possesses the inverse closed
hull R (S), which is the smallest inverse closed subring
containing S.

A ring R turns out to be a Lie ring denoted by Rlie
equipped with the Lie brackets [a; b] = ab�ba, a; b 2 R.
The lower central series L(k), k � 1, of a Lie ring L is
de�ned as the decaying sequence L(1) = L, L(k+1) =h
L;L(k)

i
, k � 1, of its Lie-ideals. If L(n+1) = f0g for

some n � 1, we say that L is a nilpotent Lie ring.



Lie-nilpotent rings. Let A be a ring. The ring A is said
to be a Lie-nilpotent ring if Alie is a nilpotent Lie ring,

that is, A(n+1)lie = f0g for some n � 1.

Pr. 1. Let R be a unital ring, A � R its Lie nilpotent
subring, and R (A) the inverse closed hull of A in R.
Then N (R (A)) is a two-sided ideal in R (A) and the
ring R (A) is commutative modulo N (R (A)).

In particular, if A is a Lie-nilpotent ring then N (A) C A
and A=N (A) is commutative (just put R = A). In

particular, I
�
A
(2)
lie

�
� N (A). We also put Ac =

A=I

�
A
(2)
lie

�
called Kapranov�s commutativization of A.



Prime ideals of a Lie-nilpotent ring. A two-sided ideal
p of a noncommutative ring A is called a prime ideal if
the inclusion I1I2 � p for two-sided ideals I1, I2 � A

implies that I1 � p or I2 � p. The set of all prime
ideals of a ring A is denoted by Spec (A). We de�ne the
nilradical (McCoy, 1949)

Nil (A) = \fp : p 2 Spec (A)g � N (A)

An ideal p with multiplicatively closed complement Anp
is called a completely prime ideal.

Pr. 2. Let A be a Lie-nilpotent ring. Then Spec (A)
consists of all completely prime ideals, which is identi�ed
with Spec (Ac), and Nil (A) = N (A). Thus Spec (A)
turns out to be T0-space with respect to the Zariski topol-
ogy inherited from Spec (Ac).



Lie-complete rings. Let B�, � 2 a, be a family of
Lie-nilpotent rings (equipped with the discrete topology),
B =

Q
�2a

B� their direct product, and let A � B be a

unital subring. We have a projective (or weak) topology
in A such that all projections �� : A ! B�, � 2 a,
are continuous. We say that A is a Lie-�ltered ring with
its weak topology. Thus A � Q

�2a
A� with A� = �� (A).

The ring A is said to be a Lie-complete ring if A coincides
with its (weak) completion bA. Put

Spf (A) = fopen prime ideals of Ag :

If A is a Lie-nilpotent ring (equipped with the discrete
topology) then Spf (A) = Spec (A). The set

Tnil (A) =
n
x 2 A : lim

m
xm = 0

o
is called the topological nilradical of A.



Pr. 3. Let A � Q
�2a

A� be a Lie-�ltered ring. Then

\ Spf (A) = Tnil (A), A=Tnil (A) is commutative, and
Spf (A) = fopen completely prime ideals of Ag. Thus

Spf (A) = [�2a Spec (A�) = Spf (Ac) � Spec (Ac) ;

and if A is a Lie-complete ring then

N (A) � Tnil (A) � Rad (A) ;

where Rad (A) is the Jacobson radical of A, and Ac =

A=I

�
A
(2)
lie

�
is the commutativization.

We de�ne the formal radical
p
T = \fp 2 Spf (A) : T � pg

in A of an nonempty subset (or tuple) T � A. In par-
ticular,

p
0 = Tnil (A). Note that

p
T =

n
x 2 A : lim

�
(xn� � y�) = 0, (y�) � I (T)

o
;

where I (T) is the two-sided ideal in A generated by T.



Quantum domains. Fix a unital commutative ring R
and let K 2 R-mod. By a (quantum) domain on K we
mean a commutative subset X � EndR (K) of nonzero
projections such that

P
X = 1K (or

P
e2X im (e) =

K). The commutant (noncommutative functions on X)

X 0 = fT 2 EndR (K) : Te = eT; e 2 Xg

is an inverse closed unital subring in EndR (K). For each
S 2 X 0 we set (the noncommutative support)

XS = fe 2 X : eS is a unit in eEndR (K) eg :

If T � X 0 then we put XT = [S2TXS. For each
� � X we have the ring homomorphism

�� : X
0 !

Y
e2�

eEndR (K) e; �� (T ) = (eT )e2� :

In particular, �X : X 0 ,! Q
e2X

eEndR (K) e is a ring

embedding. Thus X 0 is a �ltered ring. Assuming each
subring eEndR (K) e to be equipped with the discrete
topology, we obtain the weak (�ltered) topologyw (called
the weak operator topology) in X 0 such that all projec-
tions �e, e 2 X, are continuous.



Operator topologies. d is the discrete topology in X 0.
A covering t of X de�nes a new �ltered topology (de-
noted by t as well) in X 0, which is the weak topology
in X 0 such that all projections ��, � 2 t, are continu-
ous (each

Q
e2�

eEndR (K) e equipped with the discreet

topology). Thus we have the scale

w � t � d

of the �ltered topologies in X 0 called the operator topol-
ogy scale of the domain X.

If t = fXg then t = d;

If t = ffeg : e 2 Xg is the "atomic" covering of X then
t = w.

Actually, X 0 is complete with respect to each topology t
from the scale.



Lie-operator rings. Let A � X 0 be a unital subring
equipped with a topology a from the operator topology
scale of the domain X.

We say that A is a Lie-operator ring in X 0 if the range
�� (A) is a Lie-nilpotent subring in

Q
e2�

eEndR (K) e for

all � 2 a. In particular, the subring eA (= �e (A)) is
Lie-nilpotent for each e 2 X.

The Lie-operator ringA automatically generates so called
support topology s (A) in X, which is based on the key
relation

XS \XT = XST
for all S; T 2 A. The family fXS : S 2 Ag is a topology
base of s (A) in X, which is not necessarily T0-space
topology.



Noncommutative regularity. Let A be a complete Lie-
operator ring in X 0. It is called an X-regular ring if

(i) XS � XT, S 2 A, T �A ) S 2
p
T;

(ii) S; T 2 A ) XS+T � XS [XT .

Then Tnil (A) = fS 2 A : XS = ?g : Similarly, XS =
X i¤ S is a unit in A.

For each e 2 X the set

pe = fT 2 A : Te is not a unit in eEndR (K) eg
is an open prime ideal of A, T

e2X
pe = Tnil (A) andS

e2X
pe consists of all non-unit elements in A. We have

a continuous mapping

f : X ! Spf (A) ; f (e) = pe
such that feg = ffg in X (with respect to s (A)) i¤
pe = pf . Thus the Kolmogorov quotient XK of X is
embedded into Spf (A) up to a homeomorphism.

Pr. Let A � X 0 be an X-regular ring, Then XK is a
dense subspace in Spf (A).



Lie-operator X-rings. As a concrete model of a Lie-
complete ring we introduce Lie-operator X-rings:

Let A � X 0 be anX-regular ring with its operator topol-
ogy a. We say that A is a Lie-operator X-ring if for each
� 2 a we have the following local properties:

(i) e =2 � ) 9S 2 A, e 2 XS, �� (S) = 0 (the separa-
tion axiom);

(ii) Te = 0, T 2 A, e 2 � ) 9S 2 A, e 2 XS, with
w-limm �� (TSm) = 0.

If a = d on A, then A is a Lie-nilpotent ring, and we
have Te = 0,T 2 A, e 2 X ) 9S 2 A; e 2 XS,
w-limm TSm = 0. The separation axiom (i) is satis�ed
automatically.

If a = w on A then (i) means that for e 6= f in X we
have e 2 XS, f 2 XT and Sf = Te = 0 for some
S; T 2 A. In particular, X is T0-space with respect to
the support topology s (A). In this case the axiom (ii)

is satis�ed automatically.



The formal spectrum of a Lie-operator X-ring. Now
consider the open two-sided ideal

qe = fT 2 A : Te is nilpotentg � pe:

Th.1. If A is a Lie-operator X-ring, p 2 Spf (A) nXK,
then qe � p � pe for a certain e 2 X. Thus XK is a
strongly dense subspace in Spf (A), that is, Spf (A) is
the Kolmogorov completion of X.

Cor. If X � A then X is an orthogonal family of pro-
jections with w-

P
X = 1, the support topology s (A)

in X is discreet, and A =
Q
e2X

Ae with a = w. In par-

ticular, Spf (A) = X up to a homeomorphism, and X
consists of all open maximal ideals.



Kolmogorov completion: Let Y be a non-empty T0-
space, X � Y a subspace.

X is dense in Y means X \U 6= ? for each non-empty
open subset U � Y .

X is T0-dense in Y means X \ F 6= ? for each non-
empty closed subset F � Y .

If X is dense in Y in both senses, we say that X is a
strongly dense subspace in Y .

Thus strongly dense subspaces re�ect our Hausdor¤ per-
ception of density within T0-spaces.

We say that Y is a Kolmogorov completion of a topo-
logical space X if the Kolmogorov quotient XK of X is
embedded (up to a homeomorphism) into Y as a strongly
dense subspace. If Y is Hausdor¤ then T0-dense subspace
of Y is just the whole space Y itself.

The set Z is an example of a strongly dense subspace in
R with respect to the right-order topology.



Application to joint spectra. Assume that R = k is
a �eld, K a linear space over k, A � X 0 � L (K)

an X-regular ring, and S = (S�)�2
 � A. The Harte
spectrum of S in A is de�ned as

�A (S) =
n
� 2 k
 : (S� �) 6= (1K)

o
;

where (S� �) is the closure of the left or right ideal in
A generated by the tuple S� �. Then

�A (S) =
n
� 2 k
 : XS�� 6= X

o
:

Consider the free associative k-algebra F
 (x) gener-
ated by x =(x�)�2
. The mapping f (x) 7! f (S) is
a functional calculus F
 (x) ! A for S. A tuple � 2
k
 generates itself a functional calculus F
 (x) ! k,
f (x) 7! f (�). If f (x) = (f� (x))�2� � F
 (x) then
we have the �-tuples f (S) = (f� (S))�2� in A and
f (�) = (f� (�))�2� 2 k�.

Th 2. If �A (S) 6= ? then f (�A (S)) = �A (f (S)) :



The representation theorem. Finally, we propose the
representation theorem for Lie-complete rings being rep-
resented as Lie-operator X-rings.

Th 3. Let A � Q
�2a

A� be a Lie-complete ring. Then A

is a Lie-operator X-ring up to a topological ring isomor-
phism, where X = _�2a Spec (A�). Moreover, pe = e

for all e 2 X. In particular, XK = Spf (A) up to a
homeomorphism.

Thus the Lie-operatorX-rings are concrete models of Lie-
complete (in particular, Lie-nilpotent) rings. If A is a Lie-
nilpotent ring then it is a Lie-operator X-ring equipped
with the discrete topology thanks to Th. 3.



Examples. 1) The block-upper triangular matrices.
Let R = k be a �eld, K =

L
e2X

kme the direct sum

of me-dimensional k-linear spaces. We identify the in-
dex set X with the family X � Endk (K) of orthogonal
projections onto indicated �nite dimensional subspaces.
Note that

P
X = 1K , and each S 2 X 0 has a block di-

agonal form S =
L
e2X

Se with Se 2 Endk (kme), e 2 X.

In particular, X 0 possesses the weak (operator) topology
w with respect to the indicated expansion. Consider the
following unital subring

Aw=

8><>:S 2 X 0 : Se =
264 se �

. . .
0 se

375 2Mme (k)

9>=>;
equipped with w. Obviously, Aw is a complete Lie-
operator ring. For each S 2 Aw we have

XS = fe 2 X : se 6= 0g :

Then Aw is a Lie-operator X-ring and Spf (Aw) =
Mf (Aw) = X up to a homeomorphism.



2) The glued block-upper triangular matrices. The
previous example can be modi�ed in the following way.
For each subset � � X we put

m� = sup fme : e 2 �g

(some of me even in�nitely many may coincide). Con-
sider a partition a of X with the following propertym� <
1 for each � 2 a, and let p� = w-

P
e2� e 2 Aw be the

relevant projections. The partition a associates the fol-
lowing subring

Aa =
n
S 2 A : se = sf ; 8e; f 2 �;8� 2 a

o
� Aw.

If a = ffeg : e 2 Xg = w is the atomic partition of X
then Aa = Aw. In the general case, Aa is a Lie-operator
X-ring. Note that pe = pf for all e; f 2 � They stick to
each other within �. Put p� = pe whenever e 2 �. Then

XK = fp� : � 2 ag ;

and it is a strongly dense subspace in Spf (Aa).



3) The local ring Z(p). Let p > 1 be a �xed prime,

Kp =

(
x

y
2 Q : x 2 pZ; y =2 pZ

)
, K = Q�Kp 2 Z-

mod, and X = fe1; e2g � EndZ (K) the relevant
canonical projections. The local ring

A =Z(p) =
�
a

b
2 Q : a 2 Z; b =2 pZ

�
� X 0

acts as the diagonal operators on K. If z 2 Z(p),

then bz = "
z 0
0 z

#
acts on Q and Kp as the multi-

plication operators. Then Xbz = ?, fe1g or X. The
support topology s (A) is non-Hausdor¤ T0-space topol-
ogy, whose open subsets are f?; fe1g ; Xg. Moreover,
a = d = w on A, and A is a Lie-operator X-ring. Note
that

pe1 = qe1; pe2 =
�
a

b
2 Z(p) : a 2 pZ

�
; qe2 = f0g :

By Th 3, Spf (A) = Spec (A) = X up to a homeomor-
phism, e1 is a generic point which responds to f0g and
e2 responds to pZ.



4) The algebra of step functions on [0; 1). Let K
be the algebra of all real-valued functions on the inter-
val [0; 1). Then K acts on itself by means of the (left)
multiplication operators, it is the so called left regular
representation of the algebra K. We restrict this rep-
resentation to the subring A � K of all step-functions
like

a = a0�
h
0;1n

� + n�1X
k=1

ak�
h

1
n�k+1;

1
n�k

�; ak 2 R, n 2 N,
where �I indicates to the characteristic function of a sub-
set I � [0; 1). The family

n
�f1=ng : n 6= 1

o
(we set

1=0 = 0) of characteristic functions over the points


 = f0; 1=n : n 6= 1g � R

act as the family X = fen : n 6= 1g of projections in
EndR (K). Undoubtedly, A � X 0. The support topol-
ogy s (A) in X is identi�ed with the restricted topology
of the subspace 
 � R, which is Hausdor¤, compact
space topology. Finally, XK = X = 
 = Spec (A) and
pen = fa 2 A : an = 0g = qen.



5) An example of an X-regular ring which is not
Lie-operator X-ring. An X-regular ring may not be
a Lie-operator X-ring. Indeed, let X = Spec (Z) be
the space of all primes equipped with Zariski topology,
Zp = Z=pZ the �nite �eld related to the prime p 2 Z,
which is Z-module via pull back along the canonical ring
homomorphism Z! Zp, and let K =

L
p
Zp be their

direct sum. The spaceX is identi�ed with the set fepg of
all canonical projections in EndZ (K) with respect to the
indicated expansion of K. Consider the representation

' : Z!EndZ (K) , ' (n)
�X

xp
�
=
X
n � xp:

Put A = ' (Z) � X 0. Note that

X'(n) = fep 2 X : ' (n) ep is a unit in ep EndZ (K) epg
= fp 2 X : n =2 pZg
= Xn:

Thus the support topology s (A) is reduced to the original
Zariski topology of X, and A equipped with the discreet
topology is an X-regular ring but it is not a Lie-operator
X-ring.


